
RESEARCH Real Analysis Exchange
Vol. 22(1), 1996-97, pp. 328–337
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SUMS OF QUASICONTINUOUS
FUNCTIONS DEFINED ON

PSEUDOMETRIZABLE SPACES

Abstract

It is shown that each real cliquish function f defined on a pseu-
dometrizable space is the sum of two quasicontinuous functions. If
moreover f is bounded (in the Baire class α), then we can take the
summands with this property.

1 Introduction

It is easy to see that the sum of two quasicontinuous functions need not be
quasicontinuous. However it must be cliquish, as the sum of two cliquish
functions is cliquish.

The sums of quasicontinuous functions were first examined by Z. Grande
[5] in 1985. He proved that each cliquish function f defined on R can be
expressed as the sum of four quasicontinuous functions and in the case f is
locally, bounded as the sum of three quasicontinuous functions. E. Strońska
has shown that every real cliquish function f defined on Rn is the sum of six
quasicontinuous functions [11] and later that every cliquish function f defined
on a separable metrizable Baire space without isolated points is the sum of
four quasicontinuous functions [12]. In [4] it is shown that each real cliquish
function f defined on Rn is the sum of two simply continuous functions, each
of which can be written as the sum of two quasicontinuous functions. In [2]
it is shown that it is sufficient to assume that the domain of f is a separable
metrizable space and in this case every cliquish function is the sum of three
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quasicontinuous functions. In [3] it is shown that we can omit the assumption
of the separability of the domain. The principal problem was solved by Z.
Grande [6], where it is proved that every cliquish function f defined on R is
the sum of two quasicontinuous functions and by A. Maliszewski in [8] (see
also [7]), where it is shown that two quasicontinuous functions are sufficient
for a cliquish function defined on Rn. In this paper we generalize this result
for a cliquish function defined on a pseudometrizable space. Our proof is quite
different from those in [6], [8]. (In these proofs properties of intervals in R,
resp. in Rn, are essential.)

2 Preliminaries

In what follows, X denotes a topological space. For a subset A of X denote
by Cl A and Int A the closure and the interior of A, respectively. If A is a
family of sets in X, then Cl A = {Cl A : A ∈ A}. If d is a pseudometric on
X,, then S(x, ε) = {y ∈ X : d(x, y) < ε}, S(A, ε) = {y ∈ X : dist (y,A) < ε}
and diam A = sup{d(a, b) : a, b ∈ A} for each x ∈ X, ε > 0 and A ⊂ X, where
dist (y,A) = inf{d(y, a) : a ∈ A}. The letters R, Q and N stand for the set of
real, rational and natural numbers, respectively.

We recall that a function f : X → R is said to be quasicontinuous (cliquish)
at x ∈ X if for every neighborhood U of x and every ε > 0 there is a nonempty
open set G ⊂ U such that |f(x)− f(y)| < ε for each y ∈ G (|f(y)− f(z)| < ε
for each y, z ∈ G) (see e.g. [10]). A function is said to be quasicontinuous
(cliquish) if it is such at each point. A function f : X → R is simply continuous
if f−1(V ) is a simply open set in X for each open set V in R. A set A is simply
open if it is the union of an open set and a nowhere dense set [1].

If f : X → R is a function, then by D(f) we will denote the set of all
discontinuity points of f . Further, the oscillation of a function f is the func-
tion from X into R ∪ {∞} given by the formula ωf (x) = inf{diam f(U) :
U is a neighbourhood of x}. Denote by Q,P,S,Bα and b the class of all qua-
sicontinuous, cliquish, simply continuous, in the Baire class α and bounded
functions.

3 Basic Lemmata

The following lemma is a key to a construction of quasicontinuous functions
on pseudometrizable spaces.

Lemma 3.1 Let X be a pseudometrizable space. Let F be a nonempty nowhere
dense closed set and let G be an open set such that F ⊂ Cl G. Then there is
a family K =

⋃
nKn of nonempty open subsets of X such that
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(i) Cl K ⊂ G \ F for each K ∈ K,

(ii) for each x ∈ X \ F there is a neighbourhood V of x such that the set
{K ∈ K : V ∩ Cl K 6= ∅} has at most one element,

(iii) for each x ∈ F and for each neighbourhood U of x there is a k ∈ N such
that for each n ≥ k there is K ∈ Kn with Cl K ⊂ U .

Proof. Let d be a pseudometric which pseudometrizes X. We will construct
families Ki of nonempty open sets in X satisfying for each i ∈ N:

(1) diam K ≤ 1/(2i) for each K ∈ Ki,

(2) the set
⋃

Cl Ki is closed,

(3) Cl K ⊂ S(F, 2/i) ∩ (G \ F ) for each K ∈ Ki,

(4) for each x ∈ F there is K ∈ Ki with S(x, 2/i) ∩K 6= ∅.

