Vasile Ene, Ovidius University Constanța, Romania Current address: 23 August 8717, Jud. Constanța, Romania e-mail: ene@523aug.sfes.ro or ene@univ-ovidius.ro

CONVERGENCE AND APPROXIMATE DIFFERENTIATION

Abstract

The main result of this paper is Theorem 1, which states the following: Let $F, F_n : [a, b] \to \mathbb{R}$, n = 1, 2, ... be Lebesgue measurable functions such that $\{F_n\}_n$ converges pointwise to F on [a, b]. If each F_n is approximately derivable *a.e.* on [a, b], $\{F_n\}_n$ is uniformly absolutely continuous on a set $P \subset [a, b]$, and $\{(F_n)'_{ap}\}_n$ converges in measure to a measurable function g, finite *a.e.* on [a, b], then F is approximately derivable *a.e.* on P and $F'_{ap}(x) = g(x)$ *a.e.* on P. An immediate consequence of this result is the famous theorem of Džvaršeišvili on the passage to the limit for the Denjoy and Denjoy^{*} integrals (see Theorem 47, p. 40 of [3]). As was pointed out by Bullen in [3] (p. 309), "the \mathcal{D}^* integral case of Theorem 47 of [3] was rediscovered by Lee P. Y." (see also Theorem 7.6 of [7]).

1 Preliminaries

We shall denote the Lebesgue measure of the set A by m(A), whenever $A \subset \mathbb{R}$ is Lebesgue measurable. If $f : [a, b] \to \mathbb{R}$ and $[\alpha, \beta] \subseteq [a, b]$, then let $\mathcal{O}(F; [\alpha, \beta] = \sup\{|F(y) - F(x)| : x, y \in [\alpha, \beta]\}$. Let \mathcal{C} denote the class of all continuous functions and \mathcal{C}_{ap} the class of all approximately continuous functions. A function $f : P \to \mathbb{R}$ is said to satisfy Lusin's condition (N), if m(F(Z)) = 0, whenever m(Z) = 0. For the definitions of AC, AC^* , VB and VB^* see [11].

Definition 1. ([11], p. 221). Let $F : P \to \mathbb{R}$, and $Q \subseteq P$. We denote by V(F;Q) the upper bound of the numbers $\sum_i |F(b_i) - F(a_i)|$, where $\{[a_i, b_i]\}_i$ is any sequence of nonoverlapping closed intervals with endpoints in Q. (We may suppose without loss of generality that $\{[a_i, b_i]\}_i$ is a finite set.)

Key Words: UAC, UAC^* , approximate derivative, convergence

Mathematical Reviews subject classification: 26A24, 26A39

Received by the editors January 16, 1997

Definition 2. Let $E \subseteq [a, b]$. A function $F : [a, b] \to \mathbb{R}$ is said to be ACG (respectively AC^*G , VBG, VB^*G , CG) on E if there exists a sequence of sets $\{E_n\}$ with $E = \bigcup_n E_n$, such that F is AC (respectively AC^* , VB, VB^* , C) on each E_n . If in addition the sets E_n are supposed to be closed we obtain the classes [ACG], $[AC^*G]$, [VBG], $[VB^*G]$, [CG]. Note that ACG and AC^*G used here differ from those of [11] (because in our definitions the continuity is not assumed).

2 Main Theorem

Lemma 1. Let P be a subset of [a,b] and $F: P \to \mathbb{R}$ an AC function. Then there exists a function $G: \overline{P} \to \mathbb{R}$, $G \in AC$ such that $G_{|P} = F$. Moreover, if for $\epsilon > 0$, $\delta_{\epsilon} > 0$ is given by the fact that $F \in AC$ on P, then $\delta_{\frac{\epsilon}{3}}$ satisfies the definition of G being AC on \overline{P} for ϵ . As a consequence, if F is measurable, then F is approximately derivable a.e. on P.

