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Abstract

The aim of this paper is to demonstrate that several non-rigorous
methods of mathematical reasoning in the field of divergent series,
mostly related to the Euler and Hutton transforms, may be developed
in a correct and consistent way by methods of nonstandard analysis.

1 Introduction

1.1 Some Examples

Shift operator. Let us pretend that the “operator” τ, determined by τak =
ak+1, is well defined. We may rewrite an arbitrary series

S = a0 + a1 + a2 + a3 + · · · , (1)
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as
S = a0 + τa0 + τ2a0 + τ3a0 + · · · = (1 + τ + τ2 + τ3 + · · · ) a0 , (2)

and then as

S =
1

1− τ
a0 , (3)

assuming that

1 + τ + τ2 + τ3 + · · · = 1

1− τ
. (4)

Hutton transform. In the same spirit we may transform (3), say, by

1

1− τ
=

1− τ + 1 + τ

2− 2τ
=

1

2
+

1

1− τ

σ

2
, (5)

where σ = 1 + τ (that is, σak = ak + ak+1). Then, since

1

1− τ

σ

2
= (1 + τ + τ2 + · · · ) σ

2
=

1 + τ

2
+

τ + τ2

2
+

τ2 + τ3

2
+ · · · , (6)

we obtain

S =
a0
2

+
a0 + a1

2
+
a1 + a2

2
+
a2 + a3

2
+ · · · . (7)

The transform (7) is known as the Hutton transform, see Hardy [3].

Euler transform. Another useful transformation is given by

1

1− τ
=

1

1 + 1− 1− τ
=

1

2

1

1− σ/2
, (8)

Then we obtain
1

1− σ/2
= 1 +

σ

2
+

σ2

4
+

σ3

8
+ · · · , (9)

and therefore

S =
a0
2

+
a0 + a1

4
+
a0 + 2a1 + a2

8
+
a0 + 3a1 + 3a2 + a3

16
+ · · · . (10)

The equation (10) contains the idea of the Euler summability method. (More
exactly, the (E, 1) method, see Hardy [3].) The right-hand side of (10) is called
the Euler transform of (1), the initial series.

Euler = iterated Hutton. We observe that formula (9) can be obtained as the
result of an infinite reiteration of (5). Indeed,

1

1− τ
=

1

2
+

σ

2

1

1− τ
=

1

2
+

σ

2

(
1

2
+

σ

2

1

1− τ

)
=

1

2
+

σ

4
+

σ2

4

1

1− τ
=

1

2
+

σ

4
+

σ2

8
+

σ3

8

1

1− τ
= · · · (11)
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In the same sense (10) is the iterated form of (7). Indeed,

S =
a0
2

+

(
a0 + a1

2
+
a1 + a2

2
+
a2 + a3

2
+ · · ·

)
=
a0
2

+
a0 + a1

4
+

(
a0 + 2a1 + a2

4
+
a1 + 2a2 + a3

4
+ · · ·

)
=
a0
2

+
a0 + a1

4
+
a0 + 2a1 + a2

8

+

(
a0 + 3a1 + 3a2 + a3

8
+
a1 + 3a2 + 3a3 + a4

8
+ · · ·

)
= · · · (12)

1.2 A Classical Interpretation

The only reasonable way to give a precise meaning to τ is to define it as a linear
operator acting on the infinite vector representing the sequence of terms. By
analogy with the shift operator of symbolic dynamics we refer to this operator
as the shift operator or the shift matrix . Thus one puts

T =


0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 1 . . .
. . . . . . . . . . . . . . . . . .



T ∗ =


0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 0 0 . . .
. . . . . . . . . . . . . . . . . .


(13)

and considers T as a candidate to give a precise meaning to τ. Then, assuming
that an initial series (1) is fixed, one defines the infinite vector

~ak = 〈ak, ak+1, ak+2, . . . 〉 , k = 0, 1, 2, . . . ,

and ~a = ~a0. Let [M ]k denote the kth row of a matrix M ; we assume henceforth
that enumeration of rows starts with the number 0. Then, since ak = [~ak]0,
the equality (2) takes the form

S = [U + T + T 2 + T 3 + · · · ]0 ~a0 , (2.1)

where U is the unit matrix. This leads to

S =

[
1

U − T

]
0

~a0 , (3.1)
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again assuming that

(U − T )−1 = U + T + T 2 + T 3 + · · · . (4.1)

Next, we transform the fraction (U − T )−1 by

(U − T )−1 =
U

2
+ (U − T )−1

Σ

2
, where Σ = U + T ; (5.1)

and, taking [. . . ]0 and applying this to ~a, obtain (7).
We may then define the Hutton transform by a special matrix, the Hutton

matrix

H =
U + T ∗

2
=

1

2


1 0 0 0 0 . . .
1 1 0 0 0 . . .
0 1 1 0 0 . . .
0 0 1 1 0 . . .
. . . . . . . . . . . . . . . . . .

 ; (14)

Thus if ~a denotes the infinite column of terms of (1) and ~h denotes the column

of members of (7), then ~h = H~a.
Then we may try to proceed the same way with the Euler equations (8),

(9), (10), and finally may define the Euler matrix E by the condition

[E]k = 2
−(k+1)

[(U + T ∗)k]k = 2−(k+1) [(U + T )k]0 , k = 0, 1, 2, . . . . (15)

But this is still not mathematically rigorous.
Indeed, equality (4.1) is not an algebraic identity. The infinite sum has to

be interpreted as a limit. Thus, a vector space and a topology must be chosen.
There is no obvious choice ensuring that equality (4.1) holds. Thus it remains
dubious in what sense (3.1) could be considered true.

An analogous question is in which sense the “formal” expansion of 1−Σ/2
could be considered true?

Do these expansions belong to the type of Taylor expansions?
Finally, even (2.1), which has a more or less well defined meaning, can

be treated as an equality of concrete reals only in the case when (1) con-
verges; otherwise only indirect interpretations in the framework of the theory
of summability are available.

