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A CHARACTERIZATION OF ORLICZ
FUNCTIONS PRODUCING AN ADDITIVE

PROPERTY

Abstract

It is shown that the only Luxemburg functionals that satisfy a very
simply formulated property are induced by pth-power functions, 0 < p <
∞. The known result that Orlicz spaces cannot be normed analogously
to Lp-spaces follows as a consequence.

1 Introduction

Let Ψ : [0,∞) → [0,∞] be a nondecreasing function, Ψ(0) = 0, Ψ(x) → ∞ as
x → ∞, and such that if 0 < a < b, 0 < Ψ(a), Ψ(b) < ∞, then Ψ is strictly
increasing on [a, b] and continuous on [0, b]. Such a function is called an O-
function. Let (Ω,A, µ) be a measure space. Identify real valued functions on
Ω that differ only on a set of measure zero. Let M denote the corresponding
set of congruence classes. It is known [2, 3] that the pair {Ψ, µ} induces the
Luxemburg functional on the Orlicz space

LΨ (µ) :=

{
f ∈M :

∫
Ω

Ψ(α|f |) dµ <∞ for some α > 0

}
.
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Its expression is

ρΨ,µ(f) := inf

{
λ > 0 :

∫
Ω

Ψ(|f |/λ) dµ ≤ 1

}
.

A well known example is the Lp-norm (with abuse of language for 0 < p < 1),
induced by any µ and Ψ(x) ≡ cxp, c > 0, for 0 < p < ∞, which gives
LΨ (µ) = Lp(µ) =

{
f ∈M :

∫
Ω
|f |p dµ <∞

}
, ρΨ,µ(f) = (c

∫
Ω
|f |p dµ)1/p, and

induced by any µ and a function Ψ that satisfies Ψ(x) = 0 if 0 ≤ x ≤ a,
Ψ(x) = ∞ if x > a, a > 0, for p = ∞, which gives LΨ (µ) = L∞(µ) =
{f ∈ M : ess sup |f | < ∞}, ρΨ,µ(f) = ‖f‖∞ = a ess sup |f |. The Lp-norms
satisfy the following property, applicable to any functional ρ defined on a quite
arbitrary real function space.

For any set B ∈ A and f, g simple functions, if ρ(fχB) = ρ(gχB)

and ρ(fχΩ\B) = ρ(gχΩ\B), then ρ(f) = ρ(g).
(∗)

We recall that a simple function is one of form
∑n
i=1 ciχAi

, µ(Ai) <∞, where
χA denotes the characteristic function of the set A. If A has, exactly, none,
one or two disjoint sets of finite and positive measure, then the class of all
simple functions can be identified with {0}, R or R2, respectively, and in these
cases any homogeneous functional defined on LΨ (µ), depending on |f |, (e.g.
a Luxemburg functional) satisfies (∗). We show in this paper that a rather
different result follows when A has at least three disjoint sets of finite and
positive measure µ. The function Ψ is said to satisfy property Pµ if {Ψ, µ}
induces a Luxemburg functional on LΨ (µ) satisfying (∗). We shall give a
description of such functions. In all cases they yield a Lp-norm, 0 < p ≤ ∞.
In case that µ is σ-finite and Ψ is convex, this latter result can also be obtained
from a classical theorem of H. F. Bohnenblust [1, 4]. As a consequence of that
theorem, for dimLΨ (µ) ≥ 3 it is obtained that homogeneous functionals on
LΨ (µ) that satisfy (∗) are p-additive, 0 < p ≤ ∞. For p ≥ 1 this fact implies
in turn that ρΨ,µ(f) is a Lp-norm. However we do not follow the ideas of that
theorem neither use the p-additive condition. Depending on a general measure
µ, in each case our proofs directly lead to the characterization of Ψ .

We consider in Section 2 a Luxemburg functional induced by a continuous
O-function Ψ . In Section 3 we assume that Ψ is not continuous and that µ is in
addition a σ-finite measure. As a consequence of Theorem 1 we get in Section 4
the known fact that the space L′Ψ (µ) := {f ∈ M :

∫
Ω
Ψ(α|f |) dµ < ∞ for

all α > 0} cannot be normed analogously to Lp-spaces, p > 0, whenever
dimL′Ψ (µ) ≥ 2.

We say that (Ω,A, µ) is infinitely divisible if there are measurable subsets
of Ω with positive and arbitrarily small measure. If (Ω,A, µ) is not infinitely
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divisible and A has at least one set of finite and positive measure, then we let

r0 = inf {µ(A), A ∈ A, µ(A) > 0} > 0.

