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Abstract

We prove that the n-dimensional Perron integral with respect to the
full interval basis, without any regularity condition, defined by continu-
ous major and minor functions is equivalent to the one defined by major
and minor functions which are not supposed to be continuous.

1 Introduction

It is well known (see for example [7]) that, for any basis of differentiation, the
Henstock-Kurzweil integral (HK-integral) is equivalent to the Perron integral
(P -integral) defined in terms of the same basis. But this equivalence is related
to the definition of the Perron integral in which major and minor functions are
not supposed to be continuous. The question of whether we get an equivalent
definition by taking into account only continuous (with respect to the basis)
major and minor functions is still open in the general case (see [2, p. 202] and
[3]).

In the case of the one-dimensional Perron integral this equivalence is proved
by several methods (see [5], [8], [9]). In the multidimensional case the equiva-
lence was recently established (see [6]) for the basis of regular intervals, using
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the fact that any indefinite P -integral is differentiable with respect to this ba-
sis almost everywhere. Here we extend this result to the case of the P -integral
and the HK-integral defined with respect to the full interval basis, without
any regularity condition. As the above mentioned result on differentiability is
not available for the full basis (see [4, p. 95]), we are to employ some other
technique here.

2 Preliminaries

We recall some definitions and notations. The n-dimensional Lebesgue mea-
sure of a set E ⊂ Rn is denoted by |E|. In Rn we shall use the norm
||x|| = max1≤i≤n |xi|, where x = (x1, x2, . . . , xn). Then the δ-neighborhood of
x, denoted by U(x, δ), is an open cube centered at x with side equal to 2δ.

An interval in Rn is a set I = [a1, b1]× [a2, b2]× · · · × [an, bn] with ai < bi,
i = 1, 2, . . . , n. Throughout this paper ∆ denotes a fixed interval and I the
family of all subintervals of ∆.

A basis of differentiation (or simply a basis) on ∆ is, by definition, any
subset B of I ×∆ such that (I, x) ∈ B implies x ∈ I.

Given a basis B, an interval I is called a B-interval if (I, x) ∈ B, for some
x ∈ I.

For a set E ⊂ ∆ we write

B(E) = {(I, x) ∈ B : I ⊂ E} and B[E] = {(I, x) ∈ B : x ∈ E}. (1)

If a function δ(x) > 0 is defined on ∆ we denote

Bδ = {(I, x) ∈ B : I ⊂ U(x, δ(x))}. (2)

Note that Bδ is also a basis on ∆. So the meaning of Bδ(E) and Bδ[E] is
clear from (1) and (2).

We say that a basis B is a Vitali basis, if for any x and for any δ the set
Bδ[{x}] is nonempty.

We say that a basis B is a free-point basis if for any B-interval I and for
any x ∈ I we have (I, x) ∈ B.

We say that a basis B is a full basis if for each interval I ∈ I and for each
x ∈ I we have (I, x) ∈ B[{x}] (in [10] the term “full covering relation” is used
for a similar notion).

Our main results are related to the full basis which we denote by F . Clearly
the full basis F is a free-point Vitali basis. Note that in our notation any
interval I ∈ I is an F-interval.

A finite subset π of B[E] is called a partition on E if for distinct pairs
(I ′, x′) and (I ′′, x′′) in π, the intervals I ′ and I ′′ are nonoverlapping.
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Given an interval function F defined on the family of all B-intervals, a set
E ⊂ ∆ and a function δ(x) > 0 we denote for any interval A ∈ I

Vδ(A) = V (Bδ, F, E,A) = sup

 ∑
(I,x)∈π

|F (I)| : π ⊂ Bδ[E] ∩ Bδ(A)


and we call it the δ-variation over B of the function F on E∩A. If E∩A = ∅,
we define Vδ(A) = 0. Clearly, for each fixed E, the interval function Vδ(A) is
non-negative and superadditive.

Let B be a Vitali basis. An interval function F defined on the family of all
B-intervals is said to be B-continuous at a point x if for any ε > 0 there exists
η > 0 such that |F (I)| < ε whenever (I, x) ∈ Bη[{x}].