1.3 The Aim of This Paper

Thus it is not clear how one can successfully interpret the equations given
above in the framework of classical analysis. They are not more than a vague
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indication of which formulas one should try to find a classical proof for. Our
aim is to interpret these equations by methods of nonstandard analysis in
precisely the way proposed above.

We shall use the exposition of nonstandard analysis based on IST, internal
set theory , introduced by Nelson [13]. This means that we consider things in
the set universe where, in addition to membership, another elementary pred-
icate, st , standardness, is assumed to act. In particular, the notion of real
number includes both standard and nonstandard (in particular, infinitesimal
and unlimited) numbers, so that R denotes the set of all (standard plus non-
standard) real numbers.1 Section 2 contains a more detailed information of
the nonstandard technique we use.

The idea of our approach is quite typical for nonstandard analysis. We
replace series (1), which is assumed to be standard, by a sum of the form

S = α0 + α1 + α2 + · · ·+ αη, (16)

where η is an unlimited (= infinitely large = nonstandard) natural number.
Sums of this type (that is, those of unlimited number of terms) will be called
hyperfinite sums below. (Unlimited sum would be confusing, having a more
natural meaning as a sum with unlimited value.)

Definition 1 (Shadows) Let η be an unlimited natural number. A standard
series a0+a1+a2+ · · · is the shadow of a hyperfinite sum α0+α1+ · · ·+αη iff
ak ≈ αk for all standard k. A standard infinite matrix Z with coefficients Zkl

is the shadow of a (η+ 1)× (η+ 1) matrix Z iff Zkl ≈ Zkl for all standard k, l.

(We recall that a ≈ b means that the difference a− b is infinitesimal.)
The are two principal questions.
First , which way should (16) relate to (1)? Two conditions can be consid-

ered as principal:

a) Series (1) (assumed to be standard) is the shadow of the sum in the
right-hand side of (16).

b) The value S of the sum (16) is equal (or, perhaps, ≈) to a certain
“natural” value of the sum of (1).

The latter condition will be explained below, but we insist that the initial
series (1) is not, in general, assumed to be convergent.

1However our exposition could equally well be understood in terms of the superstructure
approach after obvious changes: what we call reals and integers should be understood as
hyperreals and hyperintegers, R should be changed to ∗R, et cetera.
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It is not clear whether and how a) and b) can be realized in the most
general case when no restriction on the initial series (1) is imposed.2 We can,
indeed, more or less successfully proceed with the question in the case when
(1) is E summable3. Then (1) is exactly the (formal) Taylor expansion of
f(1), where f(x) =

∑
akx

k in a neighborhood of 0, and we define (16) as
the nonstandard Taylor expansion of f(1) (this notion is based on Newton’s
interpolation theorem), see Section 3.

Second, how can we operate with hyperfinite sums like (16) such that the
ways of transformation presented in Subsection 1.1 do not face the obstacles
mentioned above, and such that the “shadows” of these transformations just
coincide with the standard transformations?

We shall give a nonstandard “model” for equalities like 1+2+4+ · · · = −1,
that is, a way to convert the left-hand side to a hyperfinite sum exactly equal
to −1 and having 1 + 2 + 4 + · · · as its shadow (Subsection 3.3).

Then another game is started. We introduce certain linear transformations
of hyperfinite sums like (16) which correspond, in some sense, to the shift
matrix and the Hutton and Euler matrices. In particular, both Hutton and
Euler transforms will be expressed by certain matrices of dimension (η+ 1)×
(η + 1) whose action does not change the sum value.

We show also that, provided some conditions are satisfied, shadows of
transformed hyperfinite sums are equal to the results of standard transforma-
tions of shadows of initial sums.

2 On Nonstandard Analysis

This paper does not involve sophisticated parts of nonstandard machinery. A
reader having a minimal acquaintance with either the superstructure4 or an
axiomatical5 version of nonstandard analysis can skip this section at all after
a glance at the notation (which fits the axiomatical approach rather than the
superstructural one). Writing this we rather had in mind a reader who has
only a vague impression of “infinitesimal” methods.

2The solution would preassume that one knows definitely the “natural” value of the sum
of an arbitrary, in particular divergent, series, which includes at least the Hutton and Euler
summability methods and, perhaps, many other summability methods.

3We recall that according to Hardy [3], E summability means that the corresponding
power series

∑
akx

k converges on an interval containing 0 to a function regular in 1. Let f
denote (the analytic continuation of) this function. Then f(1) is the E sum of

∑
ak. The

letter E is in honor of Euler who explicitly expressed the idea of this summability.
4We refer to Hurd and Loeb [11], Stroyan and Bayod [15], Lindstrøm [11], or Luxem-

burg [12].
5Nelson [13], bounded set theory BST of Kanovei [7], or one of external theories of

Hrbaček [4] or Kawäı [10]; see also van den Berg [1], Kanovei [8], and Kanovei and Reeken [9].
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First of all, usual mathematical reals (real numbers) are from now on called
standard reals. In addition, new objects, called nonstandard reals, come into
consideration.

R = all reals, σR = all standard (i.e. usual mathematical) reals.

Similarly, usual natural numbers will be called standard natural numbers; in
addition, there are nonstandard natural numbers.

N = all natural numbers, σN = N ∩ σR = all standard natural numbers.

It is postulated that both R and σR model the same principles of classical
analysis. (For instance, R is an ordered field having N as a cofinal discrete
subset, simply because this is true with respect to σR.

To make the picture nontrivial, we suppose that σN is a proper initial
segment of N.

Numbers in N \ σN (i.e., nonstandard) are called unlimited. A real x ∈ R
is unlimited iff |x| ≥ κ for an unlimited natural κ; otherwise (i.e. when |x| ≤ n
for a standard natural n) it is limited. A limited natural number is necessarily
standard, but a limited real may well be nonstandard.

