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A CONTINUOUS FUNCTION NOT TWICE
PEANO DIFFERENTIABLE ON ANY

PERFECT SET

Abstract

An example of a continuous function is given that is differentiable
except on a countable set, but is not twice Peano differentiable on any
nonempty, perfect set.

1 Introduction.

In 1984 M. Laczkovich [2] proved that for every continuous, real valued func-
tion of one real variable there is a nonempty, perfect set with respect to which
the function is infinitely differentiable. In a way this result indicates how inef-
fective the classical notion of higher order differentiation is when it is applied
to non connected subsets. In particular, knowledge of the classical higher or-
der derivatives of a function computed relative to a (non connected) set gives
no information about the behavior of the function as was shown by Mař́ık in
[3]. There he gave an example of a perfect set, H, with 0 ∈ H and a function,
f , defined on H that behaves about like x2 near 0, but with f (k)(0) = 0 for all
k ∈ N. However, a function behaving like x2 near 0 ought to have f ′(0) = 0
and f (2)(0) = 2 since these are the first and second derivatives of x2 at 0.
The notion of higher order differentiation that gives these correct derivatives
to Mař́ık’s example is the Peano notion.
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Definition 1.1 Let f : H → R and let x ∈ H. Then f is k times Peano differ-
entiable at x relative to H means there are k numbers denoted by f1(x), f2(x),
. . . , fk(x) and a function εx : H → R such that lim

y→x
y∈H

εx(y) = εx(x) = 0 and for

y ∈ H

f(y) = f(x) +

k∑
i=1

fi(x)

i!
(y − x)i + (y − x)kεx(y). (1)

The reader unfamiliar with the concept of Peano differentiation can learn
more about it by consulting either of the two survey articles, [1] or [5]. For
the purposes of this article the reader should be aware that the existence of
f (k)(x) computed relative to a non connected setH doesn’t imply the existence
of fk(x) computed relative to H. Moreover even when both f (k)(x) and fk(x)
exist, they need not be equal. In light of these observations it is reasonable
to ask if the assertion resulting from the Laczkovich result mentioned at the
outset by replacing the classical notion of higher order differentiation with the
Peano notion is true. We show by example that it is not.

2 The Example

In this section we construct a function, f , defined on [0, 1], a countable set,
E ⊂ [0, 1], and a number c > 0 such that f is differentiable on [0, 1] \E and if
x, y ∈ [0, 1] \ E, then

|f(y)− f(x)− (y − x)f ′(x)| ≥ c|y − x| 32
or (2)

|f(x)− f(y)− (x− y)f ′(y)| ≥ c|y − x| 32 .

The example is a modification of one presented by the first author in [4].
Before constructing the function, it will be shown that for such a function

there is no nonempty perfect set relative to which it is twice Peano differen-
tiable. For suppose there is a nonempty perfect set, H, such that for each
x ∈ H

lim
y→x
y∈H

f(y)− f(x)− (y − x)f ′(x)− (y−x)2

2 f2(x)

(y − x)2
= 0.

Then clearly for each x ∈ H

lim
y→x
y∈H

f(y)− f(x)− f ′(x)(y − x)

(y − x)
3
2

= 0.
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Now by the Baire Category Theorem, there is a δ > 0 and an interval (a, b)
with b− a < δ such that H ∩ (a, b) ̸= ∅ and

{x ∈ H∩(a, b) : |f(y)− f(x)− f ′(x)(y − x)|
|y − x| 32

< c for all y ∈ H with |y−x| < δ}

is uncountable and dense in H ∩ (a, b). Choosing x and y in the above set that
don’t belong to E contradicts (2).

Let

r(t) =


1 if t ∈ (n, n+ 1) with n ∈ N even

−1 if t ∈ (n, n+ 1) with n ∈ N odd

0 if t ∈ N ∪ {0}.

For x ∈ [0, 1] let

f(x) =

∫ x

0

∞∑
n=1

8−nr(26nt) dt

and set E =

{
j

26n
: n ∈ N, j = 0, 1, . . . 26n

}
. We will show that this function

has the desired properties. First it is clear that
∑∞

n=1 8
−nr(26nx) is continuous

on [0, 1] \ E and hence for x ∈ [0, 1] \ E we have f ′(x) =
∑∞

n=1 8
−nr(26nx).

To prove the assertions about f , it is convenient to refer to the intervals[
j − 1

26n
,

j

26n

)
for j = 1, 2, . . . , 26n as the intervals of rank n for n ∈ N. Let

x, y ∈ [0, 1] \ E with y ̸= x. Then there is a unique ℓ ∈ N such that for
n ≤ ℓ− 1, x and y lie in the same interval of rank n but in different intervals
of rank ℓ. Then

f(y)− f(x)− (y − x)f ′(x) =

∫ y

x

8−ℓ
(
r(26ℓt)− r(26ℓx)

)
dt

+

∫ y

x

∞∑
n=ℓ+1

8−n
(
r(26nt)− r(26nx)

)
dt

= T1 + T2.

The second term is the easier to estimate.

|T2| ≤ 2|y − x|
∞∑

n=ℓ+1

8−n =
2

7
8−ℓ|y − x|.

To obtain the desired estimate on the first term, two cases are considered.
First assume that x and y don’t lie in neighboring intervals of rank ℓ. Then
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it isn’t hard to see that |T1| ≥ 8−ℓ 2
3 |y − x|. Thus

|f(y)− f(x)− (y − x)f ′(x)| ≥ |T1| − |T2| ≥
8

21
8−ℓ|y − x|.

Since |y − x| < 2−6(ℓ−1) = 26(8−ℓ)2,

|f(y)− f(x)− (y − x)f ′(x)| ≥ 1

21
|y − x| 32 .

Second and finally suppose that x and y lie in neighboring intervals of

rank ℓ. Then |y − x| < 2−6ℓ+1. Let a =
j

26ℓ
lie between x and y. Suppose

|y − a| ≥ |x − a|. (In the opposite case, reverse the roles of x and y.) Then

|T1| = 8−ℓ2|y − a| ≥ 8−ℓ|y − x|. Since 8−ℓ =
(
2−6ℓ

) 1
2 > 2−

1
2 |y − x| 12 ,

|f(y)−f(x)−(y−x)f ′(x)| ≥ 8−ℓ|y−x|−2

7
8−ℓ|y−x| ≥ 5

7
8−ℓ|y−x| > 5

7
√
2
|y−x| 32 .

Consequently the assertion is true with c = 1
21 . □
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