2 Characterization of a Continuous O-function Ψ

In this section we assume that Ψ satisfies Ψ(R+) ⊇ R+. Hence its right inverse
function Ψ−1 : (0,∞)→ R+ exists, is continuous and satisfies Ψ(Ψ−1(x)) = x
for all x > 0. We say that a Luxemburg functional induced by any measure
and such a function Ψ is a L-functional.

Theorem 1 Assume that A has at least three disjoint sets of finite and posi-
tive measure.

(a) If (Ω,A, µ) is infinitely divisible, then Ψ satisfies property Pµ if and only
if Ψ(x) ≡ cxp on [0,∞), c > 0, p > 0.

(b) If (Ω,A, µ) is not infinitely divisible, then Ψ satisfies property Pµ if and
only if Ψ verifies Ψ(x) = cxp for any x ∈ [0, Ψ−1(1/r0)], p > 0, c > 0.

In both cases the functional induced is a Lp-norm and therefore these are the
only L-functionals that verify property (∗).

Proof. Assume that Ψ satisfies property Pµ. Take F ∈ A, 0 < µ(F ) < ∞,
such that there are two disjoint sets G and E of finite and positive measure,
G∪E ⊆ Ω\F , µ(E) ≥ µ(F ). Such a set F always exists due to the assumptions
on (Ω,A, µ). Assume first µ(F ) = Ψ(1) = 1. Take h ∈ R, h > 0, such that
ρΨ,µ(hχF∪G) = ρΨ,µ(χF ) = 1. So property (∗) implies ρΨ,µ(hχF∪G + sχE) =
ρΨ,µ(χF + sχE) =: δs for any s ∈ [0,∞). Therefore, by definition of ρΨ,µ and
the continuity of Ψ (on [0, 1)), we get µ(F ∪G)Ψ(h) = 1 on the one hand and
on the other hand

µ(F ∪G)Ψ(h/δs) + µ(E)Ψ(s/δs) = Ψ(1/δs) + µ(E)Ψ(s/δs) = 1,

whence Ψ(h/δs) = Ψ(h)Ψ(1/δs) for any s ≥ 0. As s 7→ δs maps continuously
[0,∞) onto [1,∞), we have obtained that h is a multiplier for Ψ , i.e., h is a
point m ∈ [0, 1] that satisfies

Ψ(mγ) = Ψ(m)Ψ(γ) for any γ ∈ [0, 1].

Observe that the former equation implies that Ψ(hn) = [Ψ(h)]n for n ∈ N.
Moreover, hn is a multiplier for Ψ . Since 0 < h < 1, 0 < Ψ(h) < 1, it follows
that hn ↓ 0, Ψ(hn) ↓ 0 as n → ∞ (and therefore Ψ(x) > 0 if x > 0). Take



632 H. Cuenya and M. Marano

k1 ∈ R, k1 > 0, such that ρΨ,µ(k1χF +mk1χG) = ρΨ,µ(χF ) = 1, where m is a
multiplier for Ψ . Hence Ψ(k1) + µ(G)Ψ(mk1) = 1. As k1 < 1, it follows that

Ψ(k1)[1 + µ(G)Ψ(m)] = 1.

On the other hand, property (∗) implies ρΨ,µ(k1χF +mk1χG + sχE) = δs for
any s ≥ 0, whence Ψ(k1γ) = Ψ(k1)Ψ(γ) for γ ∈ [0, 1]. We have just proved
that if m is a multiplier for Ψ , then k1 = Ψ−1(1/[1 + µ(G)Ψ(m)]) is also a
multiplier for Ψ . It follows that

mn = mn(Ψ, µ) := Ψ−1(1/[1 + µ(G)Ψ(hn)])

is a multipler for Ψ , n ∈ N. As Ψ−1 is continuous and Ψ−1(1) = 1, we get that
mn ↑ 1 as n→∞.

The existence of the sequence {mn} implies that any m ∈ [0, 1] is in the
collection P of multipliers for Ψ . Indeed, observe first that P is closed because
Ψ is continuous. Hence

β0(m) := inf{β ∈ P : β > m} ∈ P for m ∈ [0, 1),

and β0(m) = m because mnβ0(m) ∈ P for all n ∈ N.
For x ∈ (0, 1] we have

[Ψ(xmn)− Ψ(x)]/[x(mn − 1)] = Ψ(x)[Ψ(mn)− Ψ(1)]/[x(mn − 1)]. (1)

On the other hand, the obvious estimates below show that Ψ is absolutely
continuous on [η, 1] for all η ∈ (0, 1).