PROOF. Let $x_o \in \overline{P}$. For $\epsilon > 0$ let $\delta_{\epsilon} > 0$ be given by the fact that $F \in AC$ on P. Then $|F(x) - F(y)| < \epsilon$ whenever $x, y \in (x_o - \delta_{\epsilon}/2, x_o + \delta_{\epsilon}/2) \cap P$. By the Cauchy criterion, the following limits exist and are finite:

$$\lim_{x \nearrow x_o, x \in P} F(x), \quad \lim_{x \searrow x_o, x \in P} F(x), \quad \lim_{x \to x_o, x \in P} F(x),$$

whenever x_o is a left, right or bilateral accumulation point of P respectively. If $x_o \in P$ any of the three limits equals $F(x_o)$, provided they exist. Let $G: \overline{P} \to \mathbb{R}$ be defined by

$$G(x) = \begin{cases} F(x) & \text{if } x \text{ is an isolated point of } P \\ \lim_{\substack{x \in P \\ x \in P}} F(x) & \text{if } x \text{ is a right accumulation point of } P \\ \lim_{\substack{x \in P \\ x \in P}} F(x) & \text{if } x \text{ is a left accumulation point of } P. \end{cases}$$

Let $\{[a_i, b_i]\}$, i = 1, 2, ..., n be a finite set of closed intervals with endpoints in \overline{P} , $a_1 < b_1 \leq a_2 < b_2 \leq \cdots \leq a_n < b_n$, such that $\sum_{i=1}^n (b_i - a_i) < \delta_{\frac{\epsilon}{3}}$. Let $\mathcal{A}_1 = \{i : i = \text{odd}, i \leq n\}$ and $\mathcal{A}_2 = \{i : i = \text{even}, i \leq n\}$. Then there exists a finite set $\{[x_i, y_i]\}_{i \in \mathcal{A}_1}$ of nonoverlapping closed intervals with endpoints in P such that

$$|F(x_i) - G(a_i)| < \frac{\epsilon}{6(n+1)}, \quad |F(y_i) - G(b_i)| < \frac{\epsilon}{6(n+1)}$$

and

$$\sum_{i \in \mathcal{A}_1} (y_i - x_i) < \delta_{\frac{\epsilon}{3}} \,.$$

It follows that

$$\sum_{i \in \mathcal{A}_1} |G(b_i) - G(a_i)| \le \sum_{i \in \mathcal{A}_1} |G(a_i) - F(x_i)| + \sum_{i \in \mathcal{A}_1} |F(x_i) - F(y_i)| + \sum_{i \in \mathcal{A}_1} |F(y_i) - G(b_i)| < \frac{\epsilon}{12} + \frac{\epsilon}{3} + \frac{\epsilon}{12} = \frac{\epsilon}{2}$$

Similarly it follows that

$$\sum_{i \in \mathcal{A}_2} |G(b_i) - G(a_i)| < \epsilon/2.$$

Therefore $\sum_{i=1}^{n} |G(b_i) - G(a_i)| < \epsilon$. The last assertion follows from Theorem 4.2 of [11], p. 222 and by the fact that an *AC* function on a set is *VB* on that set.

Definition 3. ([3], p. 38). Let P be a real set and $F_n : P \to \mathbb{R}, n = 1, 2, \dots$

- The sequence $\{F_n\}_n$ is said to be UAC on P if it has the following property: for every $\epsilon > 0$ there is a $\delta_{\epsilon} > 0$ such that $\sum_{k=1}^{m} |F_n(\beta_k) F_n(\alpha_k)| < \epsilon$ for all $n = 1, 2, \ldots$, whenever $\{[\alpha_k, \beta_k]\}, k = 1, 2, \ldots, m$ is a finite set of nonoverlapping closed intervals with endpoints in P and $\sum_{k=1}^{m} (\beta_k \alpha_k) < \delta_{\epsilon}$.
- The sequence $\{F_n\}_n$ is said to be UACG on P, if $P = \bigcup P_k$ and $\{F_n\}_n$ is UAC on each P_k . If in addition each P_k is supposed to be closed, then $\{F_n\}_n$ is said to be [UACG] on P.

