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LIMITS OF TRANSFINITE CONVERGENT
SEQUENCES OF DERIVATIVES

Abstract

The paper solves the question whether the limit of transfinite con-
vergent sequence of derivatives is again the derivative. It shows that this
problem cannot be solved in the Zermelo-Fraenkel axiomatic system and
that this statement is equivalent to the covering number for Lebesgue
null ideal being bigger that ℵ1. In the second part of the paper author
proved an analogue of Preiss’s theorem [P] for the transfinite sequences
of derivatives.

1 Introduction

The convergence of transfinite sequences of functions was introduced in the
paper [Sie]. Let Ω be the first uncountable ordinal number, let I be a real
interval and fξ : I → R, 1 ≤ ξ < Ω be a sequence of real functions. We say
that f : I → R is the pointwise limit of this sequence if fξ(x) → f(x) holds
for every x ∈ I, i.e.

∀x ∈ T ∀ε > 0 ∃η < Ω ∀ξ ≥ η : |f(x)− fξ(x)| < ε

We shall denote this convergence by fξ → f or more precisely lim
ξ<Ω

fξ = f .

An important question is whether the pointwise transfinite convergence pre-
serves some important properties of functions, e.g., continuity or first Baire
class. These questions were solved positively in the paper [Š] or [Sie] respec-
tively. In the present paper the question of preserving the property of “being
a derivative” will be discussed. The results of this paper can be also used
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to solve the question of preserving the property of “being an approximately
continuous function”. This problem was mentioned in the paper [Š] as open.

A partial answer to previous questions gives us the following theorem
proved by T. Šalát (oral communication).

Theorem. Let fξ : I → R, 1 ≤ ξ < Ω, be functions differentiable at every
point of an interval I. Let f, g : I → R be such functions that

fξ → f and f ′ξ → g. Then f ′ = g.

Proof. Let x0 ∈ I be an arbitrary point. Then there exists an ordinal
number η < Ω such that f ′ξ(x0) = g(x0) holds for every η ≤ ξ < Ω: (See

[Sie]). It is sufficient to prove that
f(xn)− f(x0)

xn − x0
→ g(x0) holds for every

sequence xn → x0, n ∈ N ; xn ∈ I \ {x0}.
Since fξ → f , there exists an ordinal number ξ0 < Ω such that for all

ξ ≥ ξ0 we have fξ(xk) = f(xk) (k = 0, 1, 2, 3, . . . ). But then for any ordinal
number ξ ≥ max{ξ0, η} we have

f(xn)− f(x0)

xn − x0
=
fξ(xn)− fξ(x0)

xn − x0
→ f ′ξ(x0) = g(x0) for n→∞. �

Let ∆ denote the set of all derivatives on the interval I; i.e., all functions
f : I → R having primitive functions F : I → R such that f(x) = F ′(x) for
each x ∈ I. Let us introduce the following notation.

(CH) Continuum hypothesis: ℵ1 = 2ℵ0 .

(MA)ℵ1 Martin’s axiom: For a nonempty poset (partially ordered set) P
having the (CCC)1 property and a family {Dj ; j ∈ J} of dense2

sets in P (card(J) ≤ κ) there exists a subnet3 Q ⊂ P such that
Q ∩Dj 6= ∅. (See [Sch]). We shall use this axiom for κ = ℵ1.

(ADD)ℵ1 The union of ℵ1 null sets (Lebesgue measure on R) has (Lebesgue)
measure zero. This statement can be written as add(L) > ℵ1 where
add(L) is the usual notation for the smallest cardinal κ with the
property that there are κ null sets such that their union is not null.

1Poset (P,≺), briefly P has the (CCC) property if every set Q ⊂ P whose elements are
pairwise incompatible is at most denumerable. Two elements p, q (p 6= q) of an poset P are
incompatible if there does not exist any element r ∈ P such that p ≺ r and q ≺ r.

2Set D is dense in the poset P if for an arbitrary p ∈ P there exists d ∈ D such that
p ≺ d.