Let xi ∈ [η, 1], 1 ≤ i ≤ n + 1, n ∈ N, and x1 < x2 < · · · < xn+1. Let
γi := xi/xi+1, 1 ≤ i ≤ n. Then

η

n∑
i=1

[1− γi] <
n∑
i=1

xi+1[1− γi] =

n∑
i=1

[xi+1 − xi],

n∑
i=1

[Ψ(xi+1)− Ψ(xi)] =

n∑
i=1

[Ψ(xi+1)− Ψ(γixi+1)]

=

n∑
i=1

Ψ(xi+1)[1− Ψ(γi)] ≤
n∑
i=1

[1− Ψ(γi)],

1− Ψ(γ) ≤K[1− γ] for some K > 0 and any γ < 1.

Therefore we get that the derivative Ψ ′(x) exists and is finite-valued for almost
every x on [0, 1]. Hence the left side in eq. (1) converges to Ψ ′(x) as n→∞ for



Characterization of Orlicz Functions 633

almost every x ∈ [0, 1], and it follows that the right side in eq. (1) converges to
pΨ(x)/x as n → ∞ for any x ∈ (0, 1], where p ≥ 0. Therefore Ψ ′(x)/Ψ(x) =
p/x a.e. on (0, 1]. As Ψ is not constant, we have p > 0. Since lnΨ is absolutely
continuous on [η, 1], the integration of both sides of the former equation from
x to 1 gives Ψ(x) ≡ xp on [0, 1]. Observe that, so far, only the restriction of
Ψ on [0,1] has been considered (cf. the end of Section 3).

Suppose now µ(F ) = r > 0, Ψ(1) ≥ 0. The L-functional induced by rΨ
and µ/r on LΨ (µ) coincides with the L-functional induced by Ψ and µ. On
the other hand, the L-functional induced by Ψ̃(x) := rΨ(Ψ−1(1/r)x) and µ/r
on LΨ (µ) is Ψ−1(1/r) times the L-functional induced by rΨ and µ/r, and
therefore it also satisfies property (∗), with Ψ̃(1) = (µ/r)(F ) = 1. So we get
Ψ̃(x) ≡ xp on [0, 1], with p > 0, whence Ψ(x) ≡ cxp on [0, Ψ−1(1/r)], where
c = 1/[r(Ψ−1(1/r))p].

Under the hypothesis of (a) we can take r ↓ 0. Then the case Ψ−1(1/r) ↑ b,
b <∞, leads to a contradiction, whence ψ−1(1/r) ↑ ∞ and the necessary part
of (a) follows. The sufficiency of (a) is obvious. The necessity of (b) follows
by taking r → r0. (Observe that this taking of limits in r is compatible
with the assumption on F at the beginning of the proof). Conversely, if
Ψ(x) ≡ cxp on [0, Ψ−1(1/r0)], then Ψ̃(x) := r0Ψ(Ψ−1(1/r0)x) ≡ xp on [0,1]
and, as mentioned above, Ψ̃ and µ/r0 induce, up to a multiplicative constant,
the same L-functional as Ψ and µ. So, to conclude the proof, it suffices to
observe that if Ψ(x) ≡ xp on [0, 1] and in addition µ(C) ≥ 1 for any measurable
set C with µ(C) > 0, then {Ψ, µ} induces the standard Lp-norm on LΨ (µ)
(= Lp(µ)). Indeed, if g ∈M and

∫
Ω
|g| dµ ≤ 1, then |g| ≤ 1 almost everywhere

(µ) on Ω, whence
∫
Ω
Ψ(|f |/λ) dµ ≤ 1 is equivalent to

∫
Ω

(|f |/λ)p dµ ≤ 1.

