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UPPER AND LOWER APPROXIMATIONS
OF PERRON INTEGRABLE FUNCTIONS

1 Introduction

Let f : [a, b]→ R be in a certain class of integrable functions. Then an upper
approximation of f is an integrable function h : [a, b]→ R which satisfies the
condition f 6 h, and some additional properties. For instance, we may look

for a function hε satisfying a nice regularity property and
∫ b
a

(hε − f) < ε, or
a less regular function h such that f(x) = h(x) almost everywhere. The two
following results are well known for the Riemann and Lebesgue integrals (see
Theorem 4.4.3 in [7] and Theorem 15.8 in [6] for Theorem B):

Theorem A For a function f : [a, b]→ R the following are equivalent:

1) f is Riemann integrable,

2) for any ε > 0 there exist two R-integrable functions gε and hε such that

a) gε and hε are continuous,

b) gε 6 f 6 hε and
∫ b
a

(hε − gε) < ε,

3) there exist two R-integrable functions g and h such that

a) g ∈ C+ and h ∈ C− (i.e. they are semicontinuous),

b) g 6 f 6 h and g(x) = h(x) almost everywhere.

Theorem B For a function f : [a, b]→ R the following are equivalent:

1) f is Lebesgue integrable,

2) for any ε > 0 there exist two L-integrable functions gε and hε such that
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a) gε ∈ C− and hε ∈ C+, gε <∞ and hε > −∞,

b) gε 6 f 6 hε and
∫ b
a

(hε − gε) < ε,

3) there exist two L-integrable functions g and h such that

a) g ∈ C−+ and h ∈ C+−, g <∞ and h > −∞,

b) g 6 f 6 h and g(x) = h(x) almost everywhere.

Here a function h ∈ C+− if and only if there exists a decreasing sequence of
lower semicontinuous functions hn ∈ C+ which converges to h (cf. Section 3).
The main object of this paper is to give a direct proof of the following result.

Theorem C For a function f : [a, b]→ R the following are equivalent:

1) f is Perron integrable,

2) for any ε > 0 there exist two P-integrable functions gε and hε such that

a) gε ∈ C+− and hε ∈ C−+, gε <∞ and hε > −∞,

b) gε 6 f 6 hε and
∫ b
a

(hε − gε) < ε,

3) there exist two P-integrable functions g and h such that

a) g ∈ C (+)−+ and h ∈ C (−)+−, g <∞ and h > −∞,

b) g 6 f 6 h and g(x) = h(x) almost everywhere.

It must be emphasized that the paper is self-contained. No prerequisites are
needed, except the basic properties of the Perron integral and some classical
results on semicontinuous functions. In particular, we do not use any notion
of measure theory (which is alien to the spirit of Perron integration). All we
need is an appropriate definition of sets of measure zero.

On the contrary, our Theorem 4.1 provides a new and direct proof of the
measurability of Perron integrable functions, and hence of Kurzweil-Henstock
integrable functions since both integrals coincide (cf. Theorem 11.5 and The-
orem 11.6 in [3], or the original paper of Kurzweil [5]).

Usually, one presents the measurability as a consequence of the following
well-known theorem: An integrable function is almost everywhere the deriva-
tive of its indefinite integral. But this uses the Vitali Covering Theorem, and
therefore the result cannot be introduced at an elementary level. We believe
that our demonstration is simpler and more elegant, and that it provides an
important short-cut in the exposition of the fashionable theory of Kurzweil-
Henstock integration. So let us sketch the ideas of the proof.

Consider a KH-integrable function f : [a, b] → R. Then f is Perron inte-
grable and there exist, for every n ∈ N, an upper function Mn and a lower func-
tion mn of f with Mn(b)−mn(b) < 1/n. We define the functions g, h : [a, b]→
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R by g(x) = sup {Dmn(x) / n ∈ N} and h(x) = inf {DMn(x) / n ∈ N}. Now
we remark that the derivates Dmn and DMn are measurable (even Baire 2 by
a theorem of Hájek, cf. T̃heorem 4.2.3 in [1]). Hence the functions g and h are
measurable. Using that Mn −mn is an upper function of h − g we conclude

that
∫ b
a

(h − g) = 0, and we therefore obtain g(x) = h(x) almost everywhere.
This proves the measurability of f because we have g 6 f 6 h.

We are very grateful to Arthur Kruse for his careful reading of the paper
and many valuable suggestions.