3Q is subnet of P if Q ⊂ P and Q is a net; i.e. for every elements p, q ∈ Q there is an
element r ∈ Q such that p ≺ r and q ≺ r.
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(COV)ℵ1 There are ℵ1 null sets (Lebesgue measure on R) covering R. This
statement can be written as cov(L) = ℵ1 where cov(L) is the usual
notation for the smallest cardinal κ such that the real line is the
union of κ null sets.

(D) If fξ : I → R, 1 ≤ ξ < Ω is an arbitrary transfinite pointwise
convergent sequence of derivatives, then the limit function f =
lim
ξ<Ω

fξ is also a derivative; i.e. f ∈ ∆.

(AC) If fξ : I → R; 1 ≤ ξ < Ω is an arbitrary transfinite pointwise
convergent sequence of approximately continuous functions, then
the limit function f = lim

ξ<Ω
fξ is also approximately continuous.

(ZFC) Zermelo-Fraenkel set theory including the axiom of choice.

Both the continuum hypothesis (CH) and Martin’s axiom (MA)ℵ1 are
statements that are independent with respect to Zermelo-Fraenkel set theory
(ZFC) and can be added as a new axiom (of course not both together). The
following relations between previous statements were proved in paper [Sch] or
they can be easily derived.

(ZFC) + (MA)ℵ1 =⇒ (ZFC) + (ADD)ℵ1 =⇒ (ZFC) + ¬(COV)ℵ1

(ZFC) + (CH) =⇒ (ZFC) + (COV)ℵ1

The main aim of this paper is to prove following implications.

(ZFC) + ¬(COV)ℵ1 =⇒ (ZFC) + (D)

(ZFC) + (COV)ℵ1 =⇒ (ZFC) + ¬(D)

which means that (D) and ¬(D) are statements that cannot be derived from
(ZFC) because both (ZFC) + (D) and (ZFC) + ¬(D) remain consistent if
(ZFC) is consistent. In addition following axiomatic systems are equivalent.

(ZFC) + ¬(COV)ℵ1 ⇐⇒ (ZFC) + (D)

(ZFC) + (COV)ℵ1 ⇐⇒ (ZFC) + ¬(D)

Remark 1. We also prove that the statements (AC) and ¬(AC) are inde-
pendent with respect to (ZFC) axioms because from results of this paper the
following equivalences can also be derived.

(ZFC) + ¬(COV)ℵ1 ⇐⇒ (ZFC) + (AC)
(ZFC) + (COV)ℵ1 ⇐⇒ (ZFC) + ¬(AC)
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2 Limits of Pointwise Convergent Transfinite Sequences
of Functions When ¬(COV)ℵ1 Holds.

In what follows we shall suppose that ¬(COV)ℵ1 or a stronger assumption
(ADD)ℵ1 holds. First we introduce an auxiliary lemma which we need for the
proof of the following Theorem 2.

Lemma 1 Suppose ¬(COV)ℵ1 . Then the inner Lebesgue measure of a union
of ℵ1 null sets is zero.

Proof. Suppose that this statement does not hold. Then there exist sets Aj
with λ(Aj) = 0, j ∈ J and card(J) = ℵ1 such that

λ∗(A) > 0 where A =
⋃
j∈J

Aj

(λ∗ means the inner Lebesgue measure). Then according to a well-known fact
(COV)ℵ1 holds; i.e. there exist ℵ1 null sets which cover the entire real line
which is contrary to the assumption ¬(COV)ℵ1 . These sets can be chosen as

Bj =

C ∪ ⋃
q∈Q

(Aj + q)

 for j ∈ J where C = R \
⋃
q∈Q

(A+ q). �

Theorem 2 Let fξ : I → R, 1 ≤ ξ < Ω, be a pointwise convergent transfinite
sequence of measurable functions. Let f = lim

ξ<Ω
fξ. Let (i) or (ii) hold.

(i) Axiom (ADD)ℵ1 holds.

(ii) The function f is measurable and axiom ¬(COV)ℵ1 holds.

Then the function f is measurable and there exists an ordinal number η < Ω
such that for every η ≤ ξ < Ω fξ(x) = f(x) holds almost everywhere on I.

