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SOME TYPICAL PROPERTIES OF
SYMMETRICALLY CONTINUOUS

FUNCTIONS, SYMMETRIC FUNCTIONS
AND CONTINUOUS FUNCTIONS

Abstract

In this paper we show that the typical symmetrically continuous
function and the typical symmetric function have c-dense sets of points
of discontinuity. Also we show the existence of a nowhere symmetrically
differentiable function and a nowhere quasi-smooth function by showing
directly such functions are typical in the space of all real continuous
functions.

1 Introduction

A function f : R→ R is said to be symmetrically continuous at x ∈ R if

lim
h→0

[f(x+ h)− f(x− h)] = 0.

A function f : R→ R is said to be symmetric at x ∈ R if

lim
h→0

[f(x+ h) + f(x− h)− 2f(x)] = 0.

In 1964 Stein and Zygmund [1, p. 25] showed that if f : R→ R is Lebesgue
measurable and is symmetrically continuous on a Lebesgue measurable set
E, then f is continuous a.e. on E. Also they obtained the same conclusion
for symmetric functions [1, p. 27]. In 1971 Preiss [1, p. 52] constructed a
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Symmetrically continuous functions 709

bounded measurable, 2π-periodic function that is symmetrically continuous
everywhere and whose set of points of discontinuity is of power c. In 1989
Tran in [2] constructed a bounded measurable symmetric function whose set
of points of discontinuity is of power c, and also showed that the absolute value
function of this function is symmetrically continuous and its set of points of
discontinuity is of power c.

In 1964 Neugebauer first studied typical properties of symmetric functions.
He showed that the typical function of the set of all bounded, measurable
symmetric functions equipped with supremum metric has a dense set of dis-
continuity. His methods would also give a typical result for symmetrically
continuous functions.

In Section 2 by using the Preiss and Tran constructions we give an elemen-
tary proof to show that the typical symmetrically continuous function and the
typical symmetric function have c-dense sets of points of discontinuity. This
answers two questions posed in [1, p. 422].

Let us use the following expressions,

D1f(x, h) = [f(x+ h)− f(x− h)]/h,

D2f(x, h) = [f(x+ h) + f(x− h)− 2f(x)]/h.

In 1969 Filipczak in [3] constructed a continuous function f defined on [0,1]
which satisfies for each x ∈ (0, 1), lim suph→0D

1f(x, h) = +∞. In 1972
Kostyrko in [4] used this example to show that the typical function f ∈ C[0, 1],
the set of all real continuous functions with the supremum metric, satisfies for
each x ∈ (0, 1),

lim sup
h→0

D1f(x, h) = +∞ and lim inf
h→0

D1f(x, h) = −∞.

In 1987 Evans [5, Theorem 1] constructed a function f ∈ C[0, 1] which satisfies
that for each x ∈ (0, 1),

ap lim sup
h→0+

D1f(x, h) = +∞, ap lim inf
h→0+

D1f(x, h) = −∞,

and ap lim sup
h→0+

|D2f(x, h)| = +∞.

He used this example to show that such functions are typical in C[0, 1].
In Section 3 we directly show that the typical function f ∈ C[0, 1] satisfies

for each x ∈ (0, 1),

(1) lim sup
h→0

|D1f(x, h)| = +∞, (2) lim sup
h→0

|D2f(x, h)| = +∞
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without using the constructions of Filipczak and Evans.
Throughout this paper, BSC[a, b] denotes the set of all bounded mea-

surable, symmetrically continuous functions defined on the interval [a, b] and
equipped with the supremum metric ρ, and BS[a, b] denotes the set of all
bounded measurable, symmetric functions defined on [a, b] and equipped with
the supremum metric ρ. D(f) denotes the set of points of discontinuity of
function f . Ac denotes the complement of a set A.

2 Typical Properties of Symmetrically Continuous Func-
tions and Symmetric Functions

Lemma 1 (Tran [2 )]There are functions g1 ∈ BSC[a, b] and g2 ∈ BS[a, b]
both of which have continuum points of discontinuity in every subinterval of
[a, b].

