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GRADIENTS

Abstract

It is well known that the derivative of a function of one variable has
the Darboux property. In this paper it is shown that the gradient of
a differentiable function of several variables maps certain closed convex
sets to connected sets.

It is well known that any differentiable real function f on an interval I ⊂ R
has the Darboux property. This means that if a < b are points in I and ξ is a
value between f ′(a) and f ′(b), then there is x ∈ [a, b] such that f ′(x) = ξ. It is
equivalent to say that for any closed convex subset K of I the image f ′(K) is
connected. In this note we are going to show that an analogous property holds
for the derivative (gradient) of a differentiable function of several variables.
Even more generally, we work in infinite-dimensional Banach spaces.

As a special case of the result we obtain the Darboux property of partial
derivatives of differentiable functions, which is due to Neugebauer [N] and Weil
[W]. Let us mention that if we modify the definition of Darboux property
of partial derivatives as in [N], the assumption of differentiability may be
weakened.

The one-dimensional Darboux property has been generalized in a variety
of other directions as well. There are several papers which are devoted to
the Darboux property of derivatives of interval functions of several variables.
A general result was proved by Mǐsik [M], for further development see [N], [B].

We suppose that X is a Banach space. In particular we may consider
X = Rn. The symbol U(x, r) is used for the open ball with center at x and
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radius r. We denote the dual space of X by X∗. Both norms in X and X∗ are
denoted by ‖ . . . ‖. We write x∗ · x for the duality pairing between x∗ ∈ X∗
and x ∈ X. The topological notions in X and in X∗ are with ¿ respect to
the corresponding norm topology. Differentiability is interpreted as Fréchet
differentiability. This means that a function f is said to be differentiable at
x ∈ X with respect to D ⊂ X if there is a unique x∗ ∈ X∗ (called the
derivative of f at x with respect to D) such that

lim
y→x,y∈D

f(y)− f(x)− x∗ · (y − x)

‖y − x‖
= 0.

If f is differentiable with respect to its domain, we say simply that f is dif-
ferentiable and denote the derivative by f ′. The main goal of this note is the
following theorem.

Theorem 1 Let f be a differentiable function on D ⊂ X. Then for any closed
convex set K ⊂ D with nonempty interior, f ′(K) is a connected subspace of
X∗.

For the proof of Theorem 1, we may assume that D = K. We fix a closed
convex set K ⊂ X with nonempty interior and start with a series of auxiliary
results.

Lemma 2 (Ekeland’s variational principle) Let g be a continuous function on
U(x, r) ⊂ X and ε > 0. Suppose that

g(y) ≤ g(x) + εr

for each y ∈ U(x, r). Then there is u ∈ U(x, r/2) such that

g(y) ≤ g(u) + 2ε|y − u| (1)

for each y ∈ U(x, r).

Proof. We refer e.g. to [Ph], Lemma 3.13, but for reader’s convenience we
notice that the finite-dimensional case is easy. Indeed, we find u ∈ U(x, r) such
that y 7→ g(y)−2ε|y−x| attains a maximum at u relative to U(x, r). Then an
exercise in handling the triangle inequality shows that in fact u ∈ U(x, r/2)
and (1) holds. �

Since K has a nonempty interior, we may fix a ball U(x0, r0) inside K.
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Lemma 3 Let x ∈ K and r > 0. Then there are x1 ∈ K and r1 > 0 such
that

r1 ≥ min
{ rr0

2‖x− x0‖
,
r

2
, r0

}
and U(x1, r1) ⊂ K ∩ U(x, r).

Proof. If ‖x− x0‖ ≤ r/2, then it is enough to set

x1 = x0, r1 = min{r0, r/2}.

Let ‖x− x0‖ ≥ r/2. We set

x1 = x+
1

2
r

x0 − x
‖x0 − x‖

and r1 = min
{r

2
,

rr0
2‖x− x0‖

}
.