2 Preliminaries

Definition 2.1. Let f : [a, b] → R be an extended real-valued function. We
recall that M : [a, b]→ R is an upper function of f if M(a) = 0, DM > −∞
and DM > f . The lower functions of f are defined symmetrically.

The function f : [a, b] → R is called integrable (in the sense of Perron) if
for every ε > 0 there exist an upper function M and a lower function m such
that M(b)−m(b) < ε.

Lemma 2.2. If M is an upper function of f and m is a lower function of f ,
then the function M −m is increasing.

Proof. We have D(M −m)(x) > DM(x)−Dm(x) > 0 for all x ∈ [a, b].

In particular, the numbers inf {M(b) / M is an upper function of f } and
sup{m(b) / m is a lower function of f } are equal when f is integrable. This

common real value is called the integral of f , and it is denoted by
∫ b
a
f .

Definition 2.3. We say that a subset E ⊆ [a, b] is negligible if its character-

istic function χE is integrable and
∫ b
a
χE = 0. As usual, a property is said to

hold almost everywhere if the exceptional set is negligible.

Lemma 2.4. Let f, g : [a, b]→ R+ be two nonnegative functions with f ≤ g.

If the function g is integrable and
∫ b
a
g = 0, then also

∫ b
a
f = 0.

Proposition 2.5. Let fn : [a, b] → R+ be an increasing sequence of nonneg-
ative functions which converges pointwise to a function f : [a, b]→ R+. If the

function fn is integrable and
∫ b
a
fn = 0 for every n ∈ N, then also

∫ b
a
f = 0.

Proof. For every n ∈ N there exists an upper function Mn of fn such that
Mn(b) < ε 2−n. Then the function M(x) :=

∑∞
n=1Mn(x) is clearly an upper

function of f and we have M(b) < ε.
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Corollary 2.6. 1) Any subset of a negligible set is negligible. 2) Any denu-
merable union of negligible sets is negligible.

The following result has many interesting consequences.

Theorem 2.7. Let f : [a, b] → R+ be any nonnegative function. Then f is

integrable and
∫ b
a
f = 0 if and only if f(x) = 0 almost everywhere.

Proof. (⇒) It is enough to show that the set En := {x ∈ [a, b] / f(x) > 1
n }

is negligible. This follows from Lemma 2.4 because χEn
6 nf and

∫ b
a
nf = 0.

(⇐) By hypothesis the set E := {x ∈ [a, b] / f(x) 6= 0} is negligible. And

since f ∧ n 6 nχE , we obtain
∫ b
a
f ∧ n = 0 for every n ∈ N. So the assertion

follows from Proposition 2.5.

Corollary 2.8. Let H : [a, b] → R be an increasing function. Then one has
DH(x) <∞ almost everywhere.

Proof. We may assume that H(a) = 0. We consider the function f defined
by f(x) = ∞ if DH(x) = ∞, and f(x) = 0 otherwise. Then 1

nH is an upper

function of f for every n ∈ N, and this shows that
∫ b
a
f = 0. By the theorem

we conclude that f(x) = 0 almost everywhere.

Corollary 2.9. If f : [a, b]→ R is an integrable function, then f(x) is finite
almost everywhere.

Proof. Let M be an upper function and m a lower function of f . We must
have D(M −m)(x) =∞ for every x ∈ [a, b] with f(x) /∈ R. So the result is a
consequence of the preceding corollary.

Corollary 2.10. Let E ⊆ [a, b] be a negligible subset and ε > 0. Then there
exists an increasing function H : [a, b]→ R with H(a) = 0 and H(b) < ε, and
such that DH(x) =∞ for all x ∈ E.

Proof. Consider the function f defined by f(x) =∞ if x ∈ E, and f(x) = 0

otherwise. By the theorem we have
∫ b
a
f = 0. So the corollary reduces to the

choice of an appropriate upper function.

Corollary 2.11. Let f : [a, b]→ R be an integrable function. If g(x) = f(x)

almost everywhere, then g is integrable and one has
∫ b
a
g =

∫ b
a
f .