Proof. Tran gave a construction of a function g ∈ BS[a, b] for which D(g)
is of power c and constructed g1 and g2 from g. We can also use the Preiss
result [1, p. 52] to construct a function g1 as in the lemma. Let {(an, bn)} be
an enumeration of the set of all subintervals of [a, b] with rational endpoints.
For every n there are a set En that is of power c and contained in (an, bn)
and a symmetrically continuous function fn such that 0 ≤ fn ≤ 1, fn(x) > 0
for x ∈ En and fn(x) = 0 outside of a set of measure zero. Note that such a
function is discontinuous at a point if and only if it is positive there. Set

g1 =

∞∑
n=1

1

2n
fn

Then g1 too is symmetrically continuous everywhere and is discontinuous pre-
cisely on the set {x ∈ [a, b] : g1(x) > 0}. Clearly this latter set is c-dense in
[a, b]. �

Theorem 2 Given (c, d) ⊆ [a, b], let

A((c, d)) = {f ∈ BSC[a, b] : D(f)
⋂

(c, d) is of power c}

Then A((c, d)) is a dense open set in BSC[a, b].

Proof. Let {fn} ⊆ A((c, d))c be a convergent sequence. Then there is a
function f ∈ BSC[a, b] such that fn −→ f uniformly. Let en denote the set
D(fn)

⋂
(c, d). Then en is at most countable and so the union

⋃∞
n=1 en is at
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most countable. We know that f is continuous at each point x ∈ (c, d) \⋃∞
n=1 en, so f ∈ A((c, d))c. Hence A((c, d))c is closed and A((c, d)) is open.

Now we show that A((c, d)) is dense in BSC[a, b]. For every ball B(f, ε) ⊆
BSC[a, b], if f ∈ A((c, d)) there is nothing to prove. We assume f ∈ A((c, d))c.
Then f has at most countably many points of discontinuity in (c, d). From
Lemma 1 there is a function g ∈ BSC[a, b] such that g has a c-dense set of
points of discontinuity on (c, d). Let M be a constant such that |g(x)| ≤ M
for all x ∈ [a, b] and set h = f + ε

2M g. Then h ∈ BSC[a, b] is discontinuous in
continuum many points of (c, d) and

ρ(h, f) = ρ(f +
ε

2M
g, f) = ρ(

ε

2M
g, 0) < ε

where ρ is the supremum metric on BSC[a, b]. Thus h ∈ A((c, d))
⋂
B(f, ε)

and hence A((c, d)) is dense. �

Theorem 3 The typical function f ∈ BSC[a, b] has a c-dense set of points
of discontinuity.

Proof. From Theorem 2 A(I) is a dense open set for each open subinterval
I. The result follows by taking the intersection

⋂
I A(I) for all rational open

subintervals I ⊆ [a, b]. �

The same methods can be used to prove the following theorem.

Theorem 4 The typical function f ∈ BS[a, b] has a c-dense set of points of
discontinuity.

3 An Application of the Baire Category Theorem to the
Space of Continuous Functions

Lemma 5 Let f ∈ C[0, 1], n be a positive integer, m and ε be two given
positive constants. Then there exists a finite piecewise linear function g ∈
C[0, 1] such that for each x ∈ [0, 1], |f(x)−g(x)| < ε and for each x ∈ [1/n, 1−
1/n], |D2g(x, h)| > m for some h with 0 < |h| < 1/n.

Proof. The function f is uniformly continuous on [0, 1]. For ε > 0 there exists
δ1 > 0 such that |f(x1)−f(x2)| < ε/16 whenever x1, x2 ∈ [0, 1], |x1−x2| < δ1.
Take δ = min{ ε

6m ,
δ1
10 ,

1
10n} and partition [0,1] as 0 = x0 < x1 < · · · < xk = 1.

Here xi−xi−1 = δ if i is not a number of the form 4l+2 where l is a nonnegative
integer. If i is a number of the form 4l + 2, xi − xi−1 = 3δ except k = 4l + 2.
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If k is a number of form 4l + 2, xk − xk−1 = δ or 2δ or 3δ depending on how
many subintervals we get if we partition [0,1] into subintervals with length δ.

Let g be a finite piecewise linear function which connects the following
points a0, a1, a2, . . . , ak. Here a0 = (x0, f(x0) + (3/8)ε), a1 = (x1, f(x1) −
(3/8)ε). The point a2 is the intersection point of the line x = x2 with the half
line starting from the point a1 and parallel to the x-axis, a3 = (x3, f(x3) +
(3/8)ε), a4 is the intersection point of the line x = x4 with the half line starting
from the point a3 and parallel to the x-axis, a5 = (x5, f(x5)−(3/8)ε). Similarly
as for a2 we can define a6, and continue in this way to get a0, a1, a2, . . . , ak.
See the figure (ii) where r = ε.