Now, each point y1 from U(x1, r1) is a convex combination of x and a point
y0 ∈ U(x0, r0) and hence belongs to K. Since r1 ≤ r/2, obviously y1 ∈ U(x, r).
�

In the next lemma, we recall some standard tricks from differentiation
theory. If f is a differentiable function on K, we let

Ei,m,k(f) =
{
x ∈ K : ‖x− x0‖ ≤ 2ir0,[

y ∈ K, ‖y − x‖ < 2−m ⇒ |f(y)− f(x)− f ′(x) · (y − x)| ≤ 2−k‖y − x‖
]}
.

Lemma 4 Let f be a differentiable function on K and i,m, k ∈ N. Then
(a) lim sup

y→x, y∈Ei,m,k

‖f ′(y) − f ′(x)‖ ≤ 2i−k+4 for any nonisolated point x of

Ei,m,k(f),

(b) Ei,m,k(f) ⊂ Ei,m,k−i−5(f).

Proof. Choose x ∈ Ei,m,k(f). We find r ∈ (0,min{r0, 2−m−1}) such that

|f(y)− f(x)− f ′(x) · (y − x)| < 2−k‖y − x‖

for all y ∈ U(x, r) ∩K. Notice that then

|f(y′)− f(y)− f ′(x) · (y′ − y)| < 2−k+1r (2)

for all y, y′ ∈ U(x, r)∩K. If z ∈ Ei,m,k ∩U(x, r) and y, y′ ∈ U(x, r)∩K, then
‖y − z‖ < 2r < 2−m, ‖y′ − z‖ < 2r < 2−m and thus also

|f(y′)− f(y)− f ′(z) · (y′ − y)| < 2−k(‖y′ − z‖+ ‖y − z‖) ≤ 2−k+2r. (3)
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By Lemma 3, there are x1 ∈ K and r1 > 0 such that

r1 ≥ 2−i−1r and U(x1, r1) ⊂ K ∩ U(x, r).

Let z ∈ Ei,m,k ∩U(x, r) and h ∈ X, ‖h‖ = r1. Then x1, x1 + h ∈ K ∩U(x, r).
Using (2) and (3) we obtain

|(f ′(z)− f ′(x)) · h| =
∣∣∣(f(x1 + h)− f(x1)− f ′(x) · h

)
−
(
f(x1 + h)− f(x1)− f ′(z) · h

)∣∣∣
≤
∣∣f(x1 + h)− f(x1)− f ′(x) · h

∣∣+
∣∣f(x1 + h)− f(x1)− f ′(z) · h

∣∣
≤2−k+1r + 2−k+2 r ≤ 2i−k+4‖h‖.

This proves (a).
Now, we choose x ∈ Ei,m,k and y ∈ K with ‖y − x‖ < 2−m. There is a

sequence xj of points from Ei,m,k(f) converging to x. Then for j large enough,
and with the aid of (a),

|f(y)−f(x)− f ′(x) · (y − x)|

=
∣∣∣(f(y)− f(xj)− f ′(xj) · (y − xj)

)
−
(
f(x)− f(xj)− f ′(xj) · (x− xj)

)
+
(
f ′(xj) · (y − x)− f ′(x) · (y − x)

)∣∣∣
≤
∣∣f(y)− f(xj)− f ′(xj) · (y − xj)

∣∣
+
∣∣f(x)− f(xj)− f ′(xj) · (x− xj)

∣∣
+
∣∣f ′(xj) · (y − x)− f ′(x) · (y − x)

∣∣
≤2−k‖y − xj‖+ 2−k‖xj − x‖+ 2i−k+4‖y − x‖.

Letting j →∞ we obtain

|f(y)− f(x)− f ′(x) · (y − x)| ≤ 2i−k+5‖y − x‖

which proves (b). �

Proof of Theorem 1. Let G+, G− ⊂ X∗ be open sets such that f ′(K) ⊂
G+ ∪G− and G+ ∩G− ∩ f ′(K) = ∅. We write

F+ = {x ∈ K : f ′(x) ∈ G+} and F− = {x ∈ K : f ′(x) ∈ G−}.
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Suppose that both F+ and F− are nonempty. This will lead to a contradiction.