3 The δ-Variation and the Perron Integral

The following result was established in [6] for some class of regular bases. We
are proving here the same proposition for any free-point Vitali basis and then
applying it to the full basis F .

Proposition 1 Let B be a free-point Vitali basis and let F be a B-continuous
additive function defined on the family of all B-intervals. Then for a fixed
set E ⊂ ∆ and a fixed function δ(x) > 0 the interval function Vδ(I) =
V (Bδ, F, E, I) is F-continuous at each point x ∈ ∆.

Proof. The proof we are giving here is similar to that given in [6]. Let
x0 ∈ ∆ and let ε > 0. We have to prove that there exists η > 0 such that
Vδ(A) < ε for each A ∈ Fη[{x0}].

Since F is B-continuous we can choose η1 > 0 such that

|F (J)| < ε

2n+1
for any (J, x0) ∈ Bη1 [{x0}]. (3)

Let K be the closed ball of radius η2 < η1 centered in x0, i.e. the closure of
U(x0, η2). Note that K ⊂ U(x0, η1). Consider a partition

π = {(I, x)} ⊂ Bδ[E ∩K] ∩ Bδ(K)

such that ∑
π

|F (I)| > Vδ(K)− ε

4
. (4)
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Now let η > 0 be such that η ≤ η2 and the condition U(x0, η) ∩ I 6= ∅ implies
x0 ∈ I, for each interval I with (I, x) ∈ π. Let J1, J2, · · · , Jk be such intervals.
Clearly

k ≤ 2n. (5)

Since x0 ∈ Ji and Ji ⊂ K ⊂ U(x0, η1), we have (Ji, x0) ∈ Bη1 [{x0}]. Then
by (3)

|F (Ji)| <
ε

2n+1
, i = 1, 2, · · · , k. (6)

Let π1 = π \ ∪ki=1(Ji, x0). By (5) and (6)∑
π1

|F (I)| >
∑
π

|F (I)| − ε

2
. (7)

Now let A ∈ Fη[{x0}]. We claim that Vδ(A) < ε. Indeed the condition Vδ(A) ≥
ε for some A implies the existence of a partition π2 ⊂ Bδ[E ∩A]∩Bδ(A) such
that ∑

π2

|F (I)| > Vδ(A)− ε

4
≥ 3ε

4
. (8)

Note that π1 ∪ π2 ⊂ Bδ[E ∩K] ∩ Bδ(K). Then, using (4), (7) and (8), we get
the contradiction

Vδ(K) ≥
∑
π1

|F (I)|+
∑
π2

|F (I)| > Vδ(K)− ε

4
− ε

2
+

3ε

4
= Vδ(K). �

Our next results are related to the case B = F .
The lower derivative of an interval function F at a point x with respect to

the basis F is defined as

DFF (x) = sup
δ

inf

{
F (I)

|I|
: (I, x) ∈ Fδ[{x}]

}
.

The upper derivative of F at a point x with respect to the basis F is defined
as

DFF (x) = inf
δ

sup

{
F (I)

|I|
: (I, x) ∈ Fδ[{x}]

}
.

If DFF (x) = DFF (x) 6= ±∞, we say that F is F-differentiable at x and
the derivative is denoted by DFF (x) (this is called the strong derivative in [8]).

Let f be a point function on ∆. An interval function M (resp. m) is called
a F-major (resp. F-minor) function of f on ∆ if it is superadditive (resp.
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subadditive) and the lower (resp. upper) derivative with respect to F satisfies
the inequality

DFM(x) ≥ f(x) (resp. DFm(x) ≤ f(x)) for all x ∈ ∆.

A function f is said to be P -integrable (resp. P0-integrable) on ∆ with
respect to basis F if

−∞ < inf
M
{M(∆)} = sup

m
{m(∆)} <∞,

where “inf” is taken over all F-major functions (resp. F-continuous F-major
functions)M and “sup” is taken over all F-minor functions (resp. F-continuous
F-minor functions) m. The common value is denoted by

(P )

∫
∆

f
(

resp. (P0)

∫
∆

f
)

and is called the P -integral (resp. P0-integral) of f over ∆. Since f is also
integrable on each subinterval I of ∆ we can define F (I) = (P )

∫
I
f (resp.

