
RESEARCH Real Analysis Exchange
Vol. 22(1), 1996-97, pp. 265–279

Thomas S. Salisbury∗ and Juris Steprāns†, Department of Mathematics, York
University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3.
e-mail: SaH@@nexus.yorku.ca and Juris.Steprans@@mathstat.yorku.ca

HAUSDORFF CAPACITY AND LEBESGUE
MEASURE

Abstract

It is shown that for any r ∈ (0, 1) and for any continuous func-
tion from the unit interval to itself, there are sets of arbitrarily small
Lebesgue measure whose preimage has arbitrarily large r-Hausdorff ca-
pacity. This is generalized to functions from the unit square to the
interval.

1 Introduction

This paper is devoted to establishing what may be viewed as a strong failure
of topological invariance between two capacities, one being Lebesgue measure
and and the other Hausdorff capacity. In particular, it will be shown that no
continuous function can preserve capacity between these two capacities and,
indeed, the worst possible failure always occurs. If r ∈ [0, 1], then for any
set X ⊆ [0, 1] the r-Hausdorff capacity of X is denoted by Hr

∞(X) and is
defined to be the infimum of all t such that there is a cover of X by intervals,
X ⊆

⋃∞
i=0 Ii, such that t =

∑∞
i=0 diam(Ii)

r. In other words,

Hr
∞(X) = inf

{∑
i

(diam(Ii))
r : X ⊆

⋃
i

Ii

}
where the infimum is taken over families of intervals {Ii}∞i=0. This notion
may be familiar from its use along the way to defining r-Hausorff measure.
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Given β > 0, Hr
β(X) is defined, for any set X ⊆ [0, 1], to be the infimum

of all t such that there is a cover of X by intervals, X ⊆
⋃∞
i=0 Ii, such that

t =
∑∞
i=0 diam(Ii)

r and such that the length of each interval Ii is less than
β. The r-Hausdorff measure of a set X is then defined to be the supremum
of Hr

β(X) as β ranges over all positive real numbers. However, r-Hausdorff
capacity rather than r-Hausdorff measure is the topic of this paper. The crucial
difference between the two is that, while the r-Hausdorff measure is countably
additive, the r-Hausdorff capacity is only subadditive if r ∈ (0, 1). For a
discussion of capacities in general and the Hausdorff capacity in particular
see, for example, Section 30 of [2]. A proof of the fact that Hr

∞ is actually a
capacity can be found in [1].

For the rest of this paper let r be a fixed real number such that 0 < r < 1.
Let λ(X) denote the Lebesgue measure of any measurable setX ⊆ [0, 1]. It will
be shown that, for any ε > 0 and any continuous function F : [0, 1] → [0, 1]
there is A ⊆ [0, 1] such that λ(A) < ε and such that Hr

∞(F−1A) > 1 − ε.
Indeed, the same is true for the Fubini product of r-Hausdorff capacity, in
spite of the fact that no Fubini type of theorem is available for these capacities.
In order to state this result more precisely some notation will be introduced.
If A ⊆ [0, 1]2 and x ∈ [0, 1], then Ax will denote {y ∈ [0, 1] : (x, y) ∈ A}. On
the other hand, if F : D → [0, 1] is a function with domain D ⊆ [0, 1]2 and
x ∈ [0, 1], then Fx will denote the function whose domain is Dx and which is
defined by Fx(y) = F (x, y).

The main theorem can now be stated. It is shown in Theorem 3.1 that if
F : [0, 1]2 → [0, 1] is any continuous function and ε > 0, then there is A ⊆ [0, 1]
such that λ(A) < ε and such that

Hr
∞{x ∈ [0, 1] : Hr

∞(F−1x A) > 1− ε} > 1− ε.
While this is interesting on its own because it illustrates a striking difference
between the capacity Hr

∞ and Lebesgue measure, this result is also extended in
[4] to serve a different purpose. It is shown there that it is possible to extend
a model of set theory so that the ground model set of reals has Lebesgue
measure 0 but positive r-Hausdorff measure. This implies that the set also
has positive r-Hausdorff capacity because it is known that r-Hausdorff measure
and r-Hausdorff capacity have the same null sets.