Denote H = F
+ ∩ F−. Since K is connected, we deduce that H 6= ∅. Denote

F+
i,m,k = {y ∈ Ei,m,k(f) : dist (f ′(y), X∗ \G+) ≥ 2−k+2i+13}
F−i,m,k = {y ∈ Ei,m,k(f) : dist (f ′(y), X∗ \G−) ≥ 2−k+2i+13}.

Then

K =
⋃

i,m,k

F+
i,m,k ∪

⋃
i,m,k

F−i,m,k.

Using the Baire category theorem in the space H, we find z ∈ H, ρ0 > 0 and
i, m, k ∈ N such that

H ∩ U(z, 2ρ0) ⊂ F+

i,m,k (4)

or

H ∩ U(z, 2ρ0) ⊂ F−i,m,k (5)

Assume e.g. that case (4) holds. Also, we may assume that ρ0 ≤ r0 and
3ρ0 < 2−m. From Lemma 4(a) it follows that

dist (f ′(y), X∗ \G+) ≥ 2−k+2i+13 − 2−k+i+4 > 0 (6)

for each y ∈ F+

i,m,k. In particular

H ∩ U(z, 2ρ0) ⊂ F+. (7)

Since H ⊂ F
−

, there is a point x ∈ F− ∩ U(z, ρ0). By (7), x /∈ H. Let V
be the largest ball centered at x such that V ∩H = ∅. The radius r of V is
less than ρ0 as z /∈ V . Hence V ⊂ U(z, 2ρ0). Since K ∩ V is connected and
V ∩H = ∅, we deduce that K ∩ V ⊂ F−. Maximality of V yields that there

is a point w ∈ U(x, 2r)∩U(z, 2ρ0)∩H. Then, by (4) and (6), w ∈ F+

i,m,k and

dist (f ′(w), X∗ \G+) ≥ 2−k+2i+12. (8)

We write

g(y) = f(y)− f(w)− f ′(w) · (y − w), y ∈ X.

We have

‖y − w‖ ≤ 3r ≤ 3ρ0 < 2−m

for all y ∈ V . Since ‖x− x0‖ ≤ ‖z− x0‖+ ‖x− z‖ ≤ 2i+1r0, we use Lemma 3
to find a ball

U(x1, r1) ⊂ K ∩ V
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such that

r1 ≥ 2−i−2r.

By Lemma 4(b),

F
+

i,m,k ⊂ Ei,m,k−i−5(f).

Thus

|g(y)| ≤ 2−k+i+5‖y − w‖ ≤ 2−k+i+7r ≤ 2−k+2i+9r1

for each y ∈ V , which implies that

g(y)− g(x1) ≤ 2−k+2i+10r1

for each y ∈ U(x1, r1). By Lemma 2, there is a point u ∈ U(x1, r1/2) such
that

g(y) ≤ g(u) + 2−k+2i+11‖y − u‖

for all y ∈ U(x1, r1), so that

‖f ′(u)− f ′(w)‖ = ‖g′(u)‖ ≤ 2−k+2i+11.

This contradicts (8) because u ∈ K ∩ V ⊂ F−. The proof is complete. �

Remark 5 It is not true that f ′(L) is connected when L ⊂ D is a line seg-
ment. As an example, consider

f(x1, x2) =

{
x1x

4
2

x2
1+x4

2
, [x1, x2] 6= 0

0, [x1, x2] = 0.

Then f is differentiable,

∂f

∂x1
(0, x2) =

{
1, x2 6= 0
0, x2 = 0.

Remark 6 An easy example on R shows that the Darboux property fails for
vector-valued functions; the counterexample is given by f which is defined as
the antiderivative of

f ′(x) =

{
(cos 1

x , sin 1
x ) , x 6= 0

0 , x = 0.

cf. [D], Problem 8.5.4.
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