Remark 1. If P is a closed set, then [UACG] is in fact Džvaršeišvili's condition "UACG" of [3], p. 38 (this follows using the technique of the proof of Theorem 9.1 of [11], p. 233). This fact, for P = [a, b], was pointed out by Bullen (see [3], p. 308).

Corollary 1. Let P be a subset of [a, b] and let $F_n : P \to \mathbb{R}$, n = 1, 2, ..., If $\{F_n\}_n$ is UAC on P, then there exist $G_n : \overline{P} \to \mathbb{R}$, $n = 1, 2, ..., (G_n)_{/P} = F_n$, such that $\{G_n\}_n$ is UAC on \overline{P} . Moreover, if for $\epsilon > 0$, $\delta_{\epsilon} > 0$ is given by the fact that $\{F_n\}_n$ is UAC on P, then $\delta_{\epsilon/3}$ satisfies the definition of $\{G_n\}_n$ being UAC on \overline{P} for ϵ .

Lemma 2. Let P be a closed subset of [a, b], $a, b \in P$ and let $F : [a, b] \to \mathbb{R}$ be a function which is linear on the closure of each interval contiguous to P. Then V(F; [a, b]) = V(F; P). PROOF. Clearly $V(F; P) \leq V(F; [a, b])$. Therefore we only need to show that $V(F; [a, b]) \leq V(F; P)$. Let

$$\Delta: a = a_o < a_1 < \ldots < a_m = b$$

be a division of [a, b]. Let $\Delta_1 := \Delta \cup \{$ the endpoints of those intervals contiguous to P which contain points of $\Delta \}$. Suppose that

$$\Delta_1: a = \alpha_o < \alpha_1 < \ldots < \alpha_n = b.$$

Let $\Delta_2 = \Delta_1 \cap P$. Suppose that

$$\Delta_2: a = \beta_1 < \ldots < \beta_p = b.$$

Then

$$\sum_{i=1}^{m} |F(a_i) - F(a_{i-1})| \le \sum_{i=1}^{n} |F(\alpha_i) - F(\alpha_{i-1})| = \sum_{i=1}^{p} |F(\beta_i) - F(\beta_{i-1})|.$$

(The equality follows by the fact that F is linear on the closure of each interval contiguous to P.) Therefore $V(F; [a, b]) \leq V(F; P)$.

Lemma 3. Let P be a subset of [a, b] and let $F : P \to \mathbb{R}$, $F \in AC$. For $\epsilon > 0$ let $\delta_{\epsilon} > 0$ be given by the fact that $F \in AC$ on P. Then there exists a function $\tilde{F} : [a, b] \to \mathbb{R}$, $\tilde{F} \in AC$ such that $\tilde{F}_{/P} = F$ and

$$(\mathcal{L})\int_A |\tilde{F}'(t)| dt < \epsilon$$

whenever A is a measurable subset of \overline{P} with $m(A) < \delta_{\epsilon/6}$.

PROOF. For $\epsilon > 0$ let $\delta_{\epsilon} > 0$ be given by the fact that $F \in AC$ on P. Let $c_o = \inf(P), d_o = \sup(P)$, and let $(c_k, d_k), k = 1, 2, \ldots$ be the intervals contiguous to \overline{P} . By Lemma 1 there exists $G : \overline{P} \to \mathbb{R}$ such that $G \in AC$ on $\overline{P}, G_{/P} = F$ and for ϵ , the number $\delta_{\frac{\epsilon}{3}}$ is the δ given by the fact that $G \in AC$ on \overline{P} . Let $\tilde{F} : [a, b] \to \mathbb{R}$ be defined by

$$\tilde{F}(x) = \begin{cases} G(c_o) & \text{if } x \in [a, c_o] \\ G(x) & \text{if } x \in \overline{P} \\ linearly & \text{on each } [c_k, d_k] \\ G(d_o) & \text{if } x \in [d_o, b]. \end{cases}$$