= (P0)
∫
I
f) to be the indefinite integral of f .

The P -integral is known (see [7]) to be equivalent to the classical n-
dimensional Henstock-Kurzweil integral. Hence it is additive with respect
to the F-intervals, and F is an additive F-continuous interval function.

This last property is true also for the P0-integral. Indeed let J1 and J2

be two adjacent intervals such that J = J1 ∪ J2 is also an interval. Then it
is enough to note that if M1 and M2 are continuous F-major (or F-minor)
functions of f on J1 and J2, respectively, the function M(I) = M1(I ∩ J1) +
M2(I∩J2) defined for any interval I ⊂ J is a continuous F-major (or F-minor)
function of f on J .

We need the following result.

Proposition 2 If a function f is P -integrable on an interval I ∈ I then,
given a closed set E ⊂ I, there exists a non-empty portion of E on which f is
Lebesgue integrable.

Proof. This assertion is proved in [1] for the case E = I. In fact almost the
same proof is valid for the more general case we need here. �

The following assertion is known as Saks-Henstock lemma for the
HK-integral (see [7]). In view of the above mentioned equivalence of the
HK-integral and the P -integral we formulate it for a P -integrable function.



The n-dimensional Perron Integral 323

Proposition 3 If a function f is P -integrable on an interval I ∈ I and F is
its indefinite P -integral, then for any ε > 0 there exists a function δ(x) such
that for any partition π on I, π ∈ Fδ(I) we have∑

(x,J)∈π

|f(x)|J | − F (J)| < ε.

Corollary 4 Let a function f be P -integrable on I ∈ I with the indefinite
integral F and let f(x) = 0 if x ∈ T for some set T ⊂ I. Then for any ε > 0
there exists a function δ(x) > 0 defined on I such that

V (Fδ, F, T, I) < ε.

4 The Main Result

Now we can formulate and prove the main result of the paper. Since in the
rest of the paper we are concerned entirely with the full basis F we simply
say in what follows “continuous” instead of “ F-continuous”, “major” and
“minor” function instead of “F-major” and “F-minor” function and we omit
the indication of the basis in the notation of the derivatives.

Theorem 5 A function f is P -integrable on ∆ if and only if it is P0-integrable
on ∆. Moreover the two integrals coincide.

Proof. It is obvious that any P0-integrable function is also P -integrable and
that the integrals coincide.

Let f be P -integrable over ∆ and F (I) = (P )
∫
I
f be its indefinite integral.

We call a point x ∈ ∆ regular if f is P0-integrable on each sufficiently small
interval I ⊂ ∆ containing x. Let Q be the set of all non-regular points of ∆.
It is clear that the set Q is closed and that, in view of the additivity of the
(P0)-integral, f is P0-integrable with (P0)

∫
J
f = F (J) on every subinterval J

of ∆ which contains no points of Q.

We have to prove that Q is empty. If not, then we apply Proposition 2 to
Q and we find a non-empty portion T of Q on which f is Lebesgue integrable.
Let I0 be an interval such that T = I0 ∩Q 6= ∅. We get a contradiction if we
prove that f is P0-integrable on I0 and

(P0)

∫
I0

f = F (I0).
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The function fχT , where χT is the characteristic function of T , is Lebesgue
integrable and consequently P0-integrable on I0 (see [8, p. 191]), and

(P0)

∫
I0

fχT = (P )

∫
I0

fχT . (9)

Consider on I0 the function

g = f − fχT . (10)

It is P -integrable on I0, P0-integrable on each subinterval of I0 which contains
no points of T and g(x) = 0 if x ∈ T . Let

G(I) = (P )

∫
I

g (11)

be the indefinite P -integral of g on I0.
Take a sequence {Jj} of nonoverlapping intervals such that I0\T = ∪∞j=1Jj

and each interval J ⊂ I0 \T is covered by a finite number of Jj . Note that any
point x of I0 \ T belongs to no more than 2n intervals of the sequence {Jj}.

Since Jj ∩ T = ∅, we have that g is P0-integrable on Jj and

(P0)

∫
Jj

g = G(Jj) for each j.