Proof. We will prove (i) =⇒ (ii). It is sufficient to prove that function f is
measurable, because (ADD)ℵ1 =⇒ ¬(COV)ℵ1 .

In paper [Sch] it was demonstrated that the union and the intersection of
at most ℵ1 Lebesgue measurable sets is a measurable set provided (i) holds.
This fact will be used now.

Since for every x ∈ I fξ(x)→ f(x), there exist an ordinal number ηx < Ω
such that fξ(x) = f(x) for every ηx ≤ ξ < Ω. Obviously we have

{x ∈ I; f(x) > α} =
⋃
η<Ω

⋂
η<ξ

{x ∈ I; fξ(x) > α}
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and therefore the function f is measurable.
Now let (ii) hold. For every ordinal number ξ < Ω we define

Eξ = {x ∈ I; fη(x) = f(x) ∀η ≥ ξ}

The union of Eξ is the interval I and Eξ ⊂ Eζ whenever ξ ≤ ζ. Without loss
of generality we can suppose that I is a bounded interval. Let c = sup

ξ<Ω
λ∗(Eξ),

where λ∗ is Lebesgue outer measure on I. According to the definition of supre-
mum for every n ∈ N there exist an ordinal number ξn such that

λ∗(Eξn) ≥ c− 1

n

There exists an ordinal number η < Ω such that ξn ≤ η for every n ∈ N.
Therefore for every n ∈ N we have

c ≥ λ∗(Eη) ≥ λ∗(Eξn) ≥ c− 1

n

Hence λ∗(Eζ) = c for all η ≤ ζ < Ω. Let G be a measurable set such that
Eη ⊂ G ⊂ I and λ∗(Eη) = λ(G).

We want to prove λ(I \G) = 0. Suppose not. We can write

I \G = I ∩Gc = Gc ∩
⋃
η≤ζ

Eζ =
⋃
η<ζ

(Eζ \G).

If λ(I \ G) = λ∗(I \ G) > 0, then according to Lemma 1 there exist η < ζ
such that λ∗(Eζ \G) > 0. The set G is measurable and therefore according to
Caratheodory’s definition of measurability

λ∗(Eζ) ≥ λ∗(Eζ \G) + λ∗(Eζ ∩G) > λ∗(Eζ ∩G) ≥ λ∗(Eη) = c

contrary to λ∗(Eζ) > c. Therefore λ(I \ G) = 0 i.e. λ(Eη) = λ(I). Hence
f and fζ for fixed ζ ≥ η are two measurable functions which disagree on a
set of inner measure zero ({x ∈ I; f(x) 6= fζ(x)} ⊂ I \ Eζ) and therefore
fξ(x) = f(x) holds almost everywhere on I. �

Remark 2. The previous proof shows that the assumption (ADD)ℵ1 guaran-
tees measurability of a transfinite limit of measurable functions. The converse
of this statement is also true; i.e. the assumption that every transfinite limit
of measurable functions is measurable give us that (ADD)ℵ1 holds.
Proof. Assume that ¬(ADD)ℵ1 holds. Then there exist sets Aξ with
λ(Aξ) = 0, ξ < Ω such that

λ∗(A) > 0 where A =
⋃
ξ<Ω

Aξ.
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(λ∗ means the outer Lebesgue measure.) If the set A is non-measurable, we
define Bξ = Aξ, ξ < Ω. Otherwise let B be a non-measurable subset of A and
define Bξ = B ∩ Aξ, ξ < Ω. Then the sets Bξ have measure zero and their
union is a non-measurable set. Define

fξ = χ⋃
ζ<ξ

Bζ

(where χC means the characteristic function of the set C). Then fξ → χB ; i.e.
χB is a non-measurable function which is the transfinite limit of measurable
functions. That is a contradiction and therefore the assumption ¬(ADD)ℵ1
cannot hold. �

The main theorem of this section is the following.

