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ON THE CHORD SET OF CONTINUOUS
FUNCTIONS

It is well-known that for a given continuous function f , f(0) = f(1) and for
any natural number n there exist xn, yn = xn + 1/n such that f(xn) = f(yn).
It is also known that if the graph of f (or more generally a planar curve
connecting the point 0 and 1) does not have a horizontal chord of length a and
b respectively then there is no horizontal chord of length a+ b either (see [1]).
It is almost immediate that the lengths of possible horizontal chords of f form
a closed set F of the unit interval [0,1], and according to the remark above its
complement G = [0, 1] \ F is an additive set: a ∈ G, b ∈ G, a + b ≤ 1 imply
a + b ∈ G. C. Ryll-Nardzewski, Z. Romanowicz and M. Morayne raised the
problem whether this additive property is not just necessary but also sufficient
for a set to be the complement of the chord-set of some continuous function.

In this paper we answer their question affirmatively by proving the follow-
ing theorem.

Theorem 1 Let F ⊂ [0, 1] be a closed set, and put G = [0, 1] \ F. Suppose
that 0, 1 ∈ F and if x, y ∈ G, x + y ≤ 1, then x + y ∈ G. Then there is a
continuous function f defined on [0, 1] such that {y − x : x, y ∈ [0, 1], x < y,
f(x) = f(y)} = F .

Proof. Let

[0, 1] =

(⋃
n

Gn

)
∪

(⋃
k

Fk

)
∪ (∂F ) ,

where Gn and Fk are disjoint open intervals, ∪nGn = G, ∪kFk = intF and
∂F is the boundary of F .
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We define f(x) = 0 if x ∈ ∂F (in particular, f(0) = f(1) = 0), f(x) =
dist (x, [0, 1] \ Fk) if x ∈ Fk, and f(x) = −dist (x, [0, 1] \ Gn) if x ∈ Gn. We
claim that f satisfies the requirements.

f is clearly continuous (moreover, Lipschitz 1) on [0, 1]. Let x, y ∈ [0, 1],
x < y, f(x) = f(y). We prove that y − x ∈ F . First we show that

if x, y ∈ ∂F and x < y then y − x ∈ F. (∗)

Indeed, if x = 0 then y−x = y ∈ ∂F ⊂ F . If 0 < x < 1 then let xn → x, xn ∈
G. Then y − xn /∈ G (since xn ∈ G, y − xn ∈ G would imply y ∈ G). Thus
y − xn ∈ F and y − x = lim(y − xn) ∈ F , as F is closed.

If f(x) = f(y) = 0 then x, y ∈ ∂F and thus y − x ∈ F by (∗). Therefore
we may assume that f(x) = f(y) 6= 0. Since f > 0 in intF f < 0 in G, and
f = 0 in ∂F , this implies that either x, y ∈ intF or x, y ∈ G.

Suppose first that x, y ∈ Fk for some k. If h = y − x ∈ G then n · h ∈ G
for every n ≤ 1/h, which is impossible, since h < |Fk| and thus n · h ∈ Fk for
some n.

Next suppose that x, y ∈ Gn = (u, v) for some n. Then h = y − x < |Gn|
and thus v − h ∈ Gn ⊂ G. If h ∈ G then v = h + (v − h) ∈ G which is
impossible, since v ∈ ∂F ⊂ F .

Thus we may assume that x ∈ (a, b) and y ∈ (c, d), where (a, b) and (c, d)
are different components of intF or G. We shall consider the following cases
separately.

(i) x ≤ (a+ b)/2, y ≤ (c+ d)/2 and (a, b), (c, d) ⊂ G;

(ii) x ≤ (a+ b)/2, y > (c+ d)/2 and (a, b), (c, d) ⊂ G;

(iii) x > (a+ b)/2, y > (c+ d)/2 and (a, b), (c, d) ⊂ G;

(iv) x > (a+ b)/2, y ≤ (c+ d)/2 and (a, b), (c, d) ⊂ G;

(v) x ≤ (a+ b)/2, y ≤ (c+ d)/2 and (a, b), (c, d) ⊂ intF ;

(vi) x ≤ (a+ b)/2, y > (c+ d)/2 and (a, b), (c, d) ⊂ intF ;

(vii) x > (a+ b)/2, y > (c+ d)/2 and (a, b), (c, d) ⊂ intF ;

(viii) x > (a+ b)/2, y ≤ (c+ d)/2 and (a, b), (c, d) ⊂ intF .

If (i), (iii), (v) or (vii) holds then y − x = c − a or y − x = d − b. Since
a, b, c, d ∈ ∂F, this implies y − x ∈ F by (∗). In the sequel we shall denote

u =

{
a, if x ≤ (a+ b)/2,

b, if x > (a+ b)/2
; v =

{
c, if x ≤ (c+ d)/2,

d, if x > (c+ d)/2
.



On the Chord Set of Continuous Functions 855

Let δ = |x− u| = |y − v| = |f(x)| = |f(y)|.

Case (ii): v ∈ F , u+ 2δ − ε ∈ G =⇒ v − (u+ 2δ − ε) ∈ F ; v − (u+ 2δ − ε)→
v−u−2δ = y−x ∈ F . Case (iv): v ∈ F , u−2δ+ε ∈ G =⇒ v−(u−2δ+ε) ∈ F ;

v − (u − 2δ + ε) → v − u + 2δ = y − x ∈ F . Case (vi): Either u = 0,

and then y − x = v − 2δ ∈ F ; or ∃an → u, an ∈ G, and then v − 2δ ∈ F ,
=⇒ v−2δ−an ∈ F , (v−2δ)−an → v−u−2δ = y−x ∈ F . Case (viii) ∃an → u,

an ∈ G, v+2δ ∈ F =⇒ (v+2δ)−an ∈ F , (v+2δ)−an → v+2δ−u = y−x ∈ F .
This completes the first part of the proof (f(x) = f(y) =⇒ y − x ∈ F ).

Next we show that for every d ∈ F there are x, y ∈ [0, 1] such that x < y,
y − x = d and f(x) = f(y).

This is clear if G = ∅; so that we may assume G 6= ∅. If (a, b) = Gn then
for every 0 ≤ c ≤ b−a there are points a ≤ x ≤ y ≤ b such that y−x = c and
f(x) = f(y). As we proved above, this implies c ∈ F for every c ∈ [0, b − a].
Therefore g = inf G > 0. Then (0, g) is (one of the) longest component of
intF , since there are elements of G arbitrarily close to g, and the integer
multiples of these elements also belong to G.

If d ∈ ∂F then x = 0, y = d satisfy the requirements. Next let d ∈ intF ,
d ∈ (a, b) = Fk. We have f(d) − f(0) = f(d) > 0 and f(b) − f(b − d) =
−f(b − d) < 0, since b − d < b − a ≤ g and f is positive on (0, g). Now f is
continuous, and thus f(y)− f(y − d) must vanish for a y ∈ [d, b], completing
the proof. �
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