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Abstract

It is well known that the derivative of a function of one variable has
the Darboux property. In this paper it is shown that the gradient of
a differentiable function of several variables maps certain closed convex
sets to connected sets.

It is well known that any differentiable real function f on an interval I C R
has the Darboux property. This means that if a < b are points in I and £ is a
value between f’(a) and f’(b), then there is © € [a, b] such that f'(x) = &. Tt is
equivalent to say that for any closed convex subset K of I the image f'(K) is
connected. In this note we are going to show that an analogous property holds
for the derivative (gradient) of a differentiable function of several variables.
Even more generally, we work in infinite-dimensional Banach spaces.

As a special case of the result we obtain the Darboux property of partial
derivatives of differentiable functions, which is due to Neugebauer [N] and Weil
[W]. Let us mention that if we modify the definition of Darboux property
of partial derivatives as in [N], the assumption of differentiability may be
weakened.

The one-dimensional Darboux property has been generalized in a variety
of other directions as well. There are several papers which are devoted to
the Darboux property of derivatives of interval functions of several variables.
A general result was proved by Misik [M], for further development see [N], [B].

We suppose that X is a Banach space. In particular we may consider
X = R"™. The symbol U(z,r) is used for the open ball with center at x and
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radius . We denote the dual space of X by X*. Both norms in X and X* are
denoted by || ...||. We write z* - x for the duality pairing between z* € X*
and x € X. The topological notions in X and in X% are with ; respect to
the corresponding norm topology. Differentiability is interpreted as Fréchet
differentiability. This means that a function f is said to be differentiable at
x € X with respect to D C X if there is a unique z* € X* (called the
derivative of f at x with respect to D) such that

fly) = fla) —a" - (y — )

im =0.
y—x,yeD ly — ||

If f is differentiable with respect to its domain, we say simply that f is dif-
ferentiable and denote the derivative by f’. The main goal of this note is the
following theorem.

Theorem 1 Let f be a differentiable function on D C X. Then for any closed
conver set K C D with nonempty interior, f'(K) is a connected subspace of
X

For the proof of Theorem 1, we may assume that D = K. We fix a closed
convex set K C X with nonempty interior and start with a series of auxiliary
results.

Lemma 2 (Ekeland’s variational principle) Let g be a continuous function on

U(z,r) C X and e > 0. Suppose that
9(y) <g(x) +er
for each y € U(x,r). Then there is u € U(z,r/2) such that
9(y) < g(u) + 2ely — ul (1)

for each y € U(x,r).

PrOOF. We refer e.g. to [Ph], Lemma 3.13, but for reader’s convenience we
notice that the finite-dimensional case is easy. Indeed, we find u € U(x, ) such
that y — g(y) — 2|y — | attains a maximum at u relative to U(z,7). Then an
exercise in handling the triangle inequality shows that in fact u € U(x,7/2)
and (1) holds. O

Since K has a nonempty interior, we may fix a ball U(xq, 7o) inside K.
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Lemma 3 Let x € K and r > 0. Then there are x1 € K and r1 > 0 such
that

ry > min{ 7o ﬁ, 1"0} and U(xy,71) C KNU(z,7).

2|z — xo||” 2
ProOF. If ||z — x| < r/2, then it is enough to set

1 = X0, r1 = min{rg,r/2}.
Let ||z — zo|| > r/2. We set

To — TTo

and | = min{i 7}

1
nmErEgy 2" 2z — a0

lzo — z||

Now, each point y; from U(x1,71) is a convex combination of x and a point
yo € U(xo,79) and hence belongs to K. Since r; < r/2, obviously y; € U(x,r).
|

In the next lemma, we recall some standard tricks from differentiation
theory. If f is a differentiable function on K, we let

Eimi(f) = {x € K: ||lz— o < 2ro,
[y e K. lly—al <27 = |f(y) = f(@) = f'@)- (y— )| < 27*lly = <] }.

Lemma 4 Let f be a differentiable function on K and i,m,k € N. Then

(a) limsup ||f'(y) — f'(2)] < 2% for any nonisolated point x of
Y=z, YEE; mk

Ei1m7k(f)7
() Eimi(f) C Eimp—i-s(f).

PROOF. Choose € E; m (f). We find r € (0, min{ro,2=™1}) such that
[f(y) = fla) = f'(2) - (y —2)| <27F[ly — =]
for all y € U(x,r) N K. Notice that then
1) = fly) = f'@)- (v =)l <27 (2)

forall y,y’ € U(z,r)NK. If 2 € Ej py x NU(z,7) and y,y’ € U(x,r) N K, then
ly = z|]| <2r <27™ ||y — z|| < 2r < 27™ and thus also

F@) = F@) = () =)l <27y =2l + ly = 2[) <272 (3)
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By Lemma 3, there are z; € K and r; > 0 such that
r1 > 27" and U(zy, ) € KNU(z,7).