Therefore ρΨ,µ(f) = inf{λ :
∫
Ω

(|f |/λ)p dµ = 1} =
(∫
Ω
|f |p dµ

)1/p
. �

3 Characterization of a Discontinuous O-function Ψ

Now we suppose, and only in this section, that Ψ is not (Ω,A, µ) is in addition
a σ-finite measure space. So we consider an O-function Ψ jumping to infinity at
a, a > 0. We say that the Luxemburg functional induced by such a pair {Ψ, µ}
on LΨ (µ) is a L∗-functional. Observe that when (Ω,A, µ) is not infinitely
divisible, a L∗-functional may coincide with a L-functional. Since µ is σ-finite,
the condition required to A in Theorem 1 is now equivalent to dimLΨ (µ) ≥
3. We can suppose without loss of generality that Ψ is left continuous. An
example of such a function is: Ψ(x) = 0 if 0 ≤ x ≤ a, Ψ(x) = ∞ if x > a.
It is easy to see that {Ψ, µ}, with this function Ψ , induces the a essential sup
norm on LΨ (µ), which we call, as usual, a L∞-norm. Moreover, it is easy to
show that if µ(Ω)Ψ(a) ≤ 1, then {Ψ, µ} induces a L∞-norm. Observe also
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that if µ(C) ≥ 1 for any measurable set C of positive measure and Ψ satisfies
Ψ(x) ≡ xp on [0, 1] (e.g., Ψ(x) ≡ xp on [0, 1], Ψ(x) =∞ for x > 1), then {Ψ, µ}
induces the standard Lp-norm on LΨ (µ).

Assume now that {Ψ, µ} induces a L∗-functional, where µ(Ω)Ψ(a) > 1.
Under this condition we consider two exhaustive cases. Suppose first that
there exists F ∈ A, 0 < µ(F )Ψ(a) < 1. For instance, this is the case if
(Ω,A, µ) is infinitely divisible. Assume also that there exists B ∈ A, B ⊇ F ,
µ(B) < µ(Ω), µ(B)Ψ(a) > 1. (This is the case if µ(Ω) = ∞). Then, since Ψ
is a continuous function on [0, a), it follows that there exists b, 0 < b < a, such
that µ(F )Ψ(a) + µ(B \ F )Ψ(b) = 1. Then we have ρΨ,µ(aχF ) = ρΨ,µ(aχF +
bχB\F ) = 1. Take E ∈ A, E ⊆ Ω \ B, 0 < µ(E) < ∞. Therefore there
exists c, 0 < c ≤ a, Ψ(c) > 0, such that µ(F )Ψ(a) + µ(E)Ψ(c) ≤ 1, whence
ρΨ,µ(aχF + cχE) = 1 but ρΨ,µ(aχF + bχB\F + cχE) > 1. So property (∗) does
not hold.

If for any set D in D = {D ∈ A, D ⊇ F , µ(D) < µ(Ω)} is µ(D)Ψ(a) ≤ 1,
then consider a set B ∈ D such that µ(B) = sup{µ(D), D ∈ D}. Hence
µ(B) < µ(Ω) < ∞ and Ω \ B is an atom, whence B is not an atom. At this
point we can assume that F satisfies at least one of the following conditions.

(1) There exists G ∈ A such that F ⊆ G, µ(F )Ψ(a) < µ(G)Ψ(a) < 1.

(2) F is an atom.

In either case it follows that µ(F ) < µ(B). We have ρΨ,µ(aχF ) = ρΨ,µ(aχB) =
1. As µ(F ) +µ(Ω \B) < µ(Ω), we get that F ∪ (Ω \B) ∈ D, i.e., µ(F )Ψ(a) +
µ(Ω \ B)Ψ(a) ≤ 1. So ρΨ,µ(aχF + aχΩ\B) = 1 but ρΨ,µ(aχB + aχΩ\B) > 1,
whence property (∗) does not hold.

It remains to consider the case where (Ω,A, µ) is not infinitely divisible
and r0Ψ(a) ≥ 1. In this case Ψ−1 is well defined and continuous on the interval
(0, 1/r0], whence the proof in Theorem 1(b) applies without changes. Thus,
in this case Ψ satisfies property Pµ if and only if Ψ(x) ≡ cxp on [0, Ψ−1(1/r0)].
So we have the following.

Theorem 2 If dimLΨ (µ) ≥ 3, then the L∗-functional induced by Ψ and µ
satisfies property (∗) if it is necessarily a Lp-norm, 0 < p ≤ ∞.