One also shows the existence of infinitesimal reals: those x 6= 0 in R which
satisfy |x| < c for any standard c > 0.

This initial information gives some impression of the nonstandard ap-
proach, but does not suffice to present the amount of nonstandard technique
we actually need, in particular, because we shall use “hyperfinite sequences” of
reals — those of the form x1, x2, . . . , xκ, where κ is an unlimited natural num-
ber, the treatment of which needs some care. A radical way to correctly apply
nonstandard reasoning to everything one may ever need to use, is to work in a
nonstandard extension of the whole set universe of “standard” mathematics.
This can be handled in the framework of a nonstandard set theory. We present
here, in brief, how Nelson’s IST or bounded set theory BST of Kanovei and
Reeken [9] (the differences between them are not essential here) works.

Similarly to what is stated above, the sets in the set universe of usual,
“standard” mathematics — this universe is now denoted by S — will be called
“standard sets”. It is postulated that S is a proper part of a much larger uni-
verse V which includes both standard and nonstandard sets; S is distinguished
in V by a a special predicate st of standardness: S = {x : stx}.

The considerations at the beginning of this section are accommodated in
this general framework as follows:

R and N = resp. reals and natural numbers in V ;

σR and σN = resp. reals and natural numbers in S ;

so that in some sense S = σV.
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Interactions between sets in S and V are regulated by a few simple “pos-
tulates”, which we present here informally.

Transfer In particular it implies that both V and S model the axioms of
Zermelo-Fraenkel theory with the Axiom of Choice (ZFC) — the set
theoretic basis of current mathematics. It formalizes the idea that non-
standard objects behave like standard objects, an idea which probably,
cum grano salis, dates back to Leibniz.

Idealization It implies the existence of a variety of nonstandard sets in V,
in particular, nonstandard natural and real numbers.

Standardization It ensures that there are no subcollections of elements of
a standard set which do not correspond to a standard subset of that
set. It also has some important consequences, in particular, implies that
σN (standard natural numbers) is an initial segment of N (all natural
numbers).

It is not our aim here to present the exact formulations of the “postulates” or
describe in detail how one develops nonstandard mathematics on this basis;
we refer the interested reader to the sources mentioned in footnote 5. We
think however that the given explanation is quite sufficient to understand the
reasoning in the remainder of the paper. Readers acquainted mostly with the
“superstructure” version of nonstandard technique will easily interpret our
reasoning in their favorite system.

We conclude with a special definition: sums of the form (16) in Subsec-
tion 1.3, where η is an unlimited natural number, will be called hyperfinite
sums.

3 Nonstandard Taylor Expansion

Thus the first problem is to find a hyperfinite sum (16) which corresponds, in
the sense mentioned above, to the initial series (1), which is assumed to be
standard. The idea is to define (16) as a nonstandard Taylor expansion. Thus
we have to take some space to present the relevant definitions in the domain
of interpolation theory.

By the way, the exposition is based on the original idea, due to Newton and
Taylor, of the definition of Taylor series, not that which is currently detailed
in textbooks on calculus (and which was developed, probably, by Lagrange).
It is very close to what we now call nonstandard analysis (in a narrow sense).
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Thus we first introduce the nonstandard version of Taylor expansion, then
show that, provided certain conditions are satisfied, the standard expansion is
the shadow of the nonstandard one, and finally consider an example.

3.1 Definition of the Expansion

Actually what is called “nonstandard Taylor expansion” here is a very well
known tool in numerical analysis: Newton’s interpolation formula, which we
intend to apply in the case when the sequence of the points of interpolation
has an unlimited number of points and all elements with standard indices are
infinitesimal.

We recall some definitions.
Divided differences are defined as follows:

DF [x0, . . . , xk] =

k∑
m=0

F (xm)

k∏
l=0, l 6=m

1

xm − xl
,

and separately DF [x0] = F (x0) in the case k = 0; here x0, x1, x2, . . . , xk
are arbitrary real numbers, F an arbitrary function defined at each xi and
taking values in a vector space over R (say in R itself or in the space of square
matrices of a certain dimension). The definition is permutation invariant:
DF [x0, . . . , xk] = DF [x′0, . . . , x

′
k], whenever x′0, . . . , x

′
k is a permutation of

x0, . . . , xk.
Divided differences can also be introduced by induction on k:

DF [x0, x1, . . . , xk+1] =
DF [x1, . . . , xk+1]−DF [x0, . . . , xk]

xk+1 − x0
. (17)

In particular,

DF [xi, xj ] =
F (xj)− F (xi)

xj − xi
.

The generalized power is defined by

ξ(k) = (ξ − x0) (ξ − x1) · · · (ξ − xk−1) ; separately ξ(0) = 1 . (18)

Proposition 2 (Newton’s interpolation theorem, see e.g. Singer [14]) Let η
be a natural number, x0, . . . , xη be pairwise different, and F (xi) defined for all
i = 0, . . . ,η. Then

F (xη) =

η∑
k=0

DF [x0, x1, . . . , xk]x(k)η .
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Definition 3 (Nonstandard Taylor expansion) The right-hand side in the
equality of Proposition 2 is the nonstandard Taylor expansion of F (xη) with
respect to points x0, . . . , xη.

3.2 Shadow of Nonstandard Expansion

In this subsection we prove that under certain conditions the standard Taylor
expansion of a given function f is the shadow of the nonstandard expansion.

Theorem 4 Assume that (1) is standard and E summable. Let η be an un-
limited natural number, xk ≈ 0 for all limited k, and xη = 1. Then the
nonstandard Taylor expansion of the function f(x) =

∑
akx

k with respect to
xk, k = 0, 1, . . . ,η, has a value equal to the E sum of (1) and also has (1) as
its shadow.

Proof. Thus let the corresponding power series
∑
akx

k converge on an open
interval containing 0 to a function regular in 1. Let f denote (the analytic
continuation of)

∑
akx

k. We put S = f(1), the E sum of (1). In this case f
is standard and (1) is the Taylor expansion of f(1) (which may not converge
to S, of course), so that the members of (1) satisfy

ak =
f (k)(0)

k !
for all k .

