Andrzej Nowik, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland, email: matan@@paula.univ.gda.pl

ON A MEASURE WHICH MEASURES AT LEAST ONE SELECTOR FOR EVERY UNCOUNTABLE SUBGROUP

Abstract

We show that there exists in ZFC an invariant extension of Lebesgue measure on \mathbb{R} such that for every uncountable subgroup H of \mathbb{R} there exists at least one selector of H measurable with respect to this measure. This answers a question of Sławomir Solecki in [S].

Notation

Let H be some additive subgroup of \mathbb{R} . We denote this fact by $H \leq \mathbb{R}$. Symbol Sel(H) denotes the class of all selectors of the subgroup H, i.e., selectors from the class $\{x + H : x \in \mathbb{R}\}$ of cosets of H.

Let $B = \{h_{\alpha} : \alpha < 2^{\omega}\}$ be a Hamel base of \mathbb{R} . Every $r \in \mathbb{R}$ can be written in the exactly one way as $r = \sum_{\alpha < 2^{\omega}} x(\alpha) h_{\alpha}$, where $x(\alpha) \in \mathbb{Q}$ and all $x(\alpha)$ but finitely many are equal to zero. Thus, we can treat $r \in \mathbb{R}$ as such a function x. If $x \in \mathbb{R}$ then we put $\operatorname{supp}(x) = \{\alpha < 2^{\omega} : x(\alpha) \neq 0\}$. If $X \subseteq \mathbb{R}$ then $\operatorname{supp}(X)$ denotes $\bigcup_{x \in X} \operatorname{supp}(x)$.

If $X \subseteq \mathbb{R}$ then $\langle X \rangle_{\mathbb{Q}}$ denotes the linear span of X over the field \mathbb{Q} . We say that a set $X \subseteq \mathbb{R}$ is *totally imperfect set* if it does not contain any nonvoid perfect subset of \mathbb{R} .

Main Result

In [S] the author asked a following question.

Key Words: totally imperfect set, selectors, invariant measures, extensions of measures Mathematical Reviews subject classification: Primary: 03E05

Received by the editors June 3, 1996

^{*}This paper was supported by the KBN grant 2 P03A 047 09.

Question 1 Does there exist in ZFC an invariant extension of Lebesgue measure on \mathbb{R} such that for every uncountable subgroup H of \mathbb{R} there exists at least one selector of H measurable with respect to this measure?

In [S] the author proved, that assuming CH the answer is yes. We will show, that the answer is also positive in ZFC.

Theorem 1 There exists an invariant extension of the Lebesgue measure on \mathbb{R} such that for every uncountable subgroup H of \mathbb{R} there exists at least one selector of H measurable with respect to this measure.

PROOF. From [S] we know, that CH implies Theorem 1. So we consider only the case \neg CH.

Lemma 1 Assume \neg CH. For every subgroup $H \leq \mathbb{R}$ of cardinality ω_1 we can find at least one selector $S_H \in \text{Sel}(H)$ such that the following condition holds.

(*) If $\{H_i\}_{i \in \omega}$ is a sequence of subgroups each of power ω_1 , and $\{r_i\}_{i < \omega}$ are real numbers then $\bigcup_{i=0}^{\infty} S_{H_i} + r_i$ is not of full (Lebesgue) measure. In fact, this set is totally imperfect.

PROOF. Let $F: 2^{\omega} \to \omega_1 \times 2^{\omega} \times 2^{\omega}$ be any bijection. We put

$$F(\alpha) = \langle F_1(\alpha), F_2(\alpha), F_3(\alpha) \rangle.$$

Let $\{P_{\alpha}\}_{\alpha \in 2^{\omega}}$ be an enumeration of all perfect subsets of \mathbb{R} . By transfinite induction one can easily construct a Hamel base $B = \{h_{\alpha} : \alpha \in 2^{\omega}\}$ such that

(
$$\diamond$$
) $h_{\alpha} \in P_{F_2(\alpha)}$ for every $\alpha \in 2^{\omega}$.

Take any $H \leq \mathbb{R}$ with $|H| = \omega_1$. We construct S_H in the following way.

Let $H = \{g_{\beta}^{H} : \beta < \omega_{1}\}$ be an enumeration, without repetitions, of elements of H. We take also any selector T_{H} from the class of quotient group $\langle \{h_{\alpha} : \alpha \in \operatorname{supp}(H)\} \rangle_{\mathbb{Q}}/H$.

For every $s \in \mathbb{R}$ such that $\operatorname{supp}(s) \cap \operatorname{supp}(H) = \emptyset$ and every $t \in T_H$ we put

$$y_{s,t} := s + t + g_{F_1(\alpha_s)}^H$$

where $\alpha_s = \max \operatorname{supp}(s)$. We define S_H by:

$$S_H = \{ y_{s,t} : s \in \mathbb{R} \& \operatorname{supp}(s) \cap \operatorname{supp}(H) = \emptyset \& t \in T_H \}.$$

It is easy to see that $S_H \in Sel(H)$.