2 An Observation about Hausdorff Capacity

The key fact about Hausdorff capacity that will be used is that if B ⊆ [0, 1] is
of small Lebesgue measure but evenly distributed through [0, 1], then Hr

∞(B)
is close to 1. This is made precise in the next lemma whose statement requires
the following notation.
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Definition 2.1 For any measurable set A ⊆ [0, 1] and i ≤ m define ∆i
m(A)

to be the least real number such that λ(A ∩ [0,∆i
m(A)]) = iλ(A)

m .

Notice that ∆i
m(A) is always defined and that if A = [0, 1], then ∆i

m(A) is
nothing more than i

m .

Lemma 2.1 Let r ∈ (0, 1). For each µ > 0 and m ∈ N satisfying

• m1−rµ
4·2r > 1

• mµ
4 ( µ

2m )r > 1

if D ⊆ U ⊆ [0, 1] are measurable sets such that for each i < m

λ(D ∩ [∆i
m(U),∆i+1

m (U)]) ≥ µ

2m
,

then Hr
∞(D) ≥ λ(U)− µ.

Proof. LetD ⊆
⋃∞
i=0 Ii and suppose that

∑∞
i=0(λ(Ii))

r < λ(U)−µ. Let B =
{i ∈ N : λ(Ii) ≥ 1

2m} and let C = {i < m : (∀j ∈ B)(Ij ∩ [∆i
m(U),∆i+1

m (U)] ∩
U = ∅}. Three separate cases, depending on the size of B and C, will be
considered.

Case 1 To begin, suppose that |B| ≥ mµ
4 . Then

∞∑
i=1

λ(Ii)
r ≥

∑
i∈B

λ(Ii)
r ≥ |B|(1/2m)r ≥ m1−rµ

4 · 2r
> 1

Since
∑∞
i=0(λ(Ii))

r < λ(U)− µ < 1 it follows that this is impossible.

Case 2 Suppose now that |B| < mµ
4 and |C| ≤ mµ

2 . It then follows that if

G = {i < m : [∆i
m(U),∆i+1

m (U)] ∩ U 6⊆
∞⋃
j=1

Ij},

then |G| ≤ 2 · |B| + |C|. The reason for this is that if i ∈ B, then there are
at most two integers j such that the intervals [∆i

m(U),∆i+1
m (U)] intersect Ii

but are not contained in Ii — this accounts for the summand 2 · |B|. All the
other intervals which could be included in G must be disjoint from Ii for every
i ∈ B — this accounts for the other summand |C|.

By the assumptions of this case it follows that 2 · |B|+ |C| < mµ and hence

λ(U \ (
⋃
i∈G

[∆i
m(U),∆i+1

m (U)] ∩ U))



268 T. Salisbury and J. Steprāns

is at least as great as λ(U)− µ. Since

U \ (
⋃
i∈G

[∆i
m(U),∆i+1

m (U)] ∩ U) ⊆
∞⋃
i=1

Ii

this yields that
∑∞
i=1(λ(Ii))

r ≥
∑∞
i=1 λ(Ii) ≥ λ(U) − µ which is again a

contradiction.

Case 3 Suppose that |B| < mµ
4 and |C| > mµ

2 . Let C ′ be a family of non-
consecutive members of C of maximal cardinality — hence, |C ′| ≥ |C|/2 > mµ

4 .
Let

Ej = {i ∈ N : Ii ∩ [∆j
m(U),∆j+1

m (U)] ∩ U 6= ∅}

for each j ∈ C ′ and let E =
⋃
j∈C′ Ej . Since, for j ∈ C, the sets

[∆j
m(U),∆j+1

m (U)] ∩ U

are intersected only by intervals Ii where i ∈ N \ B, and such intervals Ii are
smaller than any ∆j+1

m (U)−∆j
m(U), it follows that Ej ∩Ek = ∅ if k and j are

distinct members of C ′. Therefore, using the fact that 0 < r < 1,∑
i∈E

(λ(Ii))
r ≥

∑
j∈C′

∑
i∈Ej

(λ(Ii))
r ≥

∑
j∈C′

∑
i∈Ej

λ(Ii)

r

≥
∑
j∈C′

(λ(D ∩ [∆j
m(U),∆j+1

m (U)]))r ≥

∑
i∈C′

(
µ

2m
)r ≥ mµ

4
(
µ

2m
)r > 1

and once again, as in the first case, this is a contradiction because D ⊆ [0, 1].
�

3 Hausdorff Capacity and Continuous Functions

If X ⊆ [0, 1], then F : X → [0, 1] will be said to have small fibers if and only if
λ(F−1{x}) = 0 for each x ∈ [0, 1]. The proof of Theorem 3.1 and the lemmas
preceding it will rely on decomposing an arbitrary continuous function into
two pieces, one of which has small fibers and the other of which has countable
range.
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Lemma 3.1 Let µ > 0 and suppose that {Xi : i ∈ N} is a sequence of mutu-
ally independent {0, 1}-valued random variables with mean µ for each i ∈ N.
Suppose also that C ⊆ [0, 1] is Lebesgue measurable and that F : C → [0, 1] is
measurable with small fibers. For any ε > 0 there is M ∈ N such that for all
m ≥M the probability that

λ(∪i<mF−1[
i

m
,
i+Xi

m
]) >

µλ(C)

2

is greater than 1− ε.

Proof. Let m ∈ N be fixed. Let θi = λ(F−1[ im ,
i+1
m ]) and let

Yi = λ(F−1[
i

m
,
i+Xi

m
])

and note that the Yi are still independent random variables with value either 0
or θi. Hence, αm, the average value of

∑
i<m Yi, is the sum of the averages of

each Yi; namely
∑
i<m θiµ = µλ(C). Similarly, σ2

m, the square of the variance
of
∑
i<m Yi is the sum of the squared variances of each Yi. Hence

σ2
m =

∑
i<m

((θi − θiµ)2µ+ (0− θiµ)2(1− µ))

Now let ηm = maxi<m θi and note that

σ2
m =

∑
i<m

θ2i (1− µ)µ ≤ ηm
∑
i<m

θi(1− µ)µ ≤ ηm
∑
i<m

θi

and this final expression is equal to ηmλ(C). It now follows from Chebyshev’s

Inequality that the probability that |
∑
i<m Yi − αm| >

µλ(C)
2 is less than

σ2
m(

2

µλ(C)
)2 ≤ ηmλ(C)(

2

µλ(C)
)2

and hence, if M can be chosen so that m ≥ M implies that ηm < εµ2λ(C)
4 ,

then it will follow that the probability that

λ(∪i<mF−1[
i

m
,
i+Xi

m
]) >

µλ(C)

2

is greater than 1− ε.
To see that M with the required property can be chosen, notice that for

each x ∈ [0, 1] there is δx > 0 such that λ(F−1[x − δx, x + δx]) < εµ2λ(C)
4

because F has small fibers. Now apply compactness to find a finite subcover

{[x1 − δx1
, x1 + δx1

], [x2 − δx2
, x2 + δx2

] . . . [xj − δxj
, xj + δxj

]}
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and let M be so large that for each i < M there is some n ≤ j such that
[ iM , i+1

M ] ⊆ [xn − δxn , xn + δxn ]. �

Lemma 3.2 Let µ > 0 and suppose that {Xi : i ∈ N} is a sequence of mutu-
ally independent {0, 1}-valued random variables with mean µ for each i ∈ N.
Suppose that C ⊆ [0, 1] is a measurable set and that for each j < n the function
Fj : C → [0, 1] is measurable with small fibers. For any ε > 0 there is M ∈ N
such that for all m ≥M the probability that

λ(
⋂
j∈n

⋃
i<m

F−1j [
i

m
,
i+Xi

m
]) > (

µ

2n
)nλ(C)

is greater than 1− ε.

Proof. Proceed by induction on n noting that the case n = 1 is just
Lemma 3.1. Given functions Fj : C → [0, 1] for j < n+ 1, first let {Yi : i ∈ N}
and {Wi : i ∈ N} be sequences of mutually independent {0, 1}-valued random
variables such that

• the probability that Yi = 1 is nµ
n+1 for each i ∈ N

• the probability that Wi = 1 is µ
n+1 for each i ∈ N

• Yi +Wi = Xi for each i ∈ N.

