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ON THE MEASURABILITY OF
FUNCTIONS DEFINED ON THE PRODUCT

OF TWO TOPOLOGICAL SPACES

Abstract

Some conditions implying the measurability of functions defined on
the product of two topological spaces are investigated.

Let R denote the set of all reals and let (X, TX) and (Y, TY ) be topological
spaces. Moreover, let µ1 and µ2 respectively, be σ-finite measures defined on
some σ-fields M1 ⊃ TX and M2 ⊃ TY . Assume that

(1) for every set A ∈ M1 with µ1(A) > 0 there is a set B ∈ TX such that
B ⊂ A and µ1(B) > 0;

(2) µ1(A) > 0 for all nonempty sets A ∈ TX .

A function f : X → R is called TX -quasicontinuous (TX -cliquish) at a point
x ∈ X ([5] if for every positive real η and for every set U ∈ TX containing x
there is a nonempty set V ∈ TX such that V ⊂ U and |f(v) − f(x)| < η for
all points v ∈ V (oscV f < η, where oscV f denotes the diameter of the set
f(V )).

In the proofs we will use the following Davies lemma ([2, 3]):

Lemma 1. Suppose that the measure µ1 is complete and a function f : X → R
is such that for every positive real η and for every set A ∈M1 with µ1(A) > 0
there is a set B ∈M1 such that B ⊂ A, µ1(B) > 0 and oscB f < η. Then the
function f is µ1-measurable.

Remark 2. If a function f : X → R is measurable with respect to µ1,
then it is TX-cliquish at every point x ∈ X;
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If the measure µ1 is complete, then every function f : X → R is
TX-cliquish at each point is µ1-measurable.

Proof. Assume that the function f is µ1-measurable and fix a positive real
η, a point x ∈ X and a set U ∈ TX containing x. Since the function f is µ1-
measurable and µ1(U) > 0, there is an open interval I of the length d(I) < η
such that µ1(f−1(I) ∩ U) > 0. By (1) there is a nonempty set V ∈ TX such
that V ⊂ U ∩ f−1(I). Since d(I) < η, we obtain oscV f < η.

Now, we suppose that the function f is TX -cliquish at every point. Fix a
positive real η and a set A ∈M1 with µ1(A) > 0. By (1) there is a nonempty
set U ∈ TX such that U ⊂ A. Fix a point x ∈ U . Since the function f
is TX -cliquish at x, there is a nonempty set V ∈ TX such that V ⊂ U and
oscV f < η. Since V ∈ M1 and µ1(V ) > 0, we obtain by Davies’s Lemma
that the function f is measurable with respect to µ1.

Remark 3. If a function f : X → R is µ1-measurable and if C(f) denotes
the set of all TX-continuity points of f , then µ1(X \ C(f)) = 0.

Proof. Suppose, to the contrary, that µ1(X \ C(f)) > 0. For a point x ∈ X
let

osc f(x) = inf{d(f(A));x ∈ A ∈ TX},
where d(f(A)) denotes the diameter of the set f(A). Evidently,

X \ C(f) =

∞⋃
n=1

{x; osc f(x) ≥ 1/n}.

So, there is a positive integer n such that An = {x; osc f(x) ≥ 1/n} is not
of measure µ1 zero. Since the set An is TX -closed, we have An ∈ M1 and
µ1(An) > 0. By (1) there is a nonempty set U ∈ TX such that U ⊂ An. Fix a
point x ∈ U . Since the function f is TX -cliquish at x, there is a nonempty set
V ∈ TX such that

(V ⊂ U ⊂ An) ∧ (oscV f < 1/n).

So, we obtain a contrary with the inequality osc f(v) ≥ 1/n for v ∈ V .

Now, we will consider some functions of two variables.
For this, let M = M1 × M2 and let µ be the completion of the product
measure µ1 × µ2. Assume also that:

(3) For every set A ∈ M with µ(A) > 0 there is a set B ∈ M such that
(B ⊂ A) ∧ (µ(B) > 0), all sections

Bx = {y ∈ Y ; (x, y) ∈ B} ∈ TY ; x ∈ X,



Measurability of Functions Defined on a Product 205

and all sections

By = {x ∈ X; (x, y) ∈ B} ∈ TX ; y ∈ Y.

Let A ⊂M2 be a family of subsets of Y of positive measure µ2, let y ∈ Y
be a point and let f : Y → R be a function. We will write:

f ∈ B(A) if and only if for every positive real η and for every set U ∈ TY
there is a set A ∈ A such that

(µ2(A ∩ U) > 0) ∧ (oscA∩U f < η);

f ∈ Qs(y,A) if and only if for every positive real η and for every set
U ∈ TY containing y there is a nonempty set V ∈ A such that

(µ2(V ∩ U) > 0) ∧ (|f(t)− f(y)| < η)

for all points t ∈ V ∩ U .

