Zbigniew Grande, Mathematics Department, Pedagogical University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland

ON FUNCTIONS OF TWO VARIABLES EQUICONTINUOUS IN ONE VARIABLE

Abstract

The continuity of some functions of two variables equicontinuous in one variable is considered.

Let \mathbb{R} be the set of all reals and let E denote \mathbb{R} or $\mathbb{R} \times \mathbb{R}$. For $x \in E$ and for a positive real r let K(x, r) denote the open ball with center x and radius r, i.e. $K(x, r) = \{t \in X : |t - x| < r\}$. Moreover, let μ_e (μ) be the outer Lebesgue measure (the Lebesgue measure) in E.

Denote by

$$d_u(A, x) = \limsup_{h \to 0^+} \mu_e(A \cap K(x, h)) / \mu(K(x, h))$$
$$(d_l(A, x) = \liminf_{h \to 0^+} \mu_e(A \cap K(x, h)) / \mu(K(x, h)))$$

the upper (lower) outer density of a set $A \subset E$ at a point x. A point $x \in E$ is called a density point of a set $A \subset E$ if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_l(B, x) = 1$. The family

 $\mathcal{T}_d = \{A \subset E; A \text{ is measurable and every point } x \in A \text{ is a density point of } A\}$ is a topology called the density topology [1, 2, 3].

Moreover, let \mathcal{T}_e denote the Euclidean topology in E.

Some examples of functions $f: E \to \mathbb{R}$ having continuous sections $f_x(t) = f(x,t)$ and $f^y(t) = f(t,y), t \in \mathbb{R}$, whose sets of discontinuity points are of positive measure are well known [5]. On the other hand, if all sections f_x of a function $f: E \to \mathbb{R}$ are equicontinuous at a point y (i.e. for every positive real η there is a positive real δ such that for every point v with $|v - y| < \delta$

Key Words: \mathcal{I} -almost everywhere continuity, equicontinuity, separate continuity, density topology, functions of two variables

Mathematical Reviews subject classification: 26A15, 26B05, 54C08, 54C30

Received by the editors December 6, 1996

⁷⁶⁰

and for every real x we obtain $|f(x,v) - f(x,y)| < \eta$ and if the section f^y is continuous at a point u, then f is continuous (as a function from (E, \mathcal{T}_e) to $(\mathbb{R}, \mathcal{T}_e)$) at the point (u, y). From this we obtain immediately the following remarks.

Remark 1. Suppose that all sections f_x , $x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous at each point. Then f is continuous at a point (u, v) if and only if the section f^v is continuous at u.

Remark 2. Let \mathcal{I} and \mathcal{J} be σ -ideals of subsets \mathbb{R} and \mathbb{R}^2 respectively, such that every F_{σ} set $A \subset \mathbb{R}^2$ having all sections $A^y = \{x; (x, y) \in A\}, y \in \mathbb{R},$ belonging to \mathcal{I} is in \mathcal{J} . If all sections $f_x, x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous at each point and if all sections $f^y, y \in \mathbb{R}$, are \mathcal{I} -almost everywhere continuous (i.e. the sets $D(f^y)$ of all discontinuity points of f^y belong to \mathcal{I}), then the function f is \mathcal{J} -almost everywhere continuous.

As particular cases of the last remark we obtain the following.

Corollary 1. If all sections f_x , $x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous at each point and if all sections f^y , $y \in \mathbb{R}$, are such that $\mu(D(f^y)) = 0$ (all $D(f^y)$ are of the first category) then $\mu(D(f)) = 0$ (D(f) is of the first category).

We will show some stronger theorems.

- **Theorem 1.** (a) Let \mathcal{J} and \mathcal{I} be some σ -ideals of subsets of \mathbb{R}^2 and of \mathbb{R} respectively such that the vertical and horizontal projections of sets which are in $2^{\mathbb{R}^2} \setminus \mathcal{J}$ do not belong to \mathcal{I} . Suppose that there is a set $A \in \mathcal{I}$ such that all sections $f_x, x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous at each point $y \in \mathbb{R} \setminus A$ and for every point y the set $D(f^y)$ of all discontinuity points of the section f^y is in \mathcal{I} . Then the set D(f) of all discontinuity points of f belongs to \mathcal{J} .
 - (b) Let \mathcal{I} and \mathcal{J} be some σ -ideals of subsets of \mathbb{R} and of \mathbb{R}^2 respectively such that the vertical projections of sets which are in $2^{\mathbb{R}^2} \setminus \mathcal{J}$ do not belong to \mathcal{I} . Suppose that all sections $f_x, x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous at every point and that all sections $f^y, y \in \mathbb{R}$, are \mathcal{I} -almost everywhere continuous (i.e. the sets $D(f^y)$ belong to \mathcal{I}). Then the set $D(f) \in \mathcal{J}$.