Let 2 € E; 1, NU(z,7) and h € X, ||h|| = r1. Then z1, 1 +h € KNU(x,r).
Using (2) and (3) we obtain
') = £/ @) -l = | (Flor+h) = flwn) = 1))
~ (F@r+h) = @) - £1(2)-n)|
§|f(331 +h) — f(z1) —f/(m)'h| + ’f(flh +h) — f(z1) —f’(z)~h‘

<R L o=k A2y < ik

This proves (a).

Now, we choose * € E;mk and y € K with ||y — z| < 27™. There is a
sequence x; of points from E; ,, x(f) converging to . Then for j large enough,
and with the aid of (a),

[f(y)=f(z) = f(2) - (y — )|

<|f(y) = fz5) = f'(x5) - (y — x5)]
+ [ f(@) = flag) = f/(2g) - (& — xj)]
+ () (y—a) = f'@) - (y — )
<27 M|y — @yl + 27F |l — || + 27Ky — .

Letting j — oo we obtain
[f(y) = (@) = f'(z) - (y —2)| <2750y — 2]
which proves (b). O

PROOF OF THEOREM 1. Let GT,G~ C X* be open sets such that f'(K) C
GTUG™ and GT NG~ N f/(K) = 0. We write

Fr={zeK:f(r)eGtYand F- ={z € K: f'(x) € G }.
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Suppose that both F'™ and F~ are nonempty. This will lead to a contradiction.
Denote H = F' NF . Since K is connected, we deduce that H # 0. Denote

Floe=1{ye Eimi(f): dist (f'(y),X*\G") > 9—h+2i+13}

i,m,k

Fijm,k = {y S Ei,m,k(f) : dist (f/(y)7X* \ Gi) Z 2ik+2i+13}'

K= U Fi-!_m,ku U Fi,_m,k'

i,m,k i,m,k

Then

Using the Baire category theorem in the space H, we find z € H, pg > 0 and
i, m, k € N such that

—+
HNU(2,2p0) CF e (4)

or

HNU(z,2po) C F;m’k (5)

Assume e.g. that case (4) holds. Also, we may assume that py < ry and
3po < 27™. From Lemma 4(a) it follows that

dist (f'(y), X*\ GT) > 27kF2iH13 _g=ktitd 5 (6)
for each y € F: m k- 10 particular
HNU(z,2py) C FT. (7)

Since H C F , there is a point x € F~ NU(z,p0). By (7), x ¢ H. Let V
be the largest ball centered at x such that V. N H = (). The radius r of V is
less than pg as 2 ¢ V. Hence V C U(z,2pg). Since K NV is connected and
VNH =0, we deduce that K NV C F~. Maximality of V yields that there
is a point w € U(x,2r)NU(z,2po) N H. Then, by (4) and (6), w € F:mk and

dist (f'(w), X*\ GT) > 27 kF2i+12, (8)
We write

9y) =fly) — f(w) = f'(w)- (y —w), yeX.

We have
ly —w| <3r <3py<2™™

for all y € V. Since ||z — 29| < ||z — @0l + ||z — 2| < 28+, we use Lemma 3
to find a ball B B
U(:cl,rl) CcCKnNnV
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such that
ry > 272
By Lemma 4(b),
—+
Fimk CEimi—i-s(f)

Thus
lg(y)| < 27FFH5 ||y — wl|| < 27FFIHTp < 97k H2iH9,

for each y € V, which implies that
9(y) — g(a1) < 2720

for each y € U(x1,71). By Lemma 2, there is a point u € U(zy,r1/2) such
that
9(y) < glu) + 2752y — u]

for all y € U(x1,71), so that
1 (w) = f'(w)]| = [lg (w)]| < 27+2H

This contradicts (8) because u € K NV C F~. The proof is complete. [l

Remark 5 It is not true that f’(L) is connected when L C D is a line seg-
ment. As an example, consider

4
_T1Zy
f(x17$2) = { x%-‘rﬂt%’ [1'1,1'2] 7é 0

0, [l‘l, 372] =0.
Then f is differentiable,

8f _ 1, .%‘27&0
axl“)’”?){ 0, 5= 0.

Remark 6 An easy example on R shows that the Darboux property fails for
vector-valued functions; the counterexample is given by f which is defined as
the antiderivative of

(@) { (()C’OS%7 sin%), iig

cf. [D], Problem 8.5.4.
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