INROADS

Marianna Csörnyei, Eötvös University, Department of Analysis, Budapest, Múzeum Krt. 6-8, H-1088, Hungary, e-mail: csornyei@@cs.elte.hu

ON THE CHORD SET OF CONTINUOUS FUNCTIONS

It is well-known that for a given continuous function f, f(0) = f(1) and for any natural number n there exist x_n , $y_n = x_n + 1/n$ such that $f(x_n) = f(y_n)$. It is also known that if the graph of f (or more generally a planar curve connecting the point 0 and 1) does not have a horizontal chord of length a and b respectively then there is no horizontal chord of length a + b either (see [1]). It is almost immediate that the lengths of possible horizontal chords of f form a closed set F of the unit interval [0,1], and according to the remark above its complement $G = [0,1] \setminus F$ is an additive set: $a \in G$, $b \in G$, $a + b \leq 1$ imply $a + b \in G$. C. Ryll-Nardzewski, Z. Romanowicz and M. Morayne raised the problem whether this additive property is not just necessary but also sufficient for a set to be the complement of the chord-set of some continuous function.

In this paper we answer their question affirmatively by proving the following theorem.

Theorem 1 Let $F \subset [0,1]$ be a closed set, and put $G = [0,1] \setminus F$. Suppose that $0, 1 \in F$ and if $x, y \in G$, $x + y \leq 1$, then $x + y \in G$. Then there is a continuous function f defined on [0,1] such that $\{y - x : x, y \in [0,1], x < y, f(x) = f(y)\} = F$.

PROOF. Let

$$[0,1] = \left(\bigcup_n G_n\right) \cup \left(\bigcup_k F_k\right) \cup (\partial F)\,,$$

where G_n and F_k are disjoint open intervals, $\bigcup_n G_n = G$, $\bigcup_k F_k = \operatorname{int} F$ and ∂F is the boundary of F.

Key Words: continuous functions, chord length

Mathematical Reviews subject classification: Primary: 26A15

Received by the editors November 15, 1996

^{*}Research supported by the Hungarian National Foundation for Scientific Research, Grant No. T019476.

⁸⁵³

We define f(x) = 0 if $x \in \partial F$ (in particular, f(0) = f(1) = 0), $f(x) = dist(x, [0, 1] \setminus F_k)$ if $x \in F_k$, and $f(x) = -dist(x, [0, 1] \setminus G_n)$ if $x \in G_n$. We claim that f satisfies the requirements.

f is clearly continuous (moreover, Lipschitz 1) on [0,1]. Let $x, y \in [0,1]$, x < y, f(x) = f(y). We prove that $y - x \in F$. First we show that

if
$$x, y \in \partial F$$
 and $x < y$ then $y - x \in F$. (*)

Indeed, if x = 0 then $y - x = y \in \partial F \subset F$. If 0 < x < 1 then let $x_n \to x$, $x_n \in G$. Then $y - x_n \notin G$ (since $x_n \in G$, $y - x_n \in G$ would imply $y \in G$). Thus $y - x_n \in F$ and $y - x = \lim(y - x_n) \in F$, as F is closed.

If f(x) = f(y) = 0 then $x, y \in \partial F$ and thus $y - x \in F$ by (*). Therefore we may assume that $f(x) = f(y) \neq 0$. Since f > 0 in int F f < 0 in G, and f = 0 in ∂F , this implies that either $x, y \in \text{int } F$ or $x, y \in G$.

Suppose first that $x, y \in F_k$ for some k. If $h = y - x \in G$ then $n \cdot h \in G$ for every $n \leq 1/h$, which is impossible, since $h < |F_k|$ and thus $n \cdot h \in F_k$ for some n.

Next suppose that $x, y \in G_n = (u, v)$ for some n. Then $h = y - x < |G_n|$ and thus $v - h \in G_n \subset G$. If $h \in G$ then $v = h + (v - h) \in G$ which is impossible, since $v \in \partial F \subset F$.

Thus we may assume that $x \in (a, b)$ and $y \in (c, d)$, where (a, b) and (c, d) are different components of int F or G. We shall consider the following cases separately.