Let n ∈ N. Assume that we have constructed families Ki of nonempty
open sets in X satisfying (1)–(4) for each i < n. Put

Tn = (G ∩ S(F, 1/n)) \

(
F ∪

⋃
i<n

⋃
Cl Ki

)

and
Pn = {P ⊂ Tn : d(x, y) /∈ (0, 1/n] for each x, y ∈ P}.

Since F is a nonempty nowhere dense subset of Cl G, by (2) and (3) the set
Tn is nonempty. According to Zorn’s lemma there is a maximal element Sn of
Pn. Put

αn(x) =
1

4
· dist

(
x, F ∪ (X \G) ∪

⋃
i<n

⋃
Cl Ki

)
(For x ∈ Sn we have αn(x) > 0.) and

Kn = {S(x, αn(x)) : x ∈ Sn}.

We shall show that Kn satisfies (1)–(4).
(1) For x ∈ Sn we have dist (x, F ) < 1/n and hence αn(x) < 1/(4n), which

implies diam S(x, αn(x)) < 1/(2n).
(2) If u ∈ Cl S(x, αn(x)), v ∈ Cl S(y, αn(y)), where x, y ∈ Sn and d(x, y) >

1/n, then 1/n < d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) ≤ 1/(2n) + d(u, v). This
implies d(u, v) > 1/(2n) and the set

⋃
Cl Kn is closed.
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(3) Let x ∈ Sn, y ∈ S(x, αn(x)) and let z ∈ F be such that d(x, z) < 1/n.
Then d(y, z) ≤ d(x, y) + d(x, z) < αn(x) + 1/n < 2/n. Therefore Cl K ⊂
S(F, 2/n) for each K ∈ Kn. Evidently Cl K ⊂ G \ F .

(4) Let z ∈ F . We shall show that S(z, 2/n) ∩ Sn 6= ∅. Assume that
S(z, 2/n) ∩ Sn = ∅. Then by (2) and (3) there is 0 < δ < 1/n such that
S(z, δ) ∩

⋃
i<n

⋃
Cl Ki = ∅. Since S(z, δ) ∩G 6= ∅, S(z, δ) ⊂ S(F, 1/n) and F

is nonempty nowhere dense, there is y ∈ S(z, 1/n) ∩ Tn. For each s ∈ Sn we
have 2/n ≤ d(z, s) ≤ d(z, y)+d(y, s) < 1/n+d(y, s). This yields d(y, s) > 1/n
and y ∈ Sn, contrary to the maximality of Sn. Now S(t, αn(t)) for some
t ∈ Sn ∩ S(z, 2/n) is a member of Kn satisfying (4).

Finally, put K =
⋃
nKn. We shall show that K satisfies (i)–(iii).

(i) It follows from (3).
(ii) Let x ∈ X \ F . Then there is k ∈ N with dist (x, F ) > 4/k. For

n ≥ k and K ∈ Kn we have Cl K ⊂ S(F, 2/n) ⊂ S(F, 2/k) and hence
Cl K∩S(x, 2/k) = ∅. Now, in view of (2), it is sufficient to put V = S(x, 2/k)\
(
⋃

Cl K \ Cl K) if x ∈ Cl K for some K ∈ K, and V = S(x, 2/k) \
⋃

Cl K
otherwise.

(iii) Let x ∈ F and let U be a neighbourhood of x. Then there is k ∈ N
with S(x, 3/k) ⊂ U . Let n ≥ k. Then by (4) there is K ∈ Kn such that
S(x, 2/n) ∩ K 6= ∅. According to (1) we have diam K < 1/(2n) and hence
Cl K ⊂ S(x, 3/k) ⊂ U .

�

Remark 3.2 Condition (ii) implies that Cl K ∩ Cl L = ∅ for K,L ∈ K,
K 6= L.

Remark 3.3 From (ii) we obtain that
⋃

Cl L is a closed set in X\F whenever
L ⊂ K.

The following lemma is proved in [8] for X = Rn. The proof for a pseu-
dometrizable space is the same.

Lemma 3.4 Let X be a pseudometrizable space, let G be a subset of X and
let f : X → R be a function. Let ε be such that ωf (x) < ε for each x ∈ G.
Then there is a continuous function g : G→ R such that |f(x)− g(x)| < ε/2
for each x ∈ G.