Next, given ε > 0 use the induction hypothesis to find M ′ such that if m ≥M ′,
then the probability that

λ(
⋂
j<n

⋃
i<m

F−1j [
i

m
,
i+ Yi
m

]) > (
nµ

2(n+ 1)n
)nλ(C)

is greater than 1− ε/2. Let

Z(Y0, Y1, . . . , Ym−1) =
⋂
j<n

(∪i<mF−1j [
i

m
,
i+ Yi
m

])

and use Lemma 3.1 to find M ′′ ∈ N such that if m ≥M ′′, then the probability
that the Lebesgue measure of⋃

i<m

(Fn � Z(Y0, Y1, . . . , Ym−1))−1[
i

m
,
i+Wi

m
])

is greater than µ
2(n+1)λ(Z(Y0, Y1, . . . , Ym−1)) is greater than 1− ε/2.
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Since Yi +Wi = Xi for each i ∈ N it follows that the probability that

λ(
⋂

j<n+1

(
⋃
i<m

F−1j [
i

m
,
i+Xi

m
])) >

(
µ

2(n+ 1)

)n+1

λ(C)

is the same as the probability that

λ(
⋂

j<n+1

⋃
i<m

F−1j [
i

m
,
i+ Yi +Wi

m
)]) > (

µ

2(n+ 1)
)n+1λ(C)

and this, in turn, is no smaller than the probability that both of the following
happen simultaneously:

• λ(Z(Y0, Y1, . . . , Ym−1)) > ( µ
2(n+1) )

n+1λ(C)

• the Lebesgue measure of⋃
i<m

(Fn � Z(Y0, Y1, . . . , Ym−1))−1[
i

m
,
i+Wi

m
])

is greater than µ
2(n+1)λ(Z(Y0, Y1, . . . , Ym−1)).

This is no smaller than (1− ε/2)(1− ε/2) > 1− ε. �

Lemma 3.3 Given ε > 0 and k ∈ N there is δ(ε, k) > 0 such that for any
family of measurable functions with small fibers {Fi : Ci → [0, 1]}i<k, any
measurable set U ⊆ [0, 1] such that Ci ⊆ U and any ρ > 0 there is M ∈ N
such that for all m > M and for all i < k, for any mutually independent,
{0, 1}-valued random variables {Xi}i<k with mean ε/2, the probability that

Hr
∞(
⋂
i∈k

(F−1i

⋃
j∈m

[
j

m
,
j +Xj

m
]) ∪ (U \ Ci) \ Y ) > λ(U)− ε/2

for any Y ⊆ [0, 1] such that λ(Y ) < δ(ε, k)λ(U) is greater than 1− ρ.

Proof. Let µ = ( ε
4k )k and use Lemma 2.1 to find p such that if D ⊆ U is a

measurable set such that for each i < p

(λ(D ∩ [∆i
p(U),∆i+1

p (U)]))r ≥ µ

2p
,

then Hr
∞(D) ≥ λ(U) − µ. Let 0 < δ = δ(ε, k) < µ

p2k+1 . Let {Pi : i < s}
enumerate the coarsest partition of U refining each of the partitions

{[∆i
p(U),∆i+1

p (U)] ∩ U : i < p} and {Ci ∩ U,U \ Ci}
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for i < k. Now use Lemma 3.2 to find M ∈ N such that for all m ≥ M the
probability that

λ(
⋂
j<k

(Fj � Pn)−1
⋃
i<m

[
i

m
,
i+Xi

m
]) > (

ε

4k
)kλ(Pn) (1)

is greater than 1 − ρ
s+2 for each n < s. By making m larger, if necessary, it

also possible to ensure that the probability that

|{i < m : Xi = 1}| < εm (2)

is also greater than 1− ρ
s+2 . This implies that the probability that all of the

s+ 1 events — namely those specified by (1) and (2) — occur simultaneously
is greater than 1 − ρ. It suffices to show that if Y ⊆ [0, 1] is such that
λ(Y ) < λ(U)δ(ε, k) for each i < k then