It is asserted that the series (16), defined by

αk = Df [x0, . . . , xk] 1(k) , k = 0, 1, . . . ,η ,

satisfies the theorem. Newton’s theorem implies that the sum of (16) is equal
to the E sum of (1). It remains to check that (1) is the shadow of (16), that
is, ak ≈ αk for all limited k.

It is known (see e.g. Gel’fond [2] or Jordan [6]) that for all k there is a ϑ
such that

D[x0, . . . , xk] = f (k)(ϑ) (k !)−1

where ϑ is a number between the least and the largest among x0, . . . , xk.
But all standard order derivatives of f are standard continuous functions.
Furthermore ϑ is infinitely close to 0 for any standard k. Finally 1(k) ≈ 1 for
standard k. �

The assumption of E summability is rather restrictive, of course; indeed,
very interesting rapidly divergent series like

∑
(−1)n n ! are excluded from con-

sideration. However the remainder of the exposition, related to nonstandard
transformations of (16), (when a connection with (1) is not assumed) does not
actually depend on the analytical properties of f .
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3.3 An Example of a Nonstandard Expansion

Let f be defined by f(x) = (h− tx)−1, for fixed h and t. Then

Df [x0, . . . , xk] = f(x0) f(x1) . . . f(xk) tk, (19)

which can be easily proved by induction on k, using (17), for all pairwise
different x0, . . . , xk. Then Newton’s theorem takes the form

1

h− txη
=

η∑
k=0

f(x0) . . . f(xk) tk x(k)η .

Assume that xk = k η−1 for all k (an equidistant system of points) and h = 1.
Then

1

1− t
=

η∑
k=0

1(k) tk

1 (1− tη−1) . . . (1− ktη−1)
, (20)

The standard version is as follows

(1− t)−1 = 1 + t+ t2 + t3 + · · · , provided |t| < 1. (21)

Assume that t is standard. If η is unlimited then every term with limited index
k in (20) is infinitely close to the corresponding term in (21) — thus (21) is
the shadow of (20). Take notice that (21) holds (in the sense of convergence
of the series) in the domain |t| < 1, while (20) requires only that k tη−1 6= 1
for k = 0, . . . ,η.

To demonstrate how this works we take t = 2. Then

1

1− 2
= −1 =

η∑
k=0

1(1− η−1))(1− 2η−1) . . . (1− [k−1]η−1)

1(1− 2η−1)(1− 4η−1) . . . (1− 2k η−1)
2k. (22)

The infinitely large η must be odd, of course, to avoid division by zero. Let αk

denote the k th member of the sum (22). Then αk ≈ 2k for finite k, hence (22)
may be considered as a nonstandard version of the equation 1+2+4+8+· · · =
−1, which, in turn, is the shadow of (22).

Numerically, in this case, the values of αk increase exponentially (even more
rapidly) for unlimited k < η/2. Then the signs of αk begin to oscillate, but the
absolute values continue to increase in the domain k < 2η/3 exponentially. In
the domain 2η/3 < k < 3η/4 the absolute values increase more slowly. Finally
in the domain 3η/4 < k < η the absolute values decrease, but remain unlimited
since |αk| > 2k for all k.

But in the case t = −2 the last terms are infinitesimal.
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4 The Shift Operator

The aim of this section is to give a nonstandard interpretation for the equations
(1), (2), (3), (4). More precisely, we want to figure out how we can operate
with hyperfinite sums (16) in analogy to the transformations (2)–(4) of the
standard series (1).

4.1 Unsuccessful Approach

It is a natural idea to consider the matrix

T =


0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 1 . . .
. . . . . . . . . . . . . . . . . .

 of dimension
(η + 1)× (η + 1)

as something which is expected to act like τ. We suppose that a hyperfinite
sum (16) is fixed and define the (η + 1)vector

~αk = 〈αk, αk+1, . . . , αη, 0, 0, . . . , 0〉 (k zeros) .

We remember that [M ]l denotes the lth row of a matrix M and rows are
enumerated from top to bottom starting with 0 as the number of the top row.
Then ~αk = Tk ~α0 and [~αk]0 = αk; therefore,

[Tk]0 ~α0 = [Tk ~α0]0 = [~αk]0 = αk .

The sum (16) takes the form

S = [U + T + T2 + · · ·+ Tη ]0 ~α0 , (23)

(U denotes the unit matrix of the corresponding dimension). Moreover, in the
case of finite matrices the following equality is an algebraic identity

(U− T)−1 = U + T + T2 + · · ·+ Tη , (24)

and equality (23) could be considered as a nonstandard counterpart of (2).
There is, however, a problem. As soon as we are committed to treat what

is supposed to be a nonstandard version of (2) as a nonstandard expansion
of what is supposed to be a nonstandard version of (1 − τ)−1, we should
demonstrate that Tk is equal to the kth member of the nonstandard expansion
of the left-hand side, or at least that the 0th rows coincide. It is not likely
that a good solution for this problem can be obtained in the frameworks of the
approach based on (24) and (23): indeed, if one defines F (x) = (U − xT)−1

then DF [x0, x1] 6= T provided x0 = 0 and x1 6= x0.



Nonstandard Summation of Divergent Series 485

4.2 Successful Approach

Thus the idea is to forget about (24) and (23) and, first of all, consider (16)
in the form which is implied by Newton’s interpolation theorem, that is, as

S = a0 + a1 1(1) + a2 1(2) + · · ·+ aη 1(η) . (1′)

The following is assumed:
1∗. η is an unlimited natural number.
2∗. The points xk, 0 ≤ k ≤ η, are fixed.
3∗. ξ(k) = (ξ − x0)(ξ − x1) · · · (ξ − xk−1) in accordance with (18).