4 Result

We shall show that Q+Q = P, bQ + bQ = bP,BαQ+ BαQ = BαP, bBαQ +
bBαQ = bBαP for a pseudometrizable space X.
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Theorem 4.1 Let X be a pseudometrizable space. Then every cliquish func-
tion f : X → R is the sum of two quasicontinuous functions f1 and f2. More-
over, D(f1) ∪D(f2) ⊂ D(f) and if f is bounded (in the Baire class α), then
the summands can be taken bounded (in the Baire class α).

Proof. Let An = {x ∈ X : ωf (x) ≥ 2−n}. Since f is cliquish, the sets An are
nowhere dense and closed in X and D(f) =

⋃
nAn. If f is continuous, then the

case is trivial. In the opposite case, without loss of generality we may assume
that A1 6= ∅. Set Gn = X \An. According to Lemma 3.4 for each n ∈ N there
is a continuous function gn : Gn → R such that |f(x) − gn(x)| < 2−n−1 for
each x ∈ Gn. Define a function sn : X → R by

sn(x) =

{
f(x) for x ∈ An,
gn(x) for x ∈ Gn.

and a function β : N × N → N by β(m, k) = 2k−1 · (2m − 1). Then β is a
bijection between N× N and N and

β(m, k + 2) = 4 · β(m, k).

Further, let Q = {q11 , q12 , . . . , q1m, . . . } and Q∩ [− 1
2n ,

1
2n ] = {qn1 , qn2 , . . . , qnm, . . . }

for n > 1 be one-to-one sequences such that qn1 = 0 for each n ∈ N. Let N1 be
the set of all even numbers and let N2 be the set of all odd numbers from N.

We will construct families Ki =
⋃
j Kij of nonempty open sets in X and

functions fsi : X → R, s ∈ {1, 2}, such that for each i ∈ N:

(a) Ki =
⋃
j Kij satisfies conditions (i)–(iii) of Lemma 3.1 for F = Ai and

G = X,

(b) for each x ∈ Ai, for each neighbourhood U of x, for each ε > 0 and each
s ∈ {1, 2} there are m ∈ N, k ∈ Ns and K ∈ Kiβ(m,k) such that Cl K ⊂ U
and |fsi (x)− fsi (y)| < ε for each y ∈ K,

(c) fsi are continuous on Gi,

(d) f1i + f2i = si,

(e) sup{|fsi+1(x)− fsi (x)| : x ∈ X, s ∈ {1, 2} } < 21−i.

By Lemma 3.1, for G = X and F = A1 there is a family K1 =
⋃
j K1

j

of nonempty open sets in X satisfying (i)–(iii). Let p1 :
⋃

Cl K1 → R be a
function defined by

p1(x) = (−1)k(g1(x)/2− q1m)
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for x ∈
⋃

Cl K1
β(m,k). By (i) and (ii), p1 is continuous on

⋃
Cl K1 and by

Remark 3.3 there is a continuous function r1 : G1 → R such that p1(x) = r1(x)
for x ∈

⋃
Cl K1. Now define functions w1, f

1
1 , f

2
1 : X → R by w1(x) = r1(x)

for x ∈ G1, w1(x) = 0 for x ∈ A1 and

fs1 = s1/2 + (−1)sw1

for s ∈ {1, 2}.
Now let n > 1. Assume that for each i < n we have constructed families

Ki =
⋃
j Kij of nonempty open sets in X and functions fsi : X → R, s ∈ {1, 2},

satisfying (a)–(e). Denote Sn = Gn−1 \
⋃

Cl Kn−1. By (a)(ii), Sn is an open
set in X. Put Dn = {B ∈ Kn−1∪{Sn} : An∩Cl B 6= ∅} and En = Kn−1 \Dn.
According to Lemma 3.1, for each D ∈ Dn (for F = An ∩ Cl D and G = D)

there is a family Kn,D =
⋃
j K

n,D
j of nonempty open sets in D satisfying (i)–

(iii). Put Kn = En ∪
⋃
D∈Dn Kn,D and define families Knj for j ∈ N as follows:

K belongs to Knj if at least one of the following conditions is fulfilled:

• K ∈ En ∩ Kn−1j or

• K ∈ Kn,Sn

j (if Sn ∈ Dn) or

• K ∈ Kn,D4j , where D ∈ Kn−1 \ En or

• K ∈ Kn,Dt , where D ∈ Kn−1j \ En and t 6≡ 0 (mod 4).

Then it is easy to see that Kn =
⋃
j Knj . We shall show that Kn =

⋃
j Knj

satisfies (a):

(i) If K ∈ Kn,D for some D ∈ Dn then Cl K ⊂ D \ An ⊂ X \ An. If
K ∈ En, then An ∩ Cl K = ∅ and Cl K ⊂ X \An.