Proof. Let ε > 0. There exist an upper function M and a lower function m
of f such that M(b)−m(b) < ε. Now the set E := {x ∈ [a, b] / g(x) 6= f(x)}
is negligible and we can choose an increasing function H as in the preceding
corollary. Then K := M +H and k := m−H are upper and lower functions
of g respectively and we have K(b)− k(b) < 3ε.
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3 SemiBaire 1 Functions

It is well known that a function f : [a, b]→ R is Baire 1 if and only if the sets
{x ∈ [a, b] / f(x) > α} and {x ∈ [a, b] / f(x) < α} are Fσ for all α ∈ R (refer
to Theorem 11.12 in [8]). This motivates the following definition.

Definition 3.1. We say that a function f : [a, b]→ R is lower semiBaire 1 if
the set {x ∈ [a, b] / f(x) > α} is an Fσ for all α ∈ R ∪ {−∞}. Similarly, we
say that the function f is upper semiBaire 1 if the set {x ∈ [a, b] / f(x) < α}
is an Fσ for all α ∈ R ∪ {∞}.

For the proofs of the three following lemmas we just use that the class of
Fσ-sets is closed under finite intersections and denumerable unions.

Lemma 3.2. The class of lower semiBaire 1 functions is closed under finite
infima and denumerable suprema.

Lemma 3.3. Let f, g : [a, b] → R be lower semiBaire 1. If the sum f + g is
well defined, then it is lower semiBaire 1.

Lemma 3.4. Let f, g : [a, b]→ R+ be nonnegative and lower semiBaire 1. If
the product f · g is well defined, then it is lower semiBaire 1.

Proposition 3.5. A function f : [a, b]→ R is lower semiBaire 1 if and only
if there is an increasing sequence of upper semicontinuous functions fn, with
values in R ∪ {−∞}, and converging to f pointwise.

Proof. (⇒) For every rational r ∈ Q the set {x ∈ [a, b] / f(x) 6 r} is a Gδ.
Thus it can be written as an intersection

⋂
n∈N Urn of open subsets of [a, b].

We then define frn : [a, b]→ R ∪ {−∞} by

frn(x) =

{
−∞ if x ∈ Urn
r otherwise.

It is easily verified that f(x) = sup {frn(x) / r ∈ Q and n ∈ N} and that each
function frn is upper semicontinuous. Therefore we conclude by considering
an enumeration g1, g2, . . . of these functions and fn := g1 ∨ · · · ∨ gn.

(⇐) We use that the sets {x ∈ [a, b] / fn(x) > α+ 1/n} are closed.

Notation 3.6. According to the proposition we shall denote by C−+ the set
of all lower semiBaire 1 functions and by C+− the set of all upper semiBaire 1
functions. (As usual, the sets of lower and upper semicontinuous functions are
denoted by C+ and C− respectively.)
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A bilateral lower derivate DF is not necessarily lower semiBaire 1. But it
is Baire 2 by a theorem of Hájek [4]. And if we examine the proof of Garg,
cf. Theorem 3.4 in [2], we remark that the derivate DF is lower semiBaire 1
provided the function F satisfies a weak regularity condition: F (x−) > F (x)
and F (x) > F (x+) whenever the limit exists. In fact, any lower derivate will
be lower semiBaire 1 if we consider the following definition.

Definition 3.7. Let F : [a, b] → R and x ∈ (a, b). Then the two-sided lower
derivate of the function F at the point x is the number

D•F (x) := sup
δ>0

inf
{F (z)− F (y)

z − y
/
x− δ < y < x < z < x+ δ

}
.

At the endpoints of [a, b] we put D•F (a) = DF (a) and D•F (b) = DF (b). The
two-sided upper derivate D•F (x) is defined symmetrically.

Lemma 3.8. One has DF (x) 6 D•F (x) at every point x ∈ (a, b). Moreover,
if the function F is continuous at x, then one has DF (x) = D•F (x).

Proof. The first assertion follows immediately from the equality

F (z)− F (y)

z − y
=
F (z)− F (x)

z − x
· z − x
z − y

+
F (x)− F (y)

x− y
· x− y
z − y

and the second assertion is left as an exercise.

Theorem 3.9. For any function F : [a, b] → R the two-sided lower derivate
D•F is lower semiBaire 1.