- (i) $x \le (a+b)/2, y \le (c+d)/2$ and $(a,b), (c,d) \subset G$;
- (ii) $x \le (a+b)/2, y > (c+d)/2$ and $(a,b), (c,d) \subset G$;
- (iii) x > (a+b)/2, y > (c+d)/2 and (a,b), $(c,d) \subset G$;
- (iv) $x > (a+b)/2, y \le (c+d)/2$ and $(a,b), (c,d) \subset G$;
- (v) $x \le (a+b)/2, y \le (c+d)/2$ and $(a,b), (c,d) \subset \text{int } F$;
- (vi) $x \le (a+b)/2$, y > (c+d)/2 and (a,b), $(c,d) \subset int F$;
- (vii) x > (a+b)/2, y > (c+d)/2 and (a,b), $(c,d) \subset int F$;
- (viii) $x > (a+b)/2, y \le (c+d)/2$ and $(a,b), (c,d) \subset int F$.

If (i), (iii), (v) or (vii) holds then y - x = c - a or y - x = d - b. Since $a, b, c, d \in \partial F$, this implies $y - x \in F$ by (*). In the sequel we shall denote

$$u = \begin{cases} a, & \text{if } x \le (a+b)/2, \\ b, & \text{if } x > (a+b)/2 \end{cases}; \qquad \qquad v = \begin{cases} c, & \text{if } x \le (c+d)/2, \\ d, & \text{if } x > (c+d)/2 \end{cases}.$$

Let $\delta = |x - u| = |y - v| = |f(x)| = |f(y)|$. Case (ii): $v \in F$, $u + 2\delta - \varepsilon \in G \Longrightarrow v - (u + 2\delta - \varepsilon) \in F$; $v - (u + 2\delta - \varepsilon) \rightarrow v - u - 2\delta = y - x \in F$. Case (iv): $v \in F$, $u - 2\delta + \varepsilon \in G \Longrightarrow v - (u - 2\delta + \varepsilon) \in F$; $v - (u - 2\delta + \varepsilon) \rightarrow v - u + 2\delta = y - x \in F$. Case (vi): Either u = 0, and then $y - x = v - 2\delta \in F$; or $\exists a_n \to u$, $a_n \in G$, and then $v - 2\delta \in F$, $\Longrightarrow v - 2\delta - a_n \in F$, $(v - 2\delta) - a_n \rightarrow v - u - 2\delta = y - x \in F$. Case (viii) $\exists a_n \rightarrow u$, $a_n \in G$, $v + 2\delta \in F \Longrightarrow (v + 2\delta) - a_n \in F$, $(v + 2\delta) - a_n \rightarrow v + 2\delta - u = y - x \in F$. This completes the first part of the proof $(f(x) = f(y) \Longrightarrow y - x \in F)$. Next we show that for every $d \in F$ there are $x, y \in [0, 1]$ such that x < y, y - x = d and f(x) = f(y).

This is clear if $G = \emptyset$; so that we may assume $G \neq \emptyset$. If $(a, b) = G_n$ then for every $0 \le c \le b - a$ there are points $a \le x \le y \le b$ such that y - x = c and f(x) = f(y). As we proved above, this implies $c \in F$ for every $c \in [0, b - a]$. Therefore $g = \inf G > 0$. Then (0, g) is (one of the) longest component of int F, since there are elements of G arbitrarily close to g, and the integer multiples of these elements also belong to G.

If $d \in \partial F$ then x = 0, y = d satisfy the requirements. Next let $d \in \operatorname{int} F$, $d \in (a, b) = F_k$. We have f(d) - f(0) = f(d) > 0 and f(b) - f(b - d) = -f(b - d) < 0, since $b - d < b - a \leq g$ and f is positive on (0, g). Now f is continuous, and thus f(y) - f(y - d) must vanish for a $y \in [d, b]$, completing the proof.

References

 A. M. Yaglom and I. M. Yaglom, Non-elementary problems in elementary presentation, GITTL, Moscow, 1954, Problem 118, p. 60 (in Russian).