(ii) It is easy to see.

(iii) Let x ∈ An and let U be a neighbourhood of x.

If x ∈ An \ An−1, then x ∈ Gn−1 and hence x ∈ Cl D for some D ∈ Dn.
Now ∃k ∈ N ∀p ≥ k ∃L ∈ Kn,Dp : Cl L ⊂ U . If D ∈ Kn−1, then for each p ≥ k
there is K ∈ Kn,D4p with Cl K ⊂ U and K ∈ Knp . The case D = Sn is obvious.

If x ∈ An−1, then by assumptions ∃k ∈ N ∀p ≥ k ∃L ∈ Kn−1p : Cl K ⊂ U . If
L ∈ En, then for K = L we have K ∈ Knp and Cl K ⊂ U . If L ⊂ Kn−1 \ En,

then ∃r ∈ N ∀t ≥ r ∃M ∈ Kn,Lt : Cl M ⊂ U . For K ∈ Kn,L4r+1 with Cl K ⊂ U
we have K ∈ Knp .
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Define a function hn : X → R by

hn(x) =


1
2 (gn(x)− gn−1(x)) for x ∈ Gn,
1
2 (f(x)− gn−1(x)) for x ∈ An \An−1,

0 for x ∈ An−1.

Since gn and gn−1 are continuous on Gn, the function hn is also continuous
on Gn. Moreover, for each x ∈ X we have

|hn(x)| ≤ |gn(x)− f(x)|/2 + |gn−1(x)− f(x)|/2 < 2−n−2 + 2−n−1 < 2−n.

By Remark 3.2 we can define a function pn :
⋃

Cl Kn → R by

pn(x) =


(−1)k · (hn(x)− qnm), if x ∈ Cl K, where K ∈ Kn,Dβ(m,k)

for some D ∈ Dn and m, k ∈ N,
(−1)k · hn(x), if x ∈ Cl K, where K ∈ Kn−1β(m,k)∩

En for some m, k ∈ N.

The continuity of hn on Gn and the condition (a)(ii) imply that pn is
continuous on

⋃
Cl Kn. Moreover, for each x ∈

⋃
Cl Kn we have |pn(x)| ≤

qnm+|hn(x)| < 2−n+2−n = 2−n+1. Hence by Remark 3.3 there is a continuous
function rn : Gn → [−2−n+1, 2−n+1] such that pn(x) = rn(x) for x ∈

⋃
Cl Kn.

Now let

wn(x) =

{
rn(x) for x ∈ Gn,
0 for x ∈ An.

Then |wn(x)| ≤ 2−n+1 for each x ∈ X. Now finally define functions fsn : X →
R, s ∈ {1, 2}, by

fsn = fsn−1 + hn + (−1)s · wn.

We shall show that Kn and fsn satisfy (a)–(e). It is easy to see that (a)–(d) is
satisfied for n = 1.

Let n > 1. We have already shown (a).
(b) Let x ∈ An, let U be a neighbourhood of x, let ε > 0 and s ∈ {1, 2}.
1. Let ∈ An−1. Then fsn(x) = fsn−1(x) and by assumptions there is t ∈ N,

r ∈ Ns and L ∈ Kn−1β(t,r) such that Cl L ⊂ U and |fsn−1(x) − fsn−1(y)| < ε for

each y ∈ L.
If L ∈ En, then it is sufficient to take m = t, k = r and K = L. Now

k ∈ Ns, K ∈ Knβ(m,k), Cl K ⊂ U and for each y ∈ K we have pn(y) =

(−1)k · hn(y) = (−1)s+1 · hn(y) and hence

|fsn(x)− fsn(y)| ≤ |fsn−1(x)− fsn−1(y)|+ |hn(y) + (−1)s · pn(y)| < ε.
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If L ∈ Kn−1 \En, then ∃l ∈ N∀p ≥ l∃M ∈ Kn,Lp with Cl M ⊂ U . Now it is

sufficient to take m = 1, k ∈ Ns such that β(1, k) ≥ l and K ∈ Kn,Lβ(1,k+2) such

that Cl K ⊂ U . Then K ∈ Kn,L4β(1,k) and thus K ∈ Knβ(1,k). Further, for each

y ∈ K we have pn(y) = (−1)k+2 · (hn(y)− qn1 ) = (−1)s+1 ·hn(y) and therefore

|fsn(x)− fsn(y)| ≤ |fsn−1(x) + fsn−1(y)|+ |hn(y) + (−1)s · pn(y)| < ε.