PROOF. Suppose, to the contrary, that the set D(f) of all discontinuity points of f is not in \mathcal{J} . Consequently, there is a positive real η such that the set

$$B = \{(x, y); \operatorname{osc} f(x, y) \ge \eta\}$$

is not in \mathcal{J} . Since all section f_x , $x \in \mathbb{R}$, are equicontinuous at each point $y \in \mathbb{R} \setminus A$, for every point $(x, y) \in B_1 = B \setminus (\mathbb{R} \times A)$ there is an open interval I(x, y) with rational endpoints such that $y \in I(x, y)$ and $|f(x, u) - f(x, y)| < \eta/4$ for all $u \in I(x, y)$ and $x \in \mathbb{R}$. The set B_1 is not in \mathcal{J} ; so there is an open interval I such that $B_2 = \{(x, y) \in B_1; I(x, y) = I\}$ is not in \mathcal{J} . Fix a point $(x, y) \in B_2$ and consider the section f^y . For every point $(t, u) \in B_2$ we have $|f(t, u) - f(t, y)| < \eta/4$. But $B_2 \subset B$, so for each point $(t, u) \in B_2$ there is a sequence of points $(v_n(t, u), w_n(t, u))$ such that $w_n(t, u) \in I$,

$$|f(v_n(t, u), w_n(t, u)) - f(t, u)| > 3\eta/4$$

for each positive integer n and

$$\lim_{n \to \infty} (v_n(t, u), w_n(t, u)) = (t, u).$$

For each positive integer n and for each $(t, u) \in B_2$ we obtain

$$|f(t,y) - f(v_n(t,u),y)| \ge |f(t,u) - f(v_n(t,u),w_n(t,u))| -$$

 $|f(t,u) - f(t,y)| - |f(v_n(t,u), w_n(t,u)) - f(v_n(t,u), y)| > 3\eta/4 - \eta/4 - \eta/4 = \eta/4.$

Since $\lim_{n\to\infty} v_n(t,u) = t$, the section f^y is not continuous at any point of the set $F = \{t : \text{there is } u \text{ such that } (t,u) \in B_2\}$ which is not in \mathcal{I} . So, the set $D(f^y)$ of discontinuity points of the section f^y is not in \mathcal{I} , a contradiction. This contradiction finishes the proof of (a). The proof of the part (b) is analogous.

Corollary 2. If we suppose that \mathcal{I} is the family of all subsets of \mathbb{R} of measure zero (of the first category) [which are countable] and that \mathcal{J} is the family of all subsets of \mathbb{R}^2 whose vertical projections belong to \mathcal{I} , then there is a set $A \in \mathcal{I}$ such that the set D(f) of all discontinuity points of the function f considered in Theorem 1(b) is contained in $A \times \mathbb{R}$.

Theorem 1 is not true for ideals. For example, if I is the ideal of all finite subsets of \mathbb{R} and if \mathcal{J} is the ideal of all subsets \mathbb{R}^2 whose vertical projections are finite, then there is a function $f: \mathbb{R}^2 \to \mathbb{R}$ having equicontinuous sections $f_x, x \in \mathbb{R}$, and such that for every $y \in \mathbb{R}$ the set $D(f^y)$ is finite and D(f)is not in \mathcal{J} . For a construction of such a function we denote by \mathbb{N} the set of positive integers, by E(y) the greatest integer which is $\leq y$ and define

$$f(x,y) = \begin{cases} \inf\{|y-v|; v \in \mathbb{N}\} & \text{if } x \le E(y) \\ 0 & \text{otherwise on } \mathbb{R}^2. \end{cases}$$

We will prove that Theorem 1(b) is true for the ideals of nowhere dense subsets of \mathbb{R} and \mathbb{R}^2 , respectively. In the proof of the next theorem we will apply the following lemma.

