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AN ELEMENTARY PROOF OF THE
BANACH–ZARECKI THEOREM

Abstract

In this paper we shall give a new, elementary proof of the Banach–
Zarecki theorem, based on the following classical result [3] (p. 183): If
{Ai}i is a sequence of decreasing sets in a measurable space (X,M, µ)
and µ(A1) < +∞ then µ(∩iAi) = limi→∞ µ(Ai).

There is a very rich literature concerning the Banach–Zarecki Theorem,
such as the books of Saks [5] (p. 227), Natanson [4] (p. 250), Foran [3] (p.
357), Ene [1] (pp. 81, 104) and a paper of Varberg [6] (p. 835). This theorem
asserts that if a continuous and V B function satisfies Lusin’s condition (N)
on an interval then it is also AC on that interval.

The proofs in [5], [3], [6] and [1] (p. 81) are based on the following result
(see Theorem 6.5 of [5], p. 227; Theorem 1 of [6], p. 834; Theorem 8.1 of
[3]): If a function F is derivable at every point of a measurable set D, then
m∗(F (D)) ≤ (L)

∫
D
|F ′

(x)|dx .
In [4], the Banach–Zarecki Theorem is proved in a totally different way,

namely using Lebesgue’s Convergence Theorem as well as the fact that the
Banach indicatrix for a continuous and V B function on [a, b] is summable
(see Theorem 3 of [4], p. 225).

In [1] (p. 104), the Banach–Zarecki Theorem is a consequence of some
general notion (AC∞, V B∞ etc.). Here the Banach indicatrix has also an
important role, but the proof is different from that in [4].

In this paper we shall give a new, elementary proof of the Banach–Zarecki
theorem, based on the following classical result [3] (p. 183): If {Ai}i is a
sequence of decreasing sets in a measurable space (X,M, µ) and µ(A1) < +∞
then µ(∩iAi) = limi→∞ µ(Ai).
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Let m(A) denote the Lebesgue measure of the set A, whenever A ⊂ R is
Lebesgue measurable, and m∗(X) the outer measure of the set X. We denote
by O(F ; [a, b]) the oscillation of the function F on [a, b], and by V (F ; [a, b])
the variation of F on [a, b]. For the definitions of V B and AC see [5].

Lemma 1. Let f : X 7→ Y and Y1 = {y ∈ Y : f−1(y) contains more than
one point}. If (Xi)i∈I is a family of subsets of X then

(∩i∈If(Xi)) \ Y1 ⊆ f(∩i∈IXi) ⊆ ∩i∈I f(Xi) .

Proof. Let y ∈ (∩i∈If(Xi)) \ Y1. Then there exists a unique point x ∈ X
such that y = f(x). Since y ∈ f(Xi) for each i ∈ I, it follows that there exists
xi ∈ Xi such that f(xi) = y, so xi = x. We obtain that x ∈ Xi for each
i ∈ I, hence x ∈ ∩i∈IXi. It follows that y = f(x) ∈ f(∩i∈IXi). The last
(well-known) inclusion is easy to verify.

Lemma 2. Let F : [a, b] 7→ R be an increasing function and let B = {y ∈
[F (a), F (b)] : F−1(y) contains more than one point}. Then:

(i) B is at most countable, hence B is a Borel set;

(ii) If Z ⊂ (a, b) is a Gδ-set then F (Z) is a Borel set.

Moreover, if Z = ∩∞i=1Gi, where each Gi is an open set, then

m(F (Z)) = m(∩∞i=1F (Gi)) .

Proof. (i) For y ∈ B let x
′

y = inf(F−1(y)) and x
′′

y = sup(F−1(y)) . By

hypotheses ∅ 6= (x
′

y, x
′′

y ) ⊂ F−1(y). Since

(x
′

y1 , x
′′

y1) ∩ (x
′

y2 , x
′′

y2) = ∅ whenever y1 6= y2 ,

it follows that B is at most countable.
(ii) Let Z = ∩∞i=1Gi, where each Gi is an open set. Then by Lemma 1 we

have
(∩∞i=1F (Gi)) \B ⊆ F (∩∞i=1Gi) ⊆ ∩∞i=1 F (Gi) . (1)

Since F is increasing, each F (Gi) is a countable union of intervals (some of
them might be degenerate). Hence each F (Gi) is a Borel set and by (1),
F (∩∞i=1Gi) is also a Borel set.