The factors ak are, however, arbitrary (say we do not assume that they are
explicitly connected with a certain function in the sense of a nonstandard
Taylor expansion). Then we put

~ak = 〈ak, ak+1, . . . , aη, 0, 0, . . . , 0〉 (k zeros) ,

separately ~a = ~a0, so that ~ak = Tk~a0 and [~ak]0 = ak; hence

[Tk]0~a0 = [Tk~a0]0 = [~ak]0 = ak.

The equality (1′) takes the form

S = [U + T 1(1) + T2 1(2) + · · ·+ Tη 1(η)]0 ~a0 , (2′)

which we consider as the nonstandard counterpart of (2).
To see that now the problem at the end of Subsection 4.1 can be solved,

we replace the unit matrix U by the matrix 1I = U + XT, where

X =


x0 0 0 0 . . .
0 x1 0 0 . . .
0 0 x2 0 . . .
0 0 0 x3 . . .
. . . . . . . . . . . . . . .

 of dimension
(η + 1)× (η + 1) ,

so that

1I =


1 x0 0 0 0 . . .
0 1 x1 0 0 . . .
0 0 1 x2 0 . . .
0 0 0 1 x3 . . .
. . . . . . . . . . . . . . . . . .

 of dimension
(η + 1)× (η + 1) .

Then we remark that (1I− xT)−1 exists in the case of finite matrices, put

F(x) = (1I− xT)−1 =
1

1I− xT
, (25)
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and demonstrate that the nonstandard Taylor expansion of F(1) leads to the
right-hand side of (2′). This is based on the following technical theorem.

Theorem 5 Assume that κ ≤ η and points x0, . . . , xκ are pairwise different.
Then

[F(xκ)]0 =

[
1

1I− xκ T

]
0

=

κ∑
k=0

[Tk]0 xκ
(k) .

Proof. It is sufficient to verify the following equality:

[Tk]0 = [ DF[x0, . . . , xk] ]0 ; (?)

then the result would follow by Newton’s theorem. To check (?), we prove

Lemma 6 DF[ξ0, ξ1, ξ2, . . . , ξk]=F(ξ0)TF(ξ1)TF(ξ2) . . . TF(ξk), provided k ≤
κ and ξ0, ξ1, . . . , ξk are arbitrary pairwise different real numbers.

Proof. This is evident for k = 0 and easy for k = 1. Indeed,

DF[ξ, ζ] =
F(ζ)− F(ξ)

ζ − ξ
=

1

ζ − ξ
F(ξ) [F(ξ)−1 − F(ζ)−1] F(ζ)

=
1

ζ − ξ
F(ξ) (1I− ξT− 1I + ζT) F(ζ) = F(ξ) T F(ζ) .

We proceed with the induction step. To shorten formulas we consider the step
from 3 to 4. Thus let DF[ξ0, ξ1, ξ2] = F(ξ0)TF(ξ1)TF(ξ2). Then

DF[ξ1, ξ2, ξ3] = DF[ξ3, ξ1, ξ2] = F(ξ3) T F(ξ1) T F(ξ2) .

Hence

DF[ξ0,ξ1, ξ2, ξ3] =
1

ξ3 − ξ0
(DF[ξ1, ξ2, ξ3]−DF[ξ0, ξ1, ξ2])

=
1

ξ3 − ξ0
[F(ξ3)− F(ξ0)]TF(ξ1)TF(ξ2)

= DF[ξ0, ξ3]TF(ξ1)TF(ξ2)

= F(ξ0)TF(ξ3)TF(ξ1)TF(ξ2) = F(ξ0)TF(ξ1)TF(ξ2)TF(ξ3),

as required. (We have used (17), the result obtained for k = 1, and the
permutation invariance.)

To continue the proof of (?), we note that

[Tk F(xk)]0 = [Tk]0 , k = 0, 1, 2, . . . ,η . (26)
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Indeed, first, [Tk F(xk)]0 = [F(xk)]k = [(1I−xkT)−1]k. On the other hand, we
have [(1I−xkT)]k = [U]k, hence [(1I−xkT)−1]k = [U]k. Therefore [Tk F(xk)]0 =
[U]k = [Tk]0.

Applying (26) consecutively for k = 0, 1, 2, . . . ,κ to the right–hand side of
the equality of the Lemma 6 and having in mind that [AB]0 = [A]0B, we get
(?) and accomplish the proof of Theorem 5. �

The next corollary is related to the case κ = η. Thus, in addition to the
requirements 1∗, 2∗, 3∗, stated above we assume hereafter that

4∗. Points x0, . . . , xη are pairwise different and xη = 1.

Corollary 7

[F(1)]0 =

[
1

1I− T

]
0

=

η∑
k=0

[Tk]0 1(k) , (4′)

and in addition [Tk]0 = [DF[x0, . . . , xk] ]0, so that (4′) is the nonstandard
Taylor expansion of the expression (1I− xT)−1 for x = 1.

The equality (4′) is the nonstandard counterpart of (4). But (4′) has
the precise meaning of a sum and a complete proof which is based on the
nonstandard Taylor expansion of the function (25) and does not depend on
any special assumption about the nature of the initial series (1′).

Now we multiply both sides of (4′) with ~a0 and, using (2′) obtain the
following counterpart of (3):

S =

[
1

1I− T

]
0

~a0 , hence S = [F(1)]0 ~a0 . (3′)

Remark An interesting result was obtained in passing by: F(ξ) T F(ζ) =
F(ζ) T F(ξ). (Apply Lemma 6 in the case k = 2.) This is quite surprising
because the matrices F(ξ) do not in general commute with T and with each
other. This clarifies the connection between the lemma and (19) — take notice
that F(x) coincides with (h − tx)−1 when h = 1I and t = T. Putting in (19)
factors t between the factors f(xk) we achieve the same formal structure in
both formulas. But unlike the case of real-valued functions, relevant to (19),
one cannot, in general, commute factors in this setting.