Take now any sequence $\{H_i\}_{i \in \omega}$ of subgroups of \mathbb{R} each of power ω_1 and a sequence $\{x_i\}_{i \in \omega}$ of real numbers. For each $i \in \omega$ define a number $\beta_i < \omega_1$ in the following way. Consider $-x_i | \operatorname{supp}(H_i)$. Obviously $-x_i | \operatorname{supp}(H_i) = t + g_{\beta}^{H_i}$ for some $\beta < \omega_1$ and $t \in T_{H_i}$ and we define β_i as this β . Let $\beta' := (\sup_{i \in \omega} \beta_i) + 1$. Because

$$\left|\bigcup_{i\in\omega}\operatorname{supp}(H_i)\cup\operatorname{supp}(x_i)\right|\leq\omega_1<2^{\omega}$$

there exists $\alpha \in 2^{\omega}$ such that

$$(\triangle) \quad \alpha \notin \bigcup_{i \in \omega} \operatorname{supp}(H_i) \quad \text{and} \quad \alpha > \operatorname{sup}_{i \in \omega} \max \ \operatorname{supp}(x_i)$$

Let $\gamma' = F_3(\alpha)$. It is now easy to show, that

$$h_{\alpha} \notin \bigcup_{i \in \omega} S_{H_i} + x_i$$
 for every α such that $F_1(\alpha) = \beta'$ and $F_3(\alpha) = \gamma'$. (1)

Indeed, if $h_{\alpha} \in S_{H_i} + x_i$ for some $i \in \omega$ then

$$h_{\alpha} - x_i | \operatorname{supp}(H_i) = -x_i | \operatorname{supp}(H_i)$$

because $\alpha \notin \bigcup_{i \in \omega} \operatorname{supp}(H_i)$. So there exists $t \in T_H$ such that

$$-x_i|\mathrm{supp}(H_i) = t + g_{\beta_i}^{H_i}.$$

From (\triangle) we know that max $\operatorname{supp}(h_{\alpha} - x_i) = \alpha$. Therefore if $s = (h_{\alpha} - x_i)|(2^{\omega} \setminus \operatorname{supp}(H_i))$ then $y_{s,t} = s + t + g_{\beta'}^{H_i}$ from the definition of $y_{s,t}$. But $h_{\alpha} - x_i = (h_{\alpha} - x_i)|(2^{\omega} \setminus \operatorname{supp}(H_i)) + t + g_{\beta_i}^{H_i}$, since $\alpha > \max \operatorname{supp}(x_i)$ and $\beta' = F(\alpha)$. So $g_{\beta_i}^{H_i} = g_{\beta'}^{H_i}$, a contradiction with the definition of β' , finishing the proof of (1).

Now $h_{\alpha} \notin \bigcup_{i \in \omega} S_{H_i} + x_i$ for every $\alpha \in 2^{\omega}$ such that $F_1(\alpha) = \beta'$ and $F_3(\alpha) = \gamma'$, and because $h_{\alpha} \in P_{F_2(\alpha)}$, we obtain that for every $\delta \in 2^{\omega}$,

$$P_{\delta} \setminus \bigcup_{i \in \omega} \left(S_{H_i} + x_i \right) \neq \emptyset.$$

Therefore the set

$$\bigcup_{i\in\omega}S_{H_i} + x_i$$

is not of full measure. In fact, this set is totally imperfect.

In the next part of the proof of Theorem 1 we will use the following Lemma from [S].

Lemma 2 [Sz] Let μ be a translation invariant measure on \mathbb{R} and let J be an invariant σ -ideal on \mathbb{R} such that $\mu_*(A) = 0$ for $A \in J$ (where μ_* denotes the inner measure induced by μ). Then there exists an invariant extension of μ defined on the σ -field generated by the union of the σ -field of μ measurable subsets of \mathbb{R} and J.

Using now Lemma 1 and Lemma 2 we easily obtain our extension.

In fact, let J be the σ -ideal generated by all $S_H + x$, where $x \in \mathbb{R}$, $H \leq \mathbb{R}$, $|H| = \omega_1$. Assume by way of contradiction, that $\mu_*(A) > 0$ for some $A \in J$, where μ is Lebesgue measure. Using the Steinhaus theorem for the Lebesgue measure we obtain that $\mathbb{Q} + A$ is of full measure. But $\mathbb{Q} + A \in J$, which gives contradiction with Lemma 1.

Using Lemma 2 we obtain, that there exists an invariant extension $\overline{\mu}$ of Lebesgue measure such that every set from J is measurable with respect to $\overline{\mu}$, so for every uncountable subgroup of \mathbb{R} there exists at least one selector measurable with respect to $\overline{\mu}$.

References

- [S] S. Solecki, Measurability properties of sets of Vitali's type, Proc. Amer. Math. Soc. 119, (1993) 897–902.
- [Sz] E. Szpilrajn (Marczewski), Sur l'extension de la mesure lebesguienne, Fund. Math. 25, (1935) 551–558.