Theorem 3 (ZFC) + ¬(COV)ℵ1 =⇒ (ZFC) + (D) .
(In fact we prove that every pointwise convergent transfinite sequence of deriva-
tives (fξ)ξ<Ω is eventually constant; i.e. there exists an ordinal number η < Ω
such that for every η ≤ ξ < Ω fξ = fη.)

Proof. Let fξ : I → R; 1 ≤ ξ < Ω be a pointwise convergent transfinite
sequence of derivatives (fξ ∈ ∆). The function f = lim

ξ<Ω
fξ is Baire 1 and hence

measurable. According to Theorem 2 there exists an ordinal number η < Ω
such that for every η ≤ ξ < Ω fξ(x) = f(x) almost everywhere on the interval
I.

Let ξ ≥ η be an arbitrary ordinal number. The function

hξ(x) = fξ(x)− fη(x)

is a derivative and equals zero almost everywhere; so the function hξ is a
Lebesgue integrable derivative. Let Hξ be its primitive function. According
to [R] for Lebesgue integrable derivatives the Newton-Leibnitz formula holds.

Hξ(x)−Hξ(y) =

∫ x

y

hξ(t)dt = 0

Hence the function Hξ is constant on the interval I; i.e. hξ(x) = 0 everywhere.
Then for every ordinal number ξ ≥ η fξ = fη, and therefore

f = lim
ξ<Ω

fξ = fη ∈ ∆. �

Remark 3. The implication (ZFC) + ¬(COV)ℵ1 =⇒ (ZFC) + (AC) is
an easy consequence of Theorem 2, because two approximately continuous
functions which agree on a set of full measure have to be equal everywhere.
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3 Limits of Pointwise Convergent Transfinite Sequences
of Functions When (COV)ℵ1 Holds.

First we introduce a theorem of Petruska and Laczkovich [P-L] that will be
used later.

Theorem 4 (Petruska and Laczkovich) Let H be a subset of I. The restric-
tion of each Baire 1 function on I to H can be extended to a derivative on I if
and only if λ(H) = 0. This derivative can be chosen bounded if the restriction
of the Baire 1 function to H is bounded on H.

Remark 4. The analogue of this theorem obtained by replacing the word
“derivative” with “approximately continuous function” is also valid.

The main theorem of this section follows.

Theorem 5 Let (COV)ℵ1 . The function f : I → R is Baire 1 if and only if
there exists a transfinite sequence of derivatives (fξ)ξ<Ω such that lim

ξ<Ω
fξ = f .

Proof. The implication ‘⇐=’ was proved by W. Sierpinski in [Sie]. He showed
there that a transfinite limit of Baire 1 functions (i.e. also derivatives) is a
Baire 1 function.

We prove the implication ‘=⇒’. Let f : I → R be an arbitrary Baire 1
function. Then there are sets Cξ,1 ≤ ξ < Ω, all of measure zero such that

R =
⋃
ξ<Ω

Cξ. Let Dξ =
⋃
η≤ξ

Cη. Then sets Dξ have measure zero and Dη ⊂ Dξ

whenever η ≤ ξ.
According to Theorem 4 there exist derivatives fξ such that f |Dξ= fξ |Dξ .

Hence Theorem 5 is proved. �

Remark 5. This is a stronger version of a theorem published in [L] where
only the implication ‘=⇒’ was proved with the assumption of semi-continuity
of function f instead of the assumption of being a Baire 1 function. Theorem
5 gives an affirmative answer to the question asked by the author of [L].

This theorem is also an analogue of Preiss’s theorem [P]. He proved that
each Baire 2 function is a limit of sequence of derivatives. The assumption
(COV)ℵ1 provides us a similar theorem for transfinite sequences.

Corollary 6 (ZFC) + (COV)ℵ1 =⇒ (ZFC) + ¬(D) .

Proof. Apply Theorem 5 to an arbitrary Baire 1 function which is not
derivative. �
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Remark 6. Previous proofs can be reformulated to approximately continuous
functions instead of derivatives because of Remark 4. Hence also following
statement is true.

(ZFC) + (COV)ℵ1 =⇒ (ZFC) + ¬(AC) .
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