λ(
⋂
j<k

(
⋃
n<s

((Fj � Pn)−1
⋃
l<m

[
l

m
,
l +Xl

m
]) ∪ (U \ Cj)) ∩ [∆i

p,∆
i+1
p ] \ Y ) ≥ µ

2p

for each i < p.
To see this fix i < p and note that

λ(
⋂
j∈k

(Fj � Pn)−1
⋃
i∈m

[
i

m
,
i+Xi

m
] \ Y ) ≥ µλ(Pn)− δλ(U)

and observe that |{n < s : Pn ⊆ [∆i
p,∆

i+1
p ]}| ≤ 2k and so

λ(
⋂
j<k

(
⋃
n<s

(Fj � Pn)−1
⋃
l<m

[
l

m
,
l +Xl

m
]) ∩ [∆i

p,∆
i+1
p ] ∪ (U \ Cj) \ Y )

≥
∑

{n<s:Pn⊆[ ip ,
i+1
p ]}

(µλ(Pn)− δλ(U)) ≥ µ/p− 2kδλ(U)

Since δ < µ
p2k+1 it follows that µλ(U)

p − 2kδλ(U) ≥ µλ(U)
2p as is required. �

Notice that the first paragraph of the proof of Lemma 3.3 shows that the
choice of M ∈ N in Lemma 3.3 is continuous with respect to the measurable
functions {Fi : Ci → [0, 1]}i<k¿ In particular, suppose that ε > 0, k ∈ N and
δ(ε, k) > 0 are given as in the hypothesis of Lemma 3.3. Suppose furthermore
that two families of measurable functions {Fi : Ci → [0, 1]}i<k and {F ′i : C ′i →
[0, 1]}i<k are also given as in Lemma 3.3 such that λ(Ci4C ′i) are all small and
that the supremum norms of the Fi −F ′i are also small. Then a single M can
be chosen which will satisfy the conclusion of Lemma 3.3 for both families of
functions simultaneously. This remark will be used in the proof of Lemma 3.5.
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Lemma 3.4 Let U ⊆ [0, 1] be a measurable subset and let {Fi : Ci → [0, 1]}i<k
be finitely many measurable functions such that Ci ⊆ U . Then, for any ε > 0
there is δ > 0 and A ⊆ [0, 1] such that λ(A) < ε and such that

Hr
∞

(⋂
i<k

(F−1i A) ∪ (U \ Ci) \ Y

)
> λ(U)− ε

for any Y ⊆ [0, 1] such that λ(Y ) < δ.

Proof. For each i < k let {yij : j < di} enumerate all points y ∈ [0, 1] such

that λ(F−1i {y}) > 0 where di is an initial segment of N and the possibility
di = N is not excluded. Let C ′i = Ci \ F−1i {yij : j ∈ di} and let F ′i = Fi � C ′i.
Since F ′i has small fibers for each i < k it follows from Lemma 3.3 that it
is possible to choose m so large that if {Xi}i<m are {0, 1}-valued random
variables with mean ε/2, then the probability that, for every Y such that
λ(Y ) < δ(ε, k)λ(U),

Hr

⋂
i<k

(F−1i

⋃
j∈m

[
j

m
,
j +Xj

m
]) ∪ (U \ Ci) \ Y

 > λ(U)− ε/3

and that, simultaneously,

λ(
⋃
j∈m

[
j

m
,
j +Xj

m
])) < ε/2

is greater than 0. Hence there is A0 ⊆ [0, 1] such that λ(A0) < ε/2 and such
that Hr(

⋂
i<k(((F ′i )

−1A0) ∪ (U \ C ′i) \ Y ) > λ(U)− ε for any Y ⊆ [0, 1] such

that λ(Y ) < δ(ε, k)λ(U). Now let K ∈ N be so large that λ(F−1i {yij : j <

K}) ≥ λ(F−1i {yij : j ∈ di})− δ(ε, k)λ(U)/2k for each i < k. Let A1 be a finite

union of intervals such that λ(A1) < ε/2 and {yij : i < k and j < K} ⊆ A1.
Let A = A0 ∪A1 and let δ = δ(ε, k)λ(U)/2. If λ(Y ) < δ, then

λ(Y ∪ (∪(C ′i ∪ F−1i {y
i
j : j < K}))) < δ(ε, k)λ(U).