5 Nonstandard Hutton Transform

Thus the similarity between (1), (2), (3), (4) on the one hand and (1′), (2′),
(3′), (4′) on the other, is based on the identification of τ with T, 1 (in the
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denominator 1 − τ) with 1I, and on the adjoining of factors 1(k) and taking
the zero row. The aim of this section is to develop the Hutton transform
from this standpoint. We introduce an (η + 1)× (η + 1)matrix H, having the
Hutton matrix H of Subsection 1.2 as shadow, and then demonstrate that the
nonformal treatment of the Hutton transform (equations (5), (6), and (7)) can
be carried out both adequately and in a mathematically precise way in the
framework of the nonstandard approach.

An unlimited natural number η, a system of points of interpolation xk,
k ≤ η, satisfying conditions 1∗, 2∗, 3∗, 4∗ of Section 4, a hyperfinite sum

S = a0 + a1 1(1) + a2 1(2) + · · ·+ aη 1(η), (1′)

and the corresponding vector ~a = ~a0 = 〈a0, . . . , aη〉, are again given.

5.1 Nonstandard Hutton Matrix

First of all we define a matrix.

Definition 8 (Nonstandard Hutton matrix) The Hutton matrix H of dimen-
sion (η + 1)× (η + 1) is introduced by

H =
1

2


1 + x0 0 0 0 0 . . .
1 1 + x1 0 0 0 . . .
0 1 1 + x2 0 0 . . .
0 0 1 1 + x3 0 . . .
. . . . . . . . . . . . . . . . . .


The Hutton transform ~h of ~a (both ~h and ~a = ~a0 are vectors containing η + 1

elements) is defined by ~h = H~a, that is,

h0 =
1 + x0

2
a0 , and hk =

ak−1 + (1 + xk) ak
2

for 1 ≤ k ≤ η .

Thus, provided all xk, k standard, are infinitely small, the standard matrix
H introduced in Subsection 1.2 is the shadow of H in the sense of Definition 1.
Therefore, the matrix H, acting on ~a, converts the hyperfinite sum (1′) to

S =

η∑
k=0

hk 1(k) =
1 + x0

2
a0 +

η∑
k=1

ak−1 + (1 + xk) ak
2

1(k) . (7′)

Proposition 9 Assume that a standard series (1) is the shadow of (1′), η
is unlimited, and xk ≈ 0 for all limited numbers k. Then (7) is the shadow
of (7′).
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Equality (7′) is easily verifiable; the coefficient of ak in the right-hand side
is, indeed, equal to 1(k), in accordance with (1′).

The question is how (7′) can be obtained by a transformation similar to
(5), (6). This is explained in the remainder of this section.

5.2 The Hutton Matrix as the Result of a Taylor Expansion

The right way of transformation is a bit tricky. We first observe that

[U]0 = [1I− x0T]0 = 2−1 [ (1 + x0) (1I− T) + (1− x0) (1I + T) ]0 .

Therefore[
1

1I− T

]
0

= [U]0
1

1I− T
=

1 + x0
2

[U]0 +
1− x0

2

[
Σ

1

1I− T

]
0

, (5′)

where Σ = 1I + T. This is the nonstandard counterpart of (5).
To go ahead, we have to expand the fraction (1I− T)−1 at the right-hand

side by Corollary 7. This does not seem to be easy; indeed, equality (4′)
of Corollary 7 is relevant to the 0th row of the matrix (1I − T)−1, which is
insufficient since the fraction is placed in (5′) as a right-hand factor. Thus we
have to figure out the commutation rules in this case.

We let T∗ be the transpose of T, so that

T∗ =


0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 0 0 . . .
. . . . . . . . . . . . . . . . . .

 of dimension
(η + 1)× (η + 1) ,

(then by the way H = 2−1(U + T∗ + X)) and put kX = Tk X T∗
k
, so that

kX =


xk 0 0 0 . . .
0 xk+1 0 0 . . .
0 0 xk+2 0 . . .
0 0 0 xk+3 . . .
. . . . . . . . . . . . . . .

 of dimension
(η + 1)× (η + 1) ,

having numbers xk, xk+1, . . . , xη, 0, . . . , 0 (k zeros) on the diagonal. Then we
define

k1I = U + kX T , kΣ = k1I + T , and kF(x) = (k1I− xT)−1.

In particular, 0X = X, 01I = 1I, 0Σ = Σ, and 0F = F.
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Lemma 10 (Commutation rules)

T kX = k+1X T , T k1I = k+11I T , and T kΣ = k+1Σ T ; (27)

T kF(ξ) = k+1F(ξ) T ; (28)
k1I kF(ξ) = k+1F(ξ) k+11I and kΣ kF(ξ) = k+1F(ξ) k+1Σ . (29)

Proof. We start with (27). By definition,

T kX = Tk+1 X T∗
k

= Tk+1 X T∗
(k+1)

T = k+1X T .

The principal second equality is implied by the fact that, since the matrix

X′ = Tk+1X T∗
k

has only zeros in the first column, X′ T∗ T = X′. Therefore,

T k1I = TU + T kX T = UT + k+1X T T = k+11I T .

The equality for kΣ immediately follows from the one for k1I.
We prove (28). Multiplying both sides of (28) by k1I−ξT as the right-hand

factor and by k+11I− ξT as the left-hand factor, one obtains

(k+11I− ξT) T = T (k1I− ξT) ,

which follows from (27). Finally the equalities (29) are reduced, by the same
transformation, to (27). �

Corollary 11 Σ
1

1I− T
=

1
11I− T

1Σ = 1F(1) 1Σ .