The last part follows by (i) and (1)

Lemma 3. Let F : [a, b] 7→ R be a continuous and increasing function. Then
F ∈ (N) on [a, b] if and only if m(F (Z)) = 0 whenever Z is a compact subset
of [a, b] and m(Z) = 0.
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Proof. “⇒” This is obvious.
“⇐” Suppose on the contrary that F /∈ (N) on [a, b]. Then there exists

a set Z ⊂ [a, b], with m(Z) = 0 such that m∗(F (Z)) > 0. We may suppose
without loss of generality that Z is of Gδ–type (because for Z there exists a
Gδ–set Z1 of measure zero, such that Z ⊂ Z1, so m∗(F (Z1)) > 0). Then F (Z)
is a Borel set of positive measure (see Lemma 2). Let K be a compact subset
of F (Z) of positive measure. Then K1 := F−1(K) is a compact subset of Z
(because F is continuous), and F (K1) = K, a contradiction.

Remark 1. In [2], Foran introduces the following condition: A function is
said to satisfy condition (N

′
) provided the image of closed sets of measure 0

is of measure 0.
Using this condition, Lemma 3 from above can be stated as follows: Let

F : [a, b] 7→ R be a continuous and increasing function. Then F ∈ (N) if and
only if F ∈ (N

′
).

Foran showed that conditions (N) and (N
′
) coincide for Baire functions

(in fact his results are much stronger). Hence Lemma 3 is a special case of
this result. On the other hand, our proof in this particular case is elementary.

Lemma 4. Let F : [a, b] 7→ R be such that F ([a, b]) is an interval. Suppose
that P is a perfect set containing the points a and b, and let {(ai, bi)}i be the
intervals contiguous to P . Then

|F (b)− F (a)| ≤ m(F ([a, b])) ≤ m∗(F (P )) +

∞∑
i=1

O(F ; [ai, bi]) .

Proof. We have

F ([a, b]) = F (P ∪ (∪∞i=1(ai, bi)) = F (P ) ∪ (∪∞i=1F ((ai, bi))) ,

hence

|F (b)− F (a)| ≤ m(F ([a, b]) ≤ m∗(F (P )) +

∞∑
i=1

m∗(F ((ai, bi))) ≤

≤ m∗(F (P )) +

∞∑
i=1

O(F ; [ai, bi]) .

Lemma 5. ([4], p. 224). Let f : [a, b] 7→ R be a continuous function. Subdi-
vide [a, b] by means of the points

xo = a < x1 < x2 < · · · < xn = b with max(xk+1 − xk) = λ ,
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and form the sums

V =

n−1∑
k=0

|f(xk+1)− f(xk)|.

If λ → 0 then each of the sums V tends to the total variation V (f ; [a, b]) of
the function f(x) (we do not suppose that the variation is finite).

Lemma 6. Let F : [a, b] 7→ R be a continuous and V B function, and let
H : [a, b] 7→ R. H(x) = V (F ; [a, x]). Then F ∈ (N) if and only if H ∈ (N).

Proof. “⇒” Clearly H is increasing and continuous on [a, b] (see Theorem 1
of [4], p. 223). Suppose on the contrary that H /∈ (N). By Lemma 3 it follows
that there exists a compact set Z ⊂ [a, b] of measure zero, such that H(Z) is
a compact set (because H is continuous) of positive measure. Let c = inf(Z),
d = sup(Z). We may suppose without loss of generality that Z is a perfect set
(if necessary eliminating the isolated points of Z, that are at most countable).
Let {(ai, bi)}i be the intervals contiguous to Z. Let α = m(H(Z)) > 0. For
each positive integer n let [ci, di], i = 1, 2, . . . , n be the closed subintervals of
[c, d] left after extracting the open intervals (ai, bi), i = 1, 2, . . . , n − 1. Let
λn = maxni=1(di − ci). Since m(Z) = 0 it follows that limn→∞ λn = 0. Let
c = xo < x1 < x2 < · · · < xp = d be a division of [c, d] that contains all ci
and di, each (ci, di) containing no xj , and such that xj − xj−1 < λn, for each
j = 1, 2, . . . , p. Let

Sn :=

p∑
j=1

|F (xj)− F (xj−1)|

and

Vn :=

n∑
i=1

|F (di)− F (ci)|+
n−1∑
i=1

V (F ; [ai, bi]) . (2)

Then Sn ≤ Vn ≤ V := V (F ; [c, d]). By Lemma 5 we have

lim
n→∞

Sn = V , so lim
n→∞

Vn = V .