Hence Hr
∞(
⋂
i<k((F−1i A)∪(U\Ci)\Y ) is at least as big as Hr(

⋂
i<k((F−1i A0)∪

(F−1i {yij : j ∈ K}) \ Y ) which is greater than λ(U)− ε. �

Lemma 3.5 Suppose that C ⊆ [0, 1]2 is measurable and that F : C → [0, 1]
is a measurable function such that Fx has small fibers for each x ∈ [0, 1]. Let
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µ > 0. Then, for all ε > 0 there is A ⊆ [0, 1] such that λ(A) < 2µ and such
that the Lebesgue measure of the set of all x in [0, 1] such that

(∀Y ⊆ [0, 1])(λ(Y ) < δ(µ, 1)/2⇒ Hr
∞((F−1x A) ∪ ([0, 1] \ Cx) \ Y ) > 1− µ)

is at least 1− ε.

Proof. Let {Xi}i∈N be a sequence of mutually independent random variable
with mean µ. Next, choose a compact subset W ⊆ C such that

• λ(C \W ) < εδ(µ,1)
4

• F �W is continuous

• the mapping from [0, 1] to [0, 1] defined by x 7→ λ(Wx) is continuous

Let F ′ = F � W . By Lemma 3.3, since each F � Wx has small fibers, and by
appealing to Lusin’s Theorem,there is Mx ∈ N such that for all m > Mx the
probability that

Hr

(
(F �W )−1x ∪j∈m [

j

m
,
j +Xj

m
]) ∪ ([0, 1] \Wx) \ Y

)
> 1− µ

for any Y ⊆ [0, 1] such that λ(Y ) < δ(µ, 1) is greater than 1− ε2. Since both
of the mappings F and x 7→ λ(Wx) are continuous, the proof of Lemma 3.3
shows that the integer Mx is valid on a neighborhood of x. By compactness,
it is possible to find a single M such that for all m > M and for any x ∈ [0, 1]
the probability that

Hr

(
(F �W )−1x ∪j∈m [

j

m
,
j +Xj

m
]) ∪ ([0, 1] \Wx) \ Y

)
> 1− µ

for any Y ⊆ [0, 1] is greater than 1− ε2.

Now let m > M be so great that the probability that λ(∪j<m[ jm ,
j+Xj

m ]) <
2µ is greater than 1− 2ε. Define

Γ(X0, X1, . . . , Xm)

to be the Lebesgue measure of the set of all x ∈ [0, 1] such that

Hr

(
(F �W )−1x ∪j∈m [

j

m
,
j +Xj

m
]) ∪ ([0, 1] \Wx) \ Y

)
> 1− µ

for any Y ⊆ [0, 1] such that λ(Y ) < δ(µ, 1). The first step is to estimate

αm =

1∑
X0=0

1∑
X1=0

. . .

1∑
Xm=0

Γ(X0, X1, . . . , Xm)

m∏
i=0

µXi(1− µ)1−Xi ,



Hausdorff Capacity and Lebesgue Measure 275

the average value of Γ(X0, X1, . . . , Xm). To this end, let

Λx(X0, X1, . . . , Xm) ∈ {0, 1}

be defined to be 1 if and only if

Hr((F �W )−1x
⋃
j∈m

[
j

m
,
j +Xj

m
]) ∪ ([0, 1] \Wx) \ Y ) > 1− µ

for any Y ⊆ [0, 1] such that λ(Y ) < δ(µ, 1). Observe that αm is equal to

1∑
X0=0

1∑
X1=0

. . .

1∑
Xm=0

(∫
x∈[0,1]

Λx(X0, X1, . . . , Xm)dx

)
m∏
i=0

µXi(1− µ)1−Xi =

∫
x∈[0,1]

(
1∑

X0=0

1∑
X1=0

. . .

1∑
Xm=0

Λx(X0, X1, . . . , Xm)

m∏
i=0

µXi(1− µ)1−Xi

)
dx

However, notice that

1∑
X0=0

1∑
X1=0

. . .