Proof. Use (29). �

Thus the fraction is set up as the left factor. The next step is to com-
pute the expansion of 1F(1) with respect to the “reduced” system of points
x1, . . . , xη. According to Theorem 5 (the case κ = η− 1), the required expan-
sion has the form

[1F(1)]0 = [1F(xη)]0 =

[
1

11I− T

]
0

=

η−1∑
k=0

[Tk]0 1[k] ,

where 1[k] = (1− x1) · · · (1− xk) = 1(k+1)(1− x0)−1. Thus[
Σ

1

1I− T

]
0

=

[
1

11I− T
1Σ

]
0

= (1− x0)−1

[
η∑

k=1

[Tk−1]0 1(k)

]
1Σ , (6′)
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which is the counterpart of (6). Therefore, multiplying (5′) by ~a = ~a0, one
obtains

S =

[
1

1I− T

]
0

~a0 =

[
1 + x0

2
[U]0 +

1

2

η∑
k=1

[Tk−1 1Σ]0 1(k)

]
~a .

We want to demonstrate that the right-hand side of this equality is equal to
(7′). This is the content of the following lemma.

Lemma 12 2−1(1 + x0) [U]0 = [H]0, and 2−1 [Tk−1 1Σ]0 = [H]k for all
1 ≤ k ≤ η.

Proof. Notice that by definition H = 2−1 [U + X + T∗]; therefore [H]0 =
2−1(1 + x0) [U]0. The other equality needs more efforts.

Since [M ]k = [TkM ]0, the problem is reduced to the equality

[Tk−1 1Σ]0 = [Tk (U + X + T∗)]0 .

The left–hand side is equal to [kΣ Tk−1]0 by (27). As far as the right–hand
side is concerned, we first note that [Tk T∗]0 = [Tk−1]0 in the case k > 1, and
[T T∗]0 = [U]0 in the case k = 1. Thus the right–hand side is equal to

[Tk + kX Tk + Tk−1]0 = [(U + kX T + T) Tk−1]0 = [kΣ Tk−1]0 ,

as required. �

6 Nonstandard Euler Transform

In this section we concentrate on the nonstandard interpretation of the Euler
transform. The plan is approximately the same as in the previous section. We
define a nonstandard version E of the Euler matrix E of Subsection 1.2, prove
that the latter is the shadow of the former (under certain conditions) and
that its action commutes with the shadow operation (this will require a bit
more efforts than in the case of Hutton transform), then prove that E can be
obtained by a nonstandard “simulation” of equations (8), (9), (10), and finally
demonstrate that a certain reiteration of the Hutton transform of Section 5
leads to E as well.

A natural number η, a system of points of interpolation xk, k ≤ η, satisfy-
ing conditions 1∗–4∗ of Section 4, a hyperfinite sum (1′), and the corresponding
vector ~a = ~a0 continue to be fixed.
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6.1 Nonstandard Euler Matrix

We recall that the standard Euler matrix E was introduced in Subsection 1.2
by [E]k = 2−(k+1) [(U + T ∗)k]k = 2−(k+1) [(U + T )k]0, k = 0, 1, 2, . . . . The
nonstandard version takes the following form.

Definition 13 (Nonstandard Euler transform) We set (k)Σ = kΣk−1Σ . . . 1Σ
for all k ≤ η. The Euler matrix E is introduced by the equalities

[E]k = 2−(k+1) (1 + xk) [(k)Σ]0 − for all k, 0 ≤ k ≤ η .

The Euler transform ~e of ~a (both ~e and ~a = ~a0 are vectors containing η + 1
elements) is defined by ~e = E~a.

This determines E uniquely, of course, although not by a compact formula
like the one by which H was introduced, see Definition 8. On the other hand,
we are able now to obtain the nonstandard counterpart of (10), similar to (7′)
in Section 5. It is as follows.

S =

η∑
k=0

ek 1(k) , where 〈e0, . . . , eη〉 = ~e = E~a = E~a0 ,

so that ek = 2−(k+1) (1 + xk) [(k)Σ]0 ~a .

 (10′)

The difference between this and (7′) is that, first, we do not have a compact
formula which defines ek in terms of ak, second, it is not evident that (10′)
really follows from (1′), and third, it is not at once clear that the following
“shadow” proposition holds.

Proposition 14 Assume that (1) is the shadow of (1′), η is unlimited, and
xk ≈ 0 for limited k. Then (10) is the shadow of (10′).

Proof. We say that a matrix M is almost triangular iff there exists a limited
natural number n0 such that l ≤ k + n0 whenever Mkl 6= 0 (Mkl denotes
the 〈k, l〉th element of M) (take notice that the relation 6= rather than 6≈, is
used in the definition). Thus an almost triangular matrix can contain nonzero
elements above the diagonal only in a very restricted way.

The matrices T, T∗, U, E, H, and kX, k1I, kΣ, (k)Σ for all limited k are
almost triangular; the composition of a limited number of almost triangular
matrices is almost triangular as well.

It is also clear that if Z is an almost triangular (η+1)×(η+1) matrix having
a standard twice infinite matrix Z as shadow, and ~v an (η + 1)vector, having
a standard infinite vector ~v as shadow, then Z~v has Z ~v as shadow. (We recall
that the notion of shadow was introduced by Definition 1 in Subsection 1.3.)
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Take notice that, in the assumptions of Proposition 14, every kX (k limited)
has the zero matrix as shadow. Since the property of being the shadow is
preserved under addition and multiplication (for almost triangular matrices),
all matrices kΣ have the standard matrix Σ introduced in Subsection 1.2 as
shadow, and (k)Σ has Σk as shadow (provided k is limited). Therefore E is
the shadow of E. This completes the proof of Proposition 14. �

To illustrate Proposition 14 we present the first few values of ek.

e0 =2−1 a0 ;

e1 =2−2(1 + x1) [a0 + (1 + x1) a1] ;

e2 =2−3(1 + x2) [a0 + (2 + x1 + x2) a1 + (1 + x2)2 a2] ;

e3 =2−4(1 + x3) {a0 + (3 + x1 + x2 + x3) a1

+ [(1 + x2)2 + (1 + x2)(1 + x3) + (1 + x3)2] a2 + (1 + x3)3 a3} ;

and so on .