It follows that there exists a positive integer no such that

Vn > V − α

2
, whenever n ≥ no . (3)
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By Theorem 5 of [4], p. 217, we obtain

V =

n∑
i=1

V (F ; [ci, di]) +

n−1∑
i=1

V (F ; [ai, bi]) =

=

n∑
i=1

(H(di)−H(ci)) +

n−1∑
i=1

V (F ; [ai, bi] . (4)

By (2), (3) and (4), for n ≥ no it follows that

n∑
i=1

|F (di)− F (ci)| >
n∑
i=1

(H(di)−H(ci))−
α

2
. (5)

Clearly
n∑
i=1

(H(di)−H(ci)) > m(H(Z)) = α ,

hence, by (5)
n∑
i=1

|F (di)− F (ci)| >
α

2
. (6)

By Lemma 4 (since m∗(F (Z)) = 0), for each i = 1, 2, . . . , n we have

|F (di)− F (ci)| ≤
∑

{j:[aj ,bj ]⊂[ci,di]}

O(F ; [aj , bj ]) ,

hence
n∑
i=1

|F (di)− F (ci)| ≤
∞∑
j=n

O(F ; [aj , bj ]) . (7)

By (6) and (7) it follows that for each n ≥ no we have

α

2
≤
∞∑
j=n

O(F ; [aj , bj ]) . (8)

But
∑∞
i=1O(F ; [aj , bj ]) ≤ V , so

lim
n→∞

∞∑
j=n

O(F ; [aj , bj ]) = 0 . (9)

By (8) and (9) we obtain that α
2 ≤ 0, a contradiction. Therefore H ∈ (N) on

[a, b].



300 Vasile Ene

“⇐” Let Z ⊂ [a, b], m(Z) = 0. We may suppose without loss of generality
that Z is a Gδ-set of the form Z = ∩∞i=1Gi, Gi open sets and G1 ⊃ G2 ⊃ · · · .
By Lemma 2,

m(H(Z)) = m(∩∞i=1H(Gi)) = 0 .

Since the sequence of sets {H(Gi)}i is decreasing it follows that

lim
i→∞

m(H(Gi)) = 0 .

Let Gi := ∪∞j=1(aij , b
i
j). For each i we have

m(F (Z)) = m(F (∪∞j=1(Z ∩ (aij , b
i
j))) ≤

∞∑
j=1

m∗(F ;Z ∩ (aij , b
i
j)) <

<

∞∑
j=1

O(F ; [aij , b
i
j ]) =

∞∑
j=1

(H(bij)−H(aij)) = m(H(Gi)) .

Therefore m(F (Z)) = 0.

Lemma 7. Let F : [a, b] 7→ R be a continuous and increasing function, satis-
fying Lusin’s condition (N). Then F ∈ AC on [a, b].

Proof. We shall follow the first part of the proof of the Banach–Zarecki
Theorem ([4], p. 250). Suppose that F /∈ AC on [a, b]. Then there is a
number εo > 0 having the following property: for every δ > 0 there exists a
finite family of pairwise disjoint open intervals {(ak, bk)}k, k = 1, 2 . . . , n such
that

n∑
k=1

(bk − ak) < δ and

n∑
k=1

(F (bk)− F (ak)) ≥ εo .

Let
∑∞
i=1 δi be a convergent series of positive terms, and for every δi, let

{(aik, bik)}k, k = 1, 2, . . . , ni be a collection of pairwise disjoint open intervals
such that

ni∑
k=1

(bik − aik) < δi and

ni∑
k=1

(F (bik)− F (aik)) ≥ εo .

Let

Ei =

ni∑
k=1

(aik, b
i
k) and A = ∩∞i=1(∪∞i=nEi) .
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It is easy to verify that m(A) = 0. By hypotheses it follows that m(F (A)) = 0.
Let Gn := ∪∞i=nEi. Then

m(F (Gn)) ≥ m(F (En)) =

ni∑
k=1

(F (bik)− F (aik) ≥ εo .

By Lemma 2 we have

0 = F (A) = m(∩∞n=1F (Gn)) = lim
n→∞

m(F (Gn)) ≥ εo ,

a contradiction.

Lemma 8. Let F,H : [a, b] 7→ R, H(x) = V (F ; [a, x]). If H ∈ AC on [a, b]
then F ∈ AC on [a, b].

Proof. This follows by the fact that |F (β)−F (α)| ≤ H(β)−H(α) , whenever
[α, β] ⊆ [a, b].

The Banach–Zarecki Theorem. Let F : [a, b] 7→ R. If F is a continuous
and V B function, satisfying Lusin’s condition (N) then F is AC on [a, b].

Proof. Let H : [a, b] 7→ R, H(x) := V (F ; [a, x]). By Lemma 6, H is con-
tinuous and increasing, and satisfies condition (N) on [a, b]. By Lemma 7,
H ∈ AC on [a, b]. By Lemma 8 it follows that F ∈ AC on [a, b].
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