1∑
Xm=0

Λx(X0, X1, . . . , Xm)

m∏
i=0

µXi(1− µ)1−Xi

is just the probability that

Hr

(
(F �W )−1x ∪j∈m [

j

m
,
j +Xj

m
]) ∪ ([0, 1] \Wx) \ Y

)
> 1− µ

for any Y ⊆ [0, 1] such that λ(Y ) < δ(µ, 1) and the choice of m guarantees
that this probability is greater than 1− ε2. Hence αm ≥ 1− ε2.

Now let p be the probability that Γ(X0, X1, . . . , Xm) ≥ 1−ε/2. Obviously,
p + (1 − p)(1 − ε/2) ≥ αm ≥ 1 − ε2. Solving for p yields that p ≥ 1 − 2ε.

Since m was chosen so large that the probability that λ(∪j<m[ jm ,
j+Xj

m ]) < 2µ
is greater than 1 − 2ε, there is at least one A which is formed by taking the
union of no more than 2µm intervals [ im ,

i+1
m ] — and hence λ(A) < 2µ — such

that λ(Z) > 1− ε/2 where Z is the set of all x ∈ [0, 1] such that

Hr
(
((F �W )−1x A) ∪ ([0, 1] \Wx) \ Y

)
> 1− µ

for any Y ⊆ [0, 1] such that λ(Y ) < δ(µ, 1).

Now notice that λ({x ∈ [0, 1] : λ(Cx \ Wx) ≥ δ(µ,1)
2 }) < ε/2 and so it

suffices to observe that if x ∈ Z \ {x ∈ [0, 1] : λ(Cx \ Wx) ≥ δ(µ,1)
2 } and

λ(Y ) < δ(µ,1)
2 then λ(Y ∪ (Cx \Wx)) < δ(µ, 1) and so

Hr((F )−1x A∪ ([0, 1]\Cx)\Y ) ≥ Hr((F )−1x A∪ ([0, 1]\Wx)\ (Cx∪Y )) > 1−µ.
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Theorem 3.1 Let F : [0, 1]2 → [0, 1] be a continuous function and suppose
that ε > 0. Then there is A ⊆ [0, 1] such that λ(A) < ε and

Hr
∞{x ∈ [0, 1] : Hr

∞(F−1x A) > 1− ε} > 1− ε.

Proof. Let B = {(x, y) ∈ [0, 1]2 : λ(F−1x {y}) > 0} and note that

B = {(x, y) ∈ [0, 1]2 : (∃K compact)(λ(K) > 0 and K ⊆ F−1x {y}}

and, because F is continuous, the relation K ⊆ F−1x {y} is Borel. Moreover,
so is the statement λ(K) > 0 and so the set B is Σ1

1 and hence, measurable.
Let B∗ = F−1B. Since B∗ is clearly measurable, it follows that so is C =
[0, 1]2 \B∗. Now let {fj : j ∈ d} enumerate a maximal collection of functions
such that

• fj : Cj → [0, 1] where Cj ⊆ [0, 1] is compact

• fj is continuous

• fj ⊆ B (fj is, of course, identical to the graph of fj)

• if x ∈ Cj ∩ Cn, then fj(x) 6= fn(x)

•
∫
Cj

λ(F−1x {fj(x)})dx > 0.

The first thing to notice is that such a family must be countable. To see this
let Ej = {(x, y) ∈ [0, 1]2 : F (x, y) = fj(x)}. If n 6= j, then Ej ∩ En = ∅ and,
moreover,

λ(Ej) =

∫
Cj

λ(F−1x {fj(x)})dx > 0

for any j < d. Hence the family of sets Ej is countable and so it can be
assumed that d is am initial segment of N.