Fix ε > 0, apply Corollary 4 of Proposition 3 to the function g and consider a
positive function δ for which

Vδ(I0) = V (Fδ, G, T, I0) <
ε

2
. (12)

According to the definition of P0-integral there exists for each j = 1, 2, . . .,
a continuous superadditive major function Mj on Jj such that

0 ≤Mj(Jj)−G(Jj) <
ε

2j+1
. (13)

We define for any J ⊂ I0 the function

R(J) =


∑
j:Jj∩J 6=∅(Mj(J ∩ Jj)−G(J ∩ Jj)) if J \ T 6= ∅,

0 if J \ T = ∅.
(14)

By (13) and (14) we have

0 ≤ R(I0) <
ε

2
. (15)
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As Mj is superadditive, it is easy to check that R is also superadditive.
For any interval J ⊂ I0 \ T the sum in (14) is finite and

R(J) =

k∑
j=1

(Msj (J ∩ Jsj )−G(J ∩ Jsj )), (16)

where J = ∪kj=1(J ∩ Jsj ).
We show that R is continuous. If x ∈ I0 \ T then the continuity of R at x

follows from (16), the continuity of Mj at each point of Jj and the continuity
of G.

Now let x ∈ T . For any γ > 0 choose j0 such that ε2−j0−1 < γ. If an
interval J is chosen so small that x ∈ J and J ∩ Jj = ∅ for j = 1, 2, · · · , j0,
then from (13) and (14) we get

R(J) ≤
∞∑

j=j0+1

ε

2j+1
=

ε

2j0+1
< γ.

This implies the continuity of R at each point of T .
Now we show that

M = G+R+ Vδ (17)

is a continuous major function of g on I0.
M is superadditive as G is additive and R and Vδ are both superadditive.
The continuity of M follows from the continuity of each term in (17) (apply

Proposition 1 with B = F , F = G and E = T ).
By (12), (15) and (17) we have

0 ≤M(I0)−G(I0) < ε. (18)

Now we are proving that

DM(x) ≥ g(x) if x ∈ I0. (19)

Let x ∈ I0 \ T . Then we can find γ > 0 such that for all intervals J ∈
Fγ [{x}] we have x ∈ Jsj if J ∩ Jj 6= ∅, i.e. J = ∪kj=1(J ∩ Jj) implies J ∩ Jj ∈
Fγ [{x}], j = 1, 2, · · · , k (1 ≤ k ≤ 2n). For such J , (16) and (17) imply

M(J) =

k∑
j=1

Mj(J ∩ Jj) + Vδ(J). (20)

As Msj j is a major function on Jsj and x ∈ Jsj , we have

DMj(x) ≥ g(x), j = 1, 2, . . . , k.
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Hence for any η > 0 there exists α ≤ γ such that

Msj (J ∩ Jsj )

|J ∩ Jsj |
> g(x)− η if J ∩ Jsj ∈ Fα[{x}], j = 1, 2, . . . , k. (21)

Applying the obvious inequality∑
j

aj ≥
(

min
j

aj
bj

)∑
j

bj

to the case aj = Msj (J ∩ Jsj ), bj = |J ∩ Jsj | we get from (20) and (21)

M(J)

|J |
≥ min
j:J∩Jj 6=∅

Msj (J ∩ Jsj )

|J ∩ Jsj |
> g(x)− η

for any J ∈ Fα[{x}].
Since η is arbitrary (20) follows for x ∈ I0 \ T .
Now let x ∈ T . Then g(x) = 0 and by (14) and (17) for any J ∈ Fδ[{x}]∩

Fδ(I0) we have
M(J) ≥ G(J) + Vδ(J) ≥ 0

and so
DM(x) ≥ 0 = g(x).

Hence (19) holds true for all x ∈ I0 and therefore M is a continuous major
function of g on I0 satisfying the condition (18).

In a similar way we can construct a continuous minor function m of g
satisfying the inequality

0 ≤ G(I0)−m(I0) < ε.

This proves that g is P0-integrable on I0 with G(J) being the indefinite P0-
integral of g on I0.

Then (9), (10) and (11) imply that f is P0-integrable on I0 and (9) holds
true, giving the desired contradiction. �
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