Theorem 4. Let f : X × Y → R be a function such that all sections fy(x) =
f(x, y), x ∈ X and y ∈ Y , are TX-quasicontinuous at every point x ∈ X. If
there is a countable family A ⊂ M2 of subsets of Y of positive measure µ2

such that for every point x ∈ X the section fx(y) = f(x, y), y ∈ Y , belongs to
the family B(A), then the function f is measurable with respect to the measure
µ.

Proof. We will prove that the function f satisfies the hypothesis of Davies
Lemma. Fix a positive real η and a set A ∈ M such that µ(A) > 0. By (3)
there is a set B ∈M such that (B ⊂ A) ∧ (µ(B) > 0) and all sections

Bx ∈ TY , x ∈ X and By ∈ TX , y ∈ Y.

Enumerate all sets of the family A in a sequence (finite or not)

A1, . . . , An, . . . .

By our hypothesis for every point (x, y) ∈ B there is a set A(x, y) ∈ A such
that

oscA(x,y)∩Bx
fx < η/8 and µ2(A(x, y) ∩Bx) > 0.

Since µ(B) > 0, there is a positive integer n such that the set

D = {(x, y) ∈ B;A(x, y) = An}
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is not of measure µ zero. Let

PrX(D) = {x ∈ X;∃y(x, y) ∈ D}

and let E ⊂ X be a µ1-measurable covering of the set PrX(D), i.e. the set
E ∈ M1, PrX(D) ⊂ E and every µ1-measurable set S ⊂ E \ PrX(D) is such
that µ1(S) = 0. Evidently, µ1(E) > 0. By (1) there is a nonempty set U
such that (U ∈ TX) ∧ (U ⊂ E). Fix a point (x, y) ∈ (U × An) ∩ B. Since
x ∈ U ∩By and the section fy is TX -quasicontinuous at x, there is a nonempty
set V ⊂ U ∩By such that

(V ∈ TX) ∧ (oscV f
y < η/8).

If points
(u1, v1), (u2, v2) ∈ ((V ∩ PrX(D))×An) ∩B,

then

|f(u1, v1)− f(u2, v2)| ≤ |f(u1, v1)− f(u1, y)|+ |f(u1, y)− f(u2, y)|

+|f(u2, y)− f(u2, v2)| < η/8 + η/8 + η/8 = 3η/8

So, there is a closed interval I of the length d(I) ≤ 3η/8 such that

f(((V ∩ PrX(D))×An) ∩B) ⊂ I.

Let J be the closed interval of the length 3η/4 having the same center as I.
Assume, to the contrary, that there is a point (u, v) ∈ (V ×An)∩B such that
f(u, v) ∈ R \ J. Since u ∈ V ∩ Bv ∈ TX , by the TX -quasicontinuity of the
section fv at the point u we obtain the existence of a nonempty set W ∈ TX
such that

W ⊂ V ∩Bv ∧ ∀w∈W f(w, v) ∈ R \ J.

But
(µ1(W ) > 0) ∧ (W ⊂ U ⊂ E),

so there is a point

s ∈W ∩ PrX(D) ⊂ V ∩ PrX(D).

Observe that
(v ∈ An) ∧ (s ∈W ⊂ Bv) ∧ ((s, v) ∈ B).

Since s ∈ PrX(D), we have f(s, v) ∈ I. So, we obtain a contradiction to
f(s, v) ∈ R \ J.
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By Fubini’s theorem the µ-measurable set P = (V ×An)∩B is of positive
measure µ. So,

P ⊂ A ∧ µ(P ) > 0 and oscP f ≤ d(J) < η

and, by Davies’s Lemma, the function f is µ-measurable.

Remark 5. Observe that in Theorem 1, it is suffices to assume only that the
sections fx belong to the family B(A) with the exception of a set of measure
µ1 zero.

Remark 6. If X = Y = R, µ1 = µ2 is Lebesgue measure in X = Y and T
is the density topology (see [1]), then the conditions (1), (2), (3) are satisfied.
There is a nonmeasurable (in the Lebesgue sense) set A ⊂ R2 such that all
sections Ax, Ay, x, y ∈ R, are empty or contain only one point (see [6]). Let
A be the family of all open intervals with rational endpoints. If f(x, y) = 1 for
(x, y) ∈ A and 0 otherwise on R2, then the function f is nonmeasurable and
the sections fx and fy, x, y ∈ R, are measurable and belong to B(A).

Theorem 7. Let f : X × Y → R be a function such that the sections fy,
y ∈ R, are µ1-measurable. Suppose that there is a countable family A ⊂ M2

of sets of positive measure µ2 such that for every positive real η and for each
nonempty set U ∈ M2 with µ2(U) > 0 there is a set A ∈ A such that A ⊂ U
and for each point x ∈ R the relation oscA fx < η holds. Then the function f
is µ-measurable.