We now verify that the function g satisfies our requirements. Obviously
g is a finite piecewise linear, continuous function and for each x ∈ [0, 1],
|f(x) − g(x)| < ε. For the remainder we need to verify that for each x ∈
[xi−2, xi+2] as indicated in the figure (ii), |D2g(x, h)| > m for some h with
0 < |h| < 1/n. We can assume 3 < i < k − 3 since x ∈ [1/n, 1 − 1/n] and
δ ≤ 1

10n . For x ∈ [xi−1, xi], choose h = min{x − xi−2, xi+1 − x} and note
δ ≤ ε

6m ,

|D2g(x, h)| =
∣∣∣∣g(x+ h)− g(x)

h

∣∣∣∣+

∣∣∣∣g(x)− g(x− h)

h

∣∣∣∣
≥ (3/4)ε− (1/16)ε

(5/2)δ
=

11ε

40δ
> m.

Partition [xi, xi+1] into three subintervals of equal length [xi, x
1], [x1, x2] and

[x2, xi+1]. For x ∈ [xi, x
1], choose h = xi+1 − x. Then

|D2g(x, h)| =
∣∣∣∣g(x+ h)− g(x)

h

∣∣∣∣− ∣∣∣∣g(x)− g(x− h)

h

∣∣∣∣
≥ (1− 1/3)

(3/4)ε− (1/16)ε

δ
=

11ε

24δ
> m.

For x ∈ [x1, x2], choose h = xi+3 − x. Then

|D2g(x, h)| =
∣∣∣∣g(x+ h)− g(x)

h

∣∣∣∣+

∣∣∣∣g(x)− g(x− h)

h

∣∣∣∣
≥ 2[

(1/3)((3/4)ε− (1/16)ε)

(2 + (2/3))δ
] =

11ε

64δ
> m.
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For x ∈ [x2, xi+1], choose h = x− xi. Then

|D2g(x, h)| =
∣∣∣∣|g(x− h)− g(x)

h

∣∣∣∣− ∣∣∣∣|g(x+ h)− g(x)

h

∣∣∣∣
≥ (1− 1/3)

(3/4)ε− (1/16)ε

δ
> m.

For x ∈ [xi+1, xi+2], choose h = min{x− xi, xi+3 − x}. Then

|D2g(x, h)| =
∣∣∣∣|g(x+ h)− g(x)

h

∣∣∣∣+

∣∣∣∣|g(x− h)− g(x)

h

∣∣∣∣ ≥ (3/4)ε− (1/16)ε

2δ
=

11ε

32δ
> m.

For x ∈ [xi−2, xi−1] using the same method for x ∈ [xi, xi+1] we can show that
the function g satisfies our requirements. Hence the lemma follows. �

g(x)

f(x)a 0

a1

ai

a i+1

a i+2 a k-1
a k

y

f(x)-r/2

= x0 x x x x x x1 i i+1 k-1 ki+2 =1
(i)

f(x)+r/2

y

1

a0

a1

ai-2

xi-2 xi-1

a i-1
a i

a i+1 ai+2

a k

= x0 xi xi+1 xi+2 xk

f(x)-r/2

(ii)

g(x)

f(x)

f(x)+r/2

x =1
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Theorem 6 The typical function f ∈ C[0, 1] satisfies (2) for all x ∈ (0, 1).

Proof. Let

A =

{
f ∈ C[0, 1] :

there exist some point x ∈ (0, 1) and constant C
such that lim suph→0 |D2f(x, h)| ≤ C

}
,

Anm =

{
f ∈ C[0, 1] :

there exists some x ∈ [1/n, 1− 1/n] such that
|D2f(x, h)| ≤ m whenever 0 < |h| < 1/n,

}
Then A =

⋃∞
n,m=1Anm. Using the same standard arguments as in Theorem 2

and Lemma 5 we can show that each Anm is an open dense set in C[0, 1] and
therefore the theorem follows. �

Note that the analogous statement to Lemma 5 but using D1 in place of
D2 is easier to prove and can be obtained by choosing a saw-tooth function
with suitable slopes as in figure (i). Similar methods can be used to prove the
following theorem.

Theorem 7 The typical function f ∈ C[0, 1] satisfies (1) for all x ∈ (0, 1).
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