Next, it must be shown that∑
j<d

∫
Cj

λ(Fx)−1{fj(x)})dx = λ(B∗)

so suppose not. Then it must be that λ(B∗ \ ∪j<dEj) > 0. Since each fj is
continuous and d ≤ N, it follows that B\(∪j∈dfj) is Σ1

1. Hence it is possible to
use the von Neumann selection theorem (Exercise 4E.9 in [3] or Theorem 18.1
in [2]) to find a function f such that the domain of f is

D = {x ∈ [0, 1] : (∃y ∈ [0, 1])((x, y) ∈ B \ (∪j∈dfj))}
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and f is measurable. Since D is also equal to

{x ∈ [0, 1] : (∃y ∈ [0, 1])(x, y) ∈ B∗ \ (∪j∈dEj})

it must be that λ(D) > 0. Hence∫
D

λ(F−1x {f(x)})dx > 0

because λ(F−1x {f(x)}) > 0 for each x ∈ D. Finally, by using Lusin’s Theorem,
it is possible to find a compact set, D′ such that f � D′ is continuous and∫
D′
λ(F−1x {f(x)})dx > 0. This contradicts the maximality of the family {fj :

j < d}.
It is therefore possible to find K ∈ N such that∑

j<K

∫
Cj

λ(F−1x {fj(x)})dx > λ(B∗)− εδ(ε/4, 1)

4
.

In particular, if S is defined to be

{x ∈ [0, 1] : λ((B∗)x \ F−1x {fj(x) : j < K}) ≥ δ(ε/4, 1)/2},

then λ(S) < ε/2 and hence, if U is defined to be [0, 1]\S, then λ(U) > 1−ε/2.
Using Lemma 3.4 applied to {fj : j < K}, U and ε/2, there is A0 ⊆ [0, 1] such
that λ(A0) < ε/2 and there is some δ > 0 such that if

W = U ∩

(⋂
i<K

(f−1j A0) ∪ (U \ Cj)

)

then Hr
∞(W \ Y ) > λ(U)− ε/2 for any Y ⊆ [0, 1] such that λ(Y ) < δ.

Now note that (F � C)x has small fibers for all x. Use Lemma 3.5 to choose
A1 ⊆ [0, 1] such that λ(A1) < ε/2 and such that the Lebesgue measure of the
set Z consisting of all x in [0, 1] such that

(∀Y ⊆ [0, 1])(λ(Y ) < δ(ε/4)/2⇒ Hr
∞((F−1x A1) ∪ ([0, 1] \ Cx) \ Y ) > 1− ε)

is at least 1− δ. Now let A = A0 ∪A1.
Notice that Hr

∞(W∩Z) > λ(U)−ε/2 > 1−ε. Hence, it suffices to show that
if x ∈ W ∩ Z then Hr

∞(F−1x A) > 1− ε. To see this recall that if x ∈ W ⊆ U ,
then the Lebesgue measure of Y (x) = (B∗)x \F−1x {fj(x) : j < K} is less than
δ(ε/4, 1)/2. Because x ∈ Z, it follows that Hr

∞((F−1x A1)∪([0, 1]\Cx)\Y (x)) >
1− ε. But,

([0, 1]\Cx)\Y (x) = B∗x \ ((B∗)x \F−1x {fj(x) : j < K}) = F−1x {fj(x) : j < K}
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and hence (F−1x A1) ∪ ([0, 1] \ Cx) \ Y (x) = (F−1x A1) ∪ F−1x {fj(x) : j < K}.
However, if y ∈ F−1x {fj(x) : j < K}, then Fx(y) = fj(x) for some j < K.
It follows that x /∈ U \ Cj and hence x ∈ f−1j A0 because x ∈ W . Therefore
Fx(y) = fj(x) ∈ A0 and, since y was arbitrary, it may be concluded that
F−1x {fj(x) : j < K} ⊆ F−1x A0. Since F−1x A ⊇ F−1x A1 ∪ F−1x A0 this finishes
the proof. �

It is worth noting that Theorem 3.1 immediately implies that if F : [0, 1]→
[0, 1] is a continuous function and ε > 0 then there is A ⊆ [0, 1] such that
λ(A) < ε and Hr

∞(F−1A) > 1 − ε — simply consider the function F ∗ :
[0, 1]2 → [0, 1] defined by F ∗(x, y) = F (y).

Finally, it should be remarked that Theorem 3.1 has obvious generaliza-
tions to higher dimensions which can be proved using induction on the di-
mension by using the techniques of this paper. However, the strengthened
requirements of the induction clutter the main argument considerably. In par-
ticular, it is necessary to prove analogous versions of Theorem 3.1 for finitely
many functions as well as with a parameter corresponding to the set U of
Lemma 3.4.
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