Proof. We want to show that the set Eα := {x ∈ [a, b] /D•F (x) > α} is an
Fσ. For every integer n ∈ N we consider the set

Eαn :=
{
x ∈ [a, b]

/
y ∈ In−(x) and z ∈ In+(x) imply

F (z)− F (y)

z − y
> α

}
,

where In
−(x) = (x− 1/n, x) ∩ [a, b] and In

+(x) = (x, x+ 1/n) ∩ [a, b], with the
two exceptions In

−(a) = {a} and In
+(b) = {b}. Since Eα is trivially the union

of the sets Eαn, it is enough to show that each Eαn is closed.
So let xi be a sequence in Eαn which converges to a point x ∈ (a, b), and

let y ∈ In−(x) and z ∈ In+(x). Then y ∈ In−(xi) and z ∈ In+(xi) for every point
xi with |xi − x| < min {y − x+ 1/n, x− y, z − x, x− z + 1/n}, which proves
the required inequality. The cases x ∈ {a, b} are left to the reader.

Remark 3.10. The class of integrable functions would not be affected if we
considered two-sided extreme derivatives in the definition of upper and lower
functions. This modified Perron integral corresponds to a modified Kurzweil-
Henstock integral, where tags lie in the interior of division intervals.
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4 The Main Results

Theorem 4.1. For every integrable function f : [a, b] → R there exist g and
h : [a, b]→ R with the following properties:

1) g ∈ C+−+ and h ∈ C−+−,

2) g <∞ and h > −∞,

3) g 6 f 6 h

4) g(x) = h(x) almost everywhere.

In particular, the functions g and h are integrable (cf. Corollary 2.11).

Proof. By Corollary 2.9 we can choose two functions f1 <∞ and f2 > −∞
with f1 6 f 6 f2 and f1(x) = f2(x) a.e. We remark that the three integrals
are equal, cf. Corollary 2.11. So there exist for every n ∈ N a lower function
mn of f1 and an upper function Mn of f2 with Mn(b) −mn(b) < 1/n. Then
we consider the functions g and h defined by

g(x) = sup {D•mn(x) / n ∈ N} and h(x) = inf {D•Mn(x) / n ∈ N}.

The function h is in C−+− because D•M1 ∧ · · · ∧ D•Mn is lower semiBaire 1,
cf. Theorem 3.9 and Lemma 3.2. In the same way, the function g is in C+−+.
Since the properties 2) and 3) are clearly satisfied (according to Lemma 3.8),
it remains to verify the last property.

Let En be the (denumerable) set of discontinuities of Mn −mn, and let E
be the union of the En’s. We consider the function k : [a, b]→ R+ defined by
k(x) = h(x)− g(x) if x /∈ E, and k(x) = 0 if x ∈ E. Using that

k(x) 6 h(x)− g(x) 6 D•Mn(x)−D•mn(x) 6 D•(Mn −mn)(x)

and Lemma 3.8, we deduce that Mn −mn is an upper function of k for each

integer n ∈ N. Therefore k is integrable and
∫ b
a
k = 0. From Theorem 2.7 we

get k(x) = 0 almost everywhere, and thus the assertion follows.

The following theorem is a well-known result of the theory of integration.
So the details of the proof are left to the reader.

Theorem 4.2. (Monotone Convergence Theorem) Let fn : [a, b] → R
be an increasing sequence of integrable functions which converges (pointwise)

to a function f : [a, b]→ R. If the sequence
∫ b
a
fn tends to a limit ` ∈ R, then

f is integrable and one has
∫ b
a
f = `.
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Proof. By Corollaries 2.9 and 2.11 we may assume that the fn’s are finite.

Given ε > 0 there exists an integer n ∈ N such that ` <
∫ b
a
fn + ε. We take a

lower function mn and an upper function Mn of fn with Mn(b)−mn(b) < ε.
For each i ∈ N there exists an upper function Ni of gi := fn+i − fn+i−1 with

Ni(b) <
∫ b
a
gi+ε 2−i. Then M(x) := Mn(x)+

∑∞
i=1Ni(x) is an upper function

of f , and we have M(b)−mn(b) < 3 ε. Therefore f is integrable.

Proposition 4.3. Let f : [a, b]→ R+ be nonnegative and in the class C−+−.
If there exists an increasing function M : [a, b]→ R such that f 6 D•M , then

f is integrable and one has
∫ b
a
f 6M(b)−M(a).

Proof. Case 1: f is upper semicontinuous and bounded. Then there exists
a decreasing sequence of continuous functions fn which converges to f . Since
continuous functions are clearly integrable, we deduce that f is integrable by
Theorem 4.2. Now let E be the denumerable set of all discontinuities of M .
We define the function k : [a, b]→ R+ by k(x) = f(x) if x /∈ E, and k(x) = 0
if x ∈ E. Using that M(x)−M(a) is an upper function of k, cf. Lemma 3.8,

we get the desired inequality
∫ b
a
f =

∫ b
a
k 6M(b)−M(a).