4 L′
Ψ (µ) cannot be normed analogously to Lp-spaces

Let L′Φ(µ) = {f ∈ M :
∫
Ω
Φ(a|f |) dµ < ∞ for all α > 0}, where Φ is a finite-

valued convex O-function. L′Φ(µ) is a linear subspace of LΦ(µ). A natural
way for trying to provide L′Φ(µ) with a norm, analogously to the Lp-norm, is
to consider the expression Φ−1

(∫
Ω
Φ(|f |) dµ

)
. We refer to [6] for a historical

survey of this and related questions. In this article it is proved that this
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attempt is possible only if Φ(x) ≡ cxp, in the case where µ is the Lebesgue
measure on the real line. This result was later extended [5] to the linear space
L′Ψ (µ), where Ψ is a finite-valued strictly increasing O-function and (Ω,A, µ)
is such that dimL′Ψ (µ) ≥ 2. More precisely, it is proved in that paper that
if ϕΓ ,Ψ,µ(f) := Γ

(∫
Ω
Ψ(|f |) dµ

)
is a homogeneous functional on L′Ψ (µ), being

Γ and Ψ finite-valued strictly increasing O-functions, then Ψ(x) ≡ Ψ(1)xp,
Γ (x) ≡ Γ (1)x1/p, p > 0. Next we prove that this result is a consequence
of Theorem 1. Assume first that dimL′Ψ (µ) = 2. Therefore L′Ψ (µ) can be
identified with R2 = {(x1, x2), x1, x2 ∈ R}, and where

ϕΓ ,Ψ,µ(x1, x2) = Γ (a1Ψ(|x1|) + a2Ψ(|x2|)), a1, a2 > 0.

Assume that ϕΓ ,Ψ,µ(x1, x2) is a homogeneous functional. For any x > 0 we
have

ϕΓ ,Ψ,µ(x, 0) = Γ (a1Ψ(x)) = xϕΓ ,Ψ,µ(1, 0) = xΓ (a1Ψ(1)).

As ϕaΓ,Ψ,µ(= aϕΓ ,Ψ,µ) is also a homogeneous functional for all a > 0, we can
suppose without loss of generality that Γ (a1Ψ(1)) = 1. Under this assumption,
a1Ψ ≡ Γ−1. Define on R3 the homogeneous functional

ϕ′(x1, x2, x3) =ϕΓ ,Ψ,µ(ϕΓ ,Ψ,µ(x1, x2), x3)

=Γ (a1Ψ(Γ (a1Ψ(|x1|) + a2Ψ(|x2|))) + a2Ψ(|x3|))
=Γ (a1Ψ(|x1|) + a2Ψ(|x2|) + a2Ψ(|x3|)).

This functional is of the form ϕΓ,Ψ,µ′ , where dimL′Ψ (µ′) = 3. This fact shows
that it suffices to consider a homogeneous functional ϕΓ ,Ψ,µ defined on L′Ψ (µ),
dimL′Ψ (µ) ≥ 3. After dividing Γ by Γ (1) we can suppose Γ (1) = 1. For
any f ∈ L′Ψ (µ) we have that ϕΓ ,Ψ,µ(f) = 1 if and only if ρΨ,µ(f) = inf{λ :∫
Ω
Ψ(|f |/λ) dµ ≤ 1} = 1, and since these two functionals are homogeneous, it

follows that ϕΓ ,Ψ,µ(f) = ρΨ,µ(f) for all f ∈ L′Ψ (µ). Note that dimLΨ (µ) ≥ 3
implies that there exist three measurable sets of finite and positive measure,
since Ψ is strictly increasing. As the simple functions belong to L′Ψ (µ) and
ϕΓ ,Ψ,µ satisfies property (∗), we get that Theorem 1 implies that ϕΓ ,Ψ,µ(f) =(
c
∫
Ω
|f |p dµ

)1/p
for all f ∈ L′Ψ (µ), and also Ψ(x) ≡ cxp in the case where

(Ω,A, µ) is infinitely divisible, and Ψ(x) ≡ cxp on [0, Ψ−1(1/r0)] in the case
where (Ω,A, µ) is not infinitely divisible, c > 0, p > 0. For ε > 0 define
Γ ∗(x) = Γ (x/ε)/Γ (1/ε). Then applying in the latter case the same conclusion
to the homogeneous functional ϕΓ∗,ψ,εµ = [1/Γ (1/ε)]ϕΓ,Ψ,µ, and taking ε ↓ 0,
it follows that also in this case Ψ(x) = cxp for any x in [0,∞). Therefore

Γ
(
c
∫
Ω
|f |p dµ

)
=
(
c
∫
Ω
|f |p dµ

)1/p
for all f ∈ L′Ψ (µ), whence it is easy to

show that Γ (x) ≡ x1/p.
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