6.2 Euler Matrix as the Result of Taylor Expansion

This subsection gives an exact model for equations (8), (9), and (10), based
on the nonstandard Taylor expansion. This will result in the matrix E, as
required.

The counterpart of (8) is as follows:

1

1I− T
=

1

21I− Σ
=

Φ(1/2)

2
, where Φ(y) =

1

1I− yΣ
, (8′)

The next equation (9) in Subsection 1.1 contains the expansion of (1−σ/2)−1.
This leads us to nonstandard expansion of the function Φ(y) for the value
y = 1/2. To find a suitable system y0, . . . , yη of points of interpolation, we
transform Φ(y) in the following way:

Φ(y) =
1

1I− y (1I + T)
=

1

1− y
1

1I− y
1−y T

=
1

1− y
F

(
y

1− y

)
.

Thus the natural connection between the variables x and y can be given by

x =
y

1− y
, hence y =

x

1 + x
.

This gives a hint to introduce the points yk by

yk =
xk

1 + xk
, where k = 0, 1, 2, . . . , η . (30)

In particular, yη = 1/2, and, by (18), (1/2)(k) =
∏k−1

i=0 (yη − yi).
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Proposition 15 (1/2)(k) =
1(k)

2k (1 + x0) (1 + x1) . . . (1 + xk−1)
.

Proof. By (30), we have

yη − yi =
xη − xi

(1 + xη) (1 + xi)
=

1− xi
2(1 + xi)

. �

By Newton’s theorem, Φ(1/2) is expanded with respect to y0, . . . , yη as

Φ(1/2) =

η∑
k=0

DΦ[y0, . . . , yk] (1/2)(k) . (31)

where the generalized powers (1/2)(k) are computed by Proposition 15. The
next step is to find the corresponding divided differences. This will lead to the
Euler matrix.

Lemma 16 [ DΦ[y0, . . . , yk] ]0 = (1 + x0) . . . (1 + xk) [ (k)Σ ]0 .

Proof. We first claim that

DΦ[y0, . . . , yk] = Φ(y0) Σ Φ(y1) . . . Σ Φ(yk) .

The proof does not differ from the proof of Lemma 6.
Therefore, since Φ(yk) = (1 + xk) F(xk), we obtain

DΦ[y0, . . . , yk] =(1 + x0) . . . (1 + xk)F(x0)ΣF(x1) . . . ΣF(xk)

=(1 + x0) · · · (1 + xk)F(x0)1F(x1) · · ·kF(xk)(k)Σ (32)

by Lemma 10. It is asserted that [lF(xl)]0 = [U]0 for all l.
Indeed, lF(xl) = (l1I− xlT)−1. On the other hand,

l1I− xlT = U + lX T− xlT ,

which shows that [l1I − xlT]0 = [U]0. This implies the required equality
[lF(xl)]0 = [U]0.

Coming back to (32) (2nd line), we end the proof of the lemma. �

Corollary 17[
1

1I− T

]
0

=
1

2

[
1

1I− Σ/2

]
0

=

η∑
k=0

1 + xk
2k+1

[ (k)Σ ]0 1(k) . (9′)
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(The right equality is the nonstandard counterpart of (9), of course.)
Proof. Use Proposition 15, Lemma 16, and formula (31). �

Corollary 18

S =

[
1

1I− T

]
0

~a0 =
1

2

[
1

1I− Σ/2

]
0

~a0 =

η∑
k=0

1 + xk
2k+1

[ (k)Σ ]0 ~a0 1(k) .

Proof. Use (3′) and Corollary 17. �

Thus we have got (10′).

6.3 Euler Matrix via Reiteration of Hutton Transform

We finally demonstrate that the formula of Corollary 17 can be obtained as
reiteration of the Hutton transform of Section 5, similarly to equations (11)
and (12).

We observe first of all that

[U]0 = [k1I− xkT]0 = 2−1 [ (1 + xk) (k1I− T) + (1− xk) (k1I + T) ]0 .

Therefore using Lemma 10 (commutation rules), we obtain[
1

k1I− T

]
0

= [U]0
1

k1I− T
=

1 + xk
2

[U]0 +
1− xk

2

[
kΣ

1
k1I− T

]
0

=
1 + xk

2
[U]0 +

1− xk
2

[
1

k+11I− T

]
0

k+1Σ (33)

which is precisely the equality of the Hutton transform (5′) (together with the
transformation given by the first equality of (6′)) in a generalized form.

We apply (33) consecutively, starting from [(1I − T)−1]0, for the values
k = 0, 1, . . . ,η. The first two steps are as follows:[

1

1I− T

]
0

=
1 + x0

2
[U]0 +

1

2

[
1

11I− T

]
0

1Σ 1(1)

=
1 + x0

2
[U]0 +

1 + x1
4

[ (1)Σ ]0 1(1) +
1

4

[
1

21I− T

]
0

(2)Σ 1(2) .

After η steps, the rightmost, “singular” addendum turns out to be

2−η
[

1
η1I− T

]
0

(η)Σ 1(η) =(1 + xη) 2−(η+1) [ U ]0
(η)Σ 1(η)

=(1 + xη) 2−(η+1) [ (η)Σ ]0 1(η) ,
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since, first, xη = 1 and second (that follows from the first), [η1I − T]0 =
[(η1I− T)−1]0 = [U]0. Finally we obtain after η “Hutton” steps the following:[

1

1I− T

]
0

=

η∑
k=0

2−(k+1) (1 + xk) [ (k)Σ ]0 1(k) ,

which is exactly (9′) while the transformation itself can be observed as the
nonstandard counterpart of (11).

To model (12) one has to multiply all steps of the reasoning by ~a = ~a0 as the
right-hand factor. Then the process takes the form of successive application of
the Hutton transform to shorter and shorter remainders, so that the Hutton
matrix of dimension (η−k+1)× (η−k+1), generated by xk, . . . , xη as points
of interpolation, is applied at the kth step, k = 0, 1, . . . ,η.
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