Lemma 1. Suppose that the sections f_x , $x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous at each point. If the function f is not continuous at a point (u, v) then there is an open interval I containing v such that f is not continuous at any point (u, t), with $t \in I$.

PROOF. Since f is not continuous at the point (u, v), there is a positive real η such that $\operatorname{osc} f(u, v) \geq \eta$. From the equicontinuity of the sections $f_x, x \in \mathbb{R}$, at the point v it follows that there is an open interval I containing v such that $|f(x,t) - f(x,v)| < \eta/8$ for all $t \in I$ and $x \in \mathbb{R}$. There is a sequence of points (u_n, v_n) such that $\lim_n (u_n, v_n) = (u, v)$ and $|f(u_n, v_n) - f(u, v)| > \eta/2$ for $n = 1, 2, \ldots$. Since the section f_u is continuous, we can assume that $u_n \neq u$ and $v_n \in I$ for $n = 1, 2, \ldots$. Observe that for each point $t \in I$ and for all $n = 1, 2, \ldots$ we have

$$|f(u_n, v_n) - f(u, t)| \ge |f(u_n, v_n) - f(u, v)| - |f(u, v) - f(u, t)|$$

$$> \eta/2 - \eta/8 = 3\eta/8,$$

$$|f(u_n, v_n) - f(u_n, t)| < |f(u_n, v_n) - f(u_n, v)| + |f(u_n, t) - f(u_n, v)|$$

$$< \eta/8 + \eta/8 = \eta/4$$

and

$$|f(u_n, t) - f(u, t)| \ge |f(u_n, v_n) - f(u, t)| - |f(u_n, v_n) - f(u_n, t)|$$

> $3\eta/8 - \eta/4 = \eta/8.$

Since $\lim_n u_n = u$, we obtain that $\operatorname{osc} f(u, t) \ge \eta/8$ and f is not continuous at the point (u, t).

Theorem 2. If all sections f_x , $x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous at each point and if for every $y \in \mathbb{R}$ the set $D(f^y)$ of all discontinuity points of the section f^y is nowhere dense, then the set D(f) is nowhere dense.

PROOF. Suppose, by way of contradiction, that the set D(f) is dense in an open rectangle $I \times J$, where I, J are open intervals. Enumerate all open intervals with rational endpoints contained in I in a sequence I_1, \ldots, I_n, \ldots . Denote by D(f) the set of all discontinuity points of f. Let $(u_1, v_1) \in I_1 \times J$ be a discontinuity point of f. By Lemma 1 there is a closed interval $J_1 \subset J$ such that every point (u_1, t) with $t \in J_1$ belongs to D(f). Next, by induction in the n^{th} step (n > 1) we find a point $(u_n, v_n) \in (I_n \times int(J_{n-1})) \cap D(f)$ (int denotes the interior operation) and a closed interval $J_n \subset \operatorname{int}(J_{n-1})$ such that for every point $t \in J_n$ the point (u_n, t) is a discontinuity point of f. There is a point $w \in \bigcap_n J_n$. Since the section f^w is not continuous at any point u_n , $n = 1, 2, \ldots$, and the set $\{u_n; n \ge 1\}$ is dense in the open interval I, we obtain a contradiction. So, the set D(f) is nowhere dense. \Box

Denote by \mathcal{I}_G and by \mathcal{J}_G the ideals of all subsets of \mathbb{R} and of \mathbb{R}^2 respectively, which are nowhere dense in every set belonging to \mathcal{T}_d .

Problem 1. Is Theorem 1(b) true for the ideals \mathcal{I}_G and \mathcal{J}_G ?

Theorem 3. Suppose that all sections f_x , $x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous and for every $y \in \mathbb{R}$ the set $D(f^y) \in \mathcal{I}_G$. Then for all nonempty sets $K, L \in \mathcal{T}_d$ the set $D(f) \cap (K \times L)$ is nowhere dense in $K \times L$.