Proof. Let B ∈ M be a set of positive measure µ and let η be a positive
real. There is a µ-measurable set D ⊂ B such that µ(D) > 0 and all sections
Dx ∈ TY , x ∈ X, and Dy ∈ TX , y ∈ Y . By Fubini’s theorem and our
hypothesis there are an interval I and a set A ∈ A such that the set

E = {u ∈ Dy;A ⊂ Du ∧ fu(A) ⊂ I}

is not of measure µ1 zero and d(I) < η/8.
Let F ⊂ A be a nonempty set belonging to A such that for each point

x ∈ X the inequality oscF fx < η/8 is true. If G ⊃ E is µ1-measurable
covering of the set E, then there is a nonempty set H ⊂ G belonging to TX .
Let K = (H × F ) ∩D and let J be a closed interval having the same center
as I and such that d(J) = 3η/4. The set K is µ-measurable and µ(K) > 0.
Observe that if for a point x ∈ R there is a point t ∈ F such that f(x, t) ∈ R\J ,
then fx(F ) ⊂ R \ I. Since the sections fv are µ1-measurable, the set

S = {u ∈ H : ∃t∈F f(u, t) ∈ R \ J}
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is of measure µ1 zero. Consequently, f(K \ (S × F )) ⊂ J. Since

(K \ (S × F ) ⊂ B) ∧ (µ(K \ (S × F )) > 0),

by Davies’s Lemma, the function f is µ-measurable.

Theorem 8. Let f : X × Y → R be a function such that all sections fy,
y ∈ Y , are µ1-measurable. If there is a countable family A ⊂ M2 of sets of
positive measure µ2 such that for every point x ∈ X and for every point y ∈ Y
the relation fx ∈ Qs(y,A) is true, then the function f is µ-measurable.

Proof. Fix a positive real η and a set A ∈ M with µ(A) > 0. By (3) there
is a µ-measurable set B ⊂ A such that µ(B) > 0 and

∀(x,y)∈B [(Bx ∈ TY ) ∧ (By ∈ TX)].

Fix a point (x, y) ∈ B. By Remark 1 the section fy is TX -cliquish at the point
x. From the TX -cliquishness of the section fy at x it follows that there is a
nonempty set D such that

D ⊂ By ∧D ∈ TX ∧ oscD f
y < η/20.

By our hypothesis for every point u ∈ D there is a set A(u) ∈ A such that

µ2(A(u) ∩Bu) > 0;

|f(u, t)− f(u, y)| < η/20 for every point t ∈ A(u) ∩Bu.

Since the family A is countable and µ1(D) > 0, there is a set E ∈ A such
that the set F = {u ∈ D;A(u) = E} is not of measure µ1 zero. Let G be
µ1-measurable covering of the set F and let H be a nonempty set such that
H ⊂ G∩D ∧ H ∈ TX . If points (u1, v1), (u2, v2) belong to the set (F×E)∩B,
then

|f(u1, v1)− f(u2, v2)| ≤ |f(u1, v1)− f(u1, y)|+ |f(u1, y)− f(u2, y)|

+|f(u2, y)− f(u2, v2)| < η/20 + η/20 + η/20 = 3η/20.

So, there is a closed interval I such that

d(I) ≤ 3η/20 ∧ f((F × E) ∩B) ⊂ I.

Let J be the closed interval having the same center as I and such that d(J) =
3η/4. Put K = (H × E) ∩ B. The set K ∈ M and by Fubini’s theorem
µ(K) > 0. Let P ⊂ K be a µ-measurable set such that µ(P ) > 0 and

∀(u,v)∈P [(Pu ∈ TY ) ∧ (P v ∈ TX)].
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We will prove that µ(P \ f−1(J)) = 0. Assume, to the contrary, that the set
L = P \f−1(J) is not of measure µ zero. Then for every point (u, v) ∈ L there
is a set B(u, v) ∈ A such that

µ2(B(u, v) ∩ Pu) > 0;

f(u,w) ∈ R \ J for every point w ∈ B(u, v) ∩ Pu.

Since the family A is countable, there is a set N ∈ A such that the set

M = {(u, v) ∈ L;B(u, v) = N}

is not of measure µ zero. Let M1 be a µ1-measurable covering of the projection
PrX(M) and let Q ∈ TX be a nonempty set contained in the set M1 ∩ H.
Evidently,

S = (Q×N) ∩ P ∈M;

µ(S) > 0;

f((M ×N) ∩ P ) ⊂ R \ J .

Fix a point (u, v) ∈ S. Since the section fv is TX -cliquish at the point u, there
is a nonempty set U ∈ TX such that

(U ⊂ Q ∩ P v) ∧ (oscU f
v < η/20).

There are points (s, v), (t, v) belonging to S with s ∈ U ∩ D and t ∈ U ∩
PrX(M). Then (f(s, v) ∈ I) ∧ (f(t, v) ∈ R \ J). Consequently, we obtain

|f(s, v)− f(t, v)| ≥ 3η/8− 3η/40 > η/5,

and oscU f
v > η/20. This contradiction shows that µ(P \ f−1(J)) = 0. The

set P ∩ f−1(J) ⊂ A is µ-measurable, µ(P ∩ f−1(J)) > 0 and

osc(P∩f−1(J)) f ≤ d(J) < η.

Hence, by Davies’s Lemma, the function f is µ-measurable.

Particular cases of properties B(A) and Qs(A) are investigated in [3, 4].
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