Case 2: f is lower semiBaire 1. According to Proposition 3.5 there exists
an increasing sequence of bounded upper semicontinuous functions fn which
converges to f . Clearly, we may assume that each fn is nonnegative. So the
assertion follows from Theorem 4.2 and the first case.

Case 3: f ∈ C−+−. We choose a decreasing sequence of lower semiBaire 1
functions fn which converges to f . By Theorem 3.9 and Lemma 3.2 we may
assume that each fn satisfies the inequality fn 6 D•M . Thus we conclude by
applying the Monotone Convergence Theorem once more.

Theorem 4.4. Let f : [a, b] → R be an integrable function and let M be an
upper function of f . Then the two-sided lower derivate D•M is integrable.

Proof. We consider a function g ∈ C+−+ as in Theorem 4.1, and m a lower
function of g. Then we have the following inequalities:

0 6 D•M(x)− g(x) 6 D•M(x)−D•m(x) 6 D•(M −m)(x).

The function D•M − g is in C−+− by Theorem 3.9 and Lemma 3.3. Hence it
is integrable by the preceding proposition, and this implies that the function
D•M is also integrable (by Corollaries 2.9 and 2.11 we may modify D•M − g
and g on a negligible set so that the sum is well defined).

Remark 4.5. If M is an upper function of an integrable function f , then it
can be shown that D•M(x) = DM(x) nearly everywhere. (We use Lemma 3.8
and the elementary fact that M(x)−

∫ x
a
f is an increasing function.)
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5 Applications of the Theorems

Key-Lemma 5.1. Let g and h : [a, b] → R be two integrable functions with
g 6 h. If a function f ∈ C−+− satisfies g 6 f 6 h, then it is also integrable.

Proof. Let m be a lower function of g and M an upper function of h. Then
we have the following inequalities:

0 6 f(x)−D•m(x) 6 D•M(x)−D•m(x) 6 D•(M −m)(x).

The function f −D•m is in C−+− by Theorem 3.9 and Lemma 3.3. Hence it
is integrable by Proposition 4.3. Finally, f = (f −D•m) + D•m is integrable
by Theorem 4.4. (We also use Corollaries 2.9 and 2.11.)

Corollary 5.2. Let f , g and h : [a, b] → R be three integrable functions and
suppose that g 6 h. Then the function g ∨ f ∧ h is also integrable.

Proof. Let f1, g1 and h1 ∈ C−+− be upper approximations of the functions
f , g, h respectively, as in Theorem 4.1. We may assume that g1 6 h1. Since
the function g1∨ f1∧ h1 is in the class C−+−, it is integrable by the previous
lemma. So the assertion follows from Corollary 2.11.

Corollary 5.3. Let f : [a, b] → R be integrable. Then for any real numbers
α < β the truncated function α ∨ f ∧ β is integrable.

Corollary 5.4. Let f , g and h : [a, b] → R be three integrable functions and
suppose that f ∨ g 6 h. Then the function f ∨ g is also integrable.

Corollary 5.5. Let f and g : [a, b] → R be two integrable functions. If one
has |f | 6 g, then the function |f | is also integrable.

Proof. The functions f+ = 0 ∨ f and f− = 0 ∨ −f are integrable.

Corollary 5.6. Let f and g : [a, b] → R be two integrable functions with f
nonnegative and g bounded. Then the product f · g is also integrable.

Proof. We may assume that g is nonnegative. Let f1, g1 ∈ C−+− be upper
approximations of the functions f , g respectively, as in Theorem 4.1 (with g1
bounded). By Lemma 3.4 the function f1 · g1 is in C−+−, and it is integrable
by Lemma 5.1. So the assertion follows from Corollary 2.11.

We conclude this section by showing that the class of integrable functions
is closed under left composition with the bounded Borel functions. The proof
will use the following well-known result.
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Theorem 5.7. (Dominated Convergence Theorem) Let fn : [a, b] →
R be a sequence of integrable functions converging to some function f . We
suppose that there exist two integrable functions g and h : [a, b] → R with

g 6 fn 6 h for every n ∈ N. Then f is integrable, and
∫ b
a
f = limn→∞

∫ b
a
fn.

Proof. Classical argument using Fatou’s Lemma twice.