Then $\tilde{F} \in AC$ on [a, b]. (See for example Theorem 2.11.1 (xviii) of [4].) Let A be a measurable subset of \overline{P} with $m(A) < \delta_{\epsilon/6}$. Then there exists a sequence $\{(\alpha_i, \beta_i)\}_i$ such that $(\alpha_i, \beta_i) \cap A \neq \emptyset$ for each $i, A \subset \bigcup_{i=1}^{\infty} (\alpha_i, \beta_i)$ and $\sum_{i=1}^{\infty} (\beta_i - \alpha_i) < \delta_{\epsilon/6}$. Let $a_i = \inf(\alpha_i, \beta_i) \cap \overline{P}$ and $b_i = \sup(\alpha_i, \beta_i) \cap \overline{P}$. Then $a_i, b_i \in \overline{P}$ and

$$(\mathcal{L})\int_{A} |\tilde{F}'(t)|dt \leq \sum_{i=1}^{\infty} (\mathcal{L})\int_{a_{i}}^{b_{i}} |\tilde{F}'(t)|dt =$$

$$= \sum_{i=1}^{\infty} V(\tilde{F}; [a_{i}, b_{i}]) = \sum_{i=1}^{\infty} V(G; [a_{i}, b_{i}] \cap \overline{P}).$$
(1)

(The first equality follows by Theorem 8 of [8], p. 259, and the second equality follows by Lemma 2.)

For each i there exists a division

$$\Delta_i : a_i = a_{i,0} < a_{i,1} \dots < a_{i,j_i} = b_i$$

with each point in \overline{P} such that

$$V(G; [a_i, b_i] \cap \overline{P}) < \frac{\epsilon}{2^{i+1}} + \sum_{k=1}^{j_i} |G(a_{i,k}) - G(a_{i,k-1})|.$$
(2)

By (1) and (2), it follows that

$$(\mathcal{L})\int_{A}|\tilde{F}'(t)|dt \leq \sum_{i=1}^{\infty} V(G;[a_{i},b_{i}]\cap\overline{P}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Corollary 2. (An extension of Lemma 2 of [3], p. 38). Let $P \subseteq [a, b]$ and let $\{F_n\}_n$ be a UAC sequence on P. For $\epsilon > 0$ let $\delta_{\epsilon} > 0$ be given by the latter fact. Then there exist $\tilde{F}_n : [a, b] \to \mathbb{R}$ such that $\tilde{F}_n \in AC$, $(\tilde{F}_n)_P = F_n$ and

$$(\mathcal{L})\int_{A}|\tilde{F}_{n}^{'}(t)|dt<\epsilon\,,$$

for all n = 1, 2, ..., whenever A is a measurable subset of \overline{P} with $m(A) < \delta_{\epsilon/6}$. PROOF. Apply Lemma 3 to each F_n .

Corollary 3. Let $\{F_n\}_n$ be an UAC sequence on [a, b], and let $x_o \in [a, b]$ such that $\lim_{n\to\infty} F_n(x_o) = \ell \in \mathbb{R}$. Let $g: [a, b] \to \mathbb{R}$ be finite a.e. such that $\{F'_n\}_n$ converges to g in measure. Then g is Lebesgue integrable on [a, b]. Moreover, if $G(x) = \ell + (\mathcal{L}) \int_{x_o}^x g(t) dt$, then $\{F_n\}_n$ converges uniformly to G on [a, b] and G'(x) = g(x) a.e. on [a, b].

PROOF. By Corollary 2, the summable functions F'_n , n = 1, 2, ... have equiabsolutely continuous integrals. (The functions of a family \mathcal{M} of summable functions defined on a set E, are said to have equi-absolutely continuous integrals, if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $|\int_Q f(x)dx| < \epsilon$, $(\forall) f \in \mathcal{M}$, whenever Q is a measurable subset of E with $m(Q) < \delta$; [8], p. 151.) By Vitali's theorem ([8], p. 152), g is Lebesgue integrable on [a, b], and by the proof of the same theorem it follows that

$$\lim_{n \to \infty} (\mathcal{L}) \int_{