PROOF. We can repeat the proof of Theorem 2. Suppose, by way of contradiction that there are linear nonempty sets $K, L \in \mathcal{T}_d$ such that the set $D(f) \cap (K \times L)$ is dense in $K \times L$. Let I_1, \ldots, I_n, \ldots be an enumeration of all open intervals with rational endpoints for which $I_n \cap K \neq \emptyset$, $n = 1, 2, \ldots$. Let $(u_1, v_1) \in (I_1 \cap K) \times L$ be a discontinuity point of the function f. By Lemma 1 there is an open interval J_1 containing v_1 such that every point (u_1, t) , where $t \in J_1$, belongs to D(f). Next, in the n^{th} step (n > 1) we find a point $(u_n, v_n) \in (I_n \cap K) \times (J_{n-1} \cap L)$ belonging to D(f) and a closed interval $J_n \subset \operatorname{int}(J_{n-1})$ containing v_n such that every point (u_n, t) , where $t \in J_n$, belongs to D(f). Let $w \in \bigcap_n J_n$. Then the section f^w is discontinuous at each point of the set $\{u_n, n = 1, 2, \ldots\}$, which is dense in $K \in \mathcal{T}_d$. So the set $D(f^w)$ is not in \mathcal{I}_G .

A function $f: E \to \mathbb{R}$ has property \mathcal{A} at a point x $(f \in \mathcal{A}(x))$ ([4]) if for every positive η and for every set $U \in \mathcal{T}_d$ such that $x \in U$ there is a nonempty open set V such that $V \cap U \neq \emptyset$, $D(f) \cap U \cap V = \emptyset$ and $|f(t) - f(x)| < \eta$ for all points $t \in U \cap V$.

Evidently, if $f \in \mathcal{A}(x)$ for all $x \in E(=\mathbb{R} \text{ or } \mathbb{R}^2)$, then $D(f) \in \mathcal{I}_G$ or resp. $D(f) \in \mathcal{J}_G$.

Theorem 4. Suppose that all sections $f_x, x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous and that for every point $(x, y) \in \mathbb{R}^2$ the relation $f^y \in \mathcal{A}(x)$. Then for every positive real η , for every point (u, v) and for all nonempty linear sets $K, L \in \mathcal{T}_d$ with $(x, y) \in K \times L$ there is an open set U such that $D(f) \cap (K \times L) \cap U \neq \emptyset$, $(K \times L) \cap U = \emptyset$ and $|f(s, t) - f(u, v)| < \eta$ for each point $(s, t) \in (K \times L) \cap U$.

PROOF. Fix a positive real η , a point (u, v) and sets $K, L \in \mathcal{T}_d$ with $(u, v) \in K \times L$. Since $f^v \in \mathcal{A}(u)$, there is an open interval I such that

$$I \cap K \neq \emptyset, \ I \cap K \cap D(f^v) = \emptyset \text{ and } |f(s,v) - f(u,v)| < \eta/2$$

for all points $s \in I \cap K$. From the equicontinuity of the sections $f_x, x \in \mathbb{R}$, it follows that there is an open interval J containing v such that

$$|f(x,t) - f(x,v)| < \eta/2$$

for all points $x \in \mathbb{R}$ and $t \in J$. Evidently, $J \cap L \neq \emptyset$ and consequently,

$$(I \cap K) \times (J \cap L) = (I \times J) \cap (K \times L) \neq \emptyset.$$

For all points $(s,t) \in (I \cap K) \times (J \cap L)$ we obtain

$$|f(s,t) - f(u,v)| \le |f(s,t) - f(s,v)| + |f(s,v) - f(u,v)| < \eta/2 + \eta/2 = \eta.$$

Since the sets $I \cap K$ and $J \cap L$ belong to \mathcal{T}_d , by Theorem 3 there is an open set U such that

$$U \cap ((I \cap K) \times (J \cap L)) \neq \emptyset$$

and

$$D(f) \cap U \cap ((I \cap K) \times (J \cap L)) = \emptyset.$$

Problem 2. Suppose that all sections f_x , $x \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are equicontinuous and that $f^y \in \mathcal{A}(x)$ for each point $(x, y) \in \mathbb{R}^2$. Is it true that $f \in \mathcal{A}(x, y)$ for each point $(x, y) \in \mathbb{R}^2$?

References

- A. M. Bruckner, Differentiation of Integrals, Amer. Math. Monthly, 78 Part II (1971), 1–51.
- [2] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659 (1978), Springer-Verlag.
- [3] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497–506.
- [4] Z. Grande, On strong quasi-continuity of functions of two variables, Real Analysis Exch. 21 (1995–96), 236–243.
- [5] R. Kershner, The continuity of functions of many variables, Trans. Amer. Math. Soc. 53 (1943), 83–100.
- [6] T. Neubrunn, *Quasi-continuity*, Real Analysis Exch. 14 (1988–89), 259– 306.