2. Let x ∈ An \An−1. Then fsn(x) = fsn−1(x) + hn(x). By the assumption
(c) fsn−1 is continuous at x ∈ Gn−1 and hence there is a neighbourhood V ⊂ U
of x such that |fsn−1(x)− fsn−1(z)| < ε/2 for each z ∈ V . Since |hn(x)| ≤ 2−n,
there is m ∈ N such that |qnm − hn(x)| < ε/2. Since x ∈ Gn−1 ∩ An there is
D ∈ Dn such that x ∈ Cl D. By assumptions ∃l ∈ N ∀p ≥ l ∃M ∈ Kn,Dp with

Cl M ⊂ V . Let k ∈ Ns be such that β(m, k) ≥ l and let K ∈ Kn,Dβ(m,k+2) be

such that Cl K ⊂ V . For each y ∈ K we have pn(y) = (−1)s+1(hn(y) − qnm)
and therefore

|fsn(x)− fsn(y)| ≤ |fsn−1(x)− fsn−1(y)|+
|hn(x)− hn(y)− (−1)s(−1)s+1(hn(y)− qnm)| < ε/2 + |hn(x)− qmn | < ε.

Further, if D = Sn, then K ∈ Knβ(m,k+2) and k + 2 ∈ Ns and if D 6= Sn, then
K ∈ Knβ(m,k).

(c) Since hn and wn are continuous on Gn and by assumptions fsn−1, s ∈
{1, 2}, are continuous on Gn−1 the functions fsn are continuous on Gn.

(d) For x ∈ Gn we have sn−1(x) + 2hn(x) = gn−1(x) + gn(x)− gn−1(x) =
gn(x), for x ∈ An−1 we have sn−1(x) + 2hn(x) = f(x) + 0 = f(x) and for
x ∈ An \An−1 we have sn−1(x) + 2hn(x) = gn−1(x) + f(x)− gn−1(x) = f(x).
Therefore for each x ∈ X we have sn−1(x) + 2hn(x) = sn(x). This yields

f1n + f2n = f1n−1 + f2n−1 + 2hn = sn−1 + 2hn = sn.

(e) For each x ∈ X and s ∈ {1, 2} we have

|fsn(x)−fsn−1(x)| = |hn(x)+(−1)s ·wn(x)| ≤ |hn(x)|+ |wn(x)| < 2−n+2−n+1.

This implies

sup{|fsn(x)− fsn−1(x)| : x ∈ X, s ∈ {1, 2}} ≤ 2−n + 2−n+1 < 22−n.

For s ∈ {1, 2} define a function fs(x) : X → R by fs(x) = lim
n→∞

fsn(x). By

(e), fs is the uniform limit of the sequence {fsn}n. By (b) and (c), all functions
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fsn are quasicontinuous and hence fs as the uniform limit of quasicontinuous
functions is quasicontinuous.

If x ∈ Ak for some k ∈ N, then sn(x) = f(x) for each n ≥ k. If x /∈
⋃
nAn,

then x ∈
⋂
nGn and sn(x) = gn(x) for each n ∈ N. Now the inequality

|f(x) − gn(x)| < 2−n−1 implies limn→∞ sn(x) = f(x). Therefore by (d) for
each x ∈ X we have

f(x) = lim
n→∞

sn(x) = lim
n→∞

(f1n(x) + f2n(x)) = f1(x) + f2(x).

If f is continuous at x, then x ∈
⋂
nGn. By (c) fsn are continuous at x

for each n ∈ N and s ∈ {1, 2} and therefore fs as the uniform limit is also
continuous at x. Thus D(f1) ∪D(f2) ⊂ D(f).

All functions wn are in the Baire class one and if f is bounded, then also
w1 can be bounded. If f is bounded (in the Baire class α), then also functions
hn are such. Then also fsn, s ∈ {1, 2}, are such and therefore also fs as the
uniform limit is bounded (in the Baire class α). �

Remark 4.2 There is a normal (of course, not T1) second countable space
X such that every quasicontinuous function defined on X is constant but there
are nonconstant cliquish functions on X [2].

Remark 4.3 In [4] it is shown that if X is a Baire second countable T3 space
such that the family of all open sets is a π-base for X then every cliquish
function f : X → R is the sum of two simply continuous functions. Since
every quasicontinuous function is simply continuous Theorem 4.1 implies that
this is true for each pseudometrizable space. Therefore for a pseudometrizable
space we have P ⊂ S + S and similarly bP ⊂ bS+ bS,BαP ⊂ BαS + BαS and
bBαP ⊂ bBαS + bBαS. If X is also Baire, then we have the equalities.
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