Proposition 5.8. Let ϕ : R → R be a (bounded) continuous function. Then
ϕ ◦ f is integrable for every integrable function f : [a, b]→ R.

Proof. By Theorem 4.1 there exists a Baire 3 function g : [a, b] → R which
satisfies f(x) = g(x) almost everywhere. The function ϕ ◦ g is clearly Baire 3
and bounded. By applying the Dominated Convergence Theorem three times
we obtain that ϕ ◦ g (and hence ϕ ◦ f) is integrable.

Corollary 5.9. Let ϕ : R → R be a bounded Borel function. Then ϕ ◦ f is
integrable for every integrable function f : [a, b]→ R.

Proof. By transfinite induction using the Dominated Convergence Theorem
to show that this property passes through the formation of limits.

6 Proof of Theorem C

By the Vitali-Carathéodory Theorem a function f : [a, b] → R is measurable
if and only if there exist two functions g ∈ C−+ and h ∈ C+− with g 6 f 6 h
and g(x) = h(x) almost everywhere. (For the case of a bounded f this follows
from Theorem B.) Here we shall use the following particular case:

Proposition 6.1. Let f : [a, b]→ R be lower semiBaire 1. Then there exists
an upper semiBaire 1 function h : [a, b]→ R with f 6 h and f(x) = h(x) a.e.

Proof. We first suppose that f is bounded. By Proposition 3.5 there exists
an increasing sequence of bounded upper semicontinuous functions fn which
converges to f . For every n ∈ N there exists a decreasing sequence of contin-
uous functions fnk which converges to fn. We may assume that the fnk’s are
globally bounded. And by the Monotone Convergence Theorem we may also

assume that
∫ b
a

(fnk − fn) < 1/2n+k. Now we put hnk := f1k ∨ · · · ∨ fnk. For
each k ∈ N the sequence hnk is increasing, and hence it converges to a lower
semicontinuous function hk > f . Then hnk − f 6

∑n
i=1(fik − fi) implies∫ b

a
(hnk − f) 6

∑n
i=1

∫ b
a

(fik − fi) 6
∑n

i=1 1/2i+k 6 1/2k,

and we thus get
∫ b
a

(hk − f) 6 1/2k by the Monotone Convergence Theorem.
Since the sequence hk is decreasing, it converges to a function h ∈ C+− with
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h > f . We remark that
∫ b
a

(h− f) = 0. Finally, by Theorem 2.7 we conclude
that f(x) = h(x) almost everywhere. The case of an unbounded function f is
proved by considering the function arctan ◦ f .

Corollary 6.2. Let f : [a, b]→ R be in the class C−+−. Then there exists an
upper semiBaire 1 function h : [a, b]→ R with f 6 h and f(x) = h(x) a.e.

Proof. There exists a decreasing sequence of functions fn ∈ C−+ which
converges to f . For each n ∈ N there exists an upper semiBaire 1 function hn
as in the previous proposition. Then the function h(x) := inf {hn(x) / n ∈ N}
is also upper semiBaire 1 (cf. Lemma 3.2), and the assertion is proved.

Theorem 6.3. (C) For a function f : [a, b]→ R the following are equivalent:

1) f is integrable,

2) for any ε > 0 there exist two integrable functions gε and hε such that

a) gε ∈ C+− and hε ∈ C−+, gε <∞ and hε > −∞,

b) gε 6 f 6 hε and
∫ b
a

(hε − gε) < ε,

3) there exist two integrable functions g and h such that

a) g ∈ C−+ and h ∈ C+−, g <∞ and h > −∞,

b) g 6 f 6 h and g(x) = h(x) almost everywhere.

Proof. (1⇒ 2) Consider a lower function m and an upper function M of f
with M(b)−m(b) < ε. We put gε = D•m and hε = D•M . We have gε ∈ C+−

and hε ∈ C−+ by Theorem 3.9. The functions are integrable by Theorem 4.4.

For the inequality
∫ b
a

(D•M −D•m) < ε we use Proposition 4.3 together with
the formula D•M(x)−D•m(x) 6 D•(M −m)(x).

(1⇒ 3) This follows from Theorem 4.1 and the preceding corollary.

Problem 1 Characterize the integrable functions f : [a, b] → R that can be
approximated by two Baire 1 functions gε and hε.

Problem 2 Find a direct proof of the differentiability a.e. of the indefinite
integral (which does not use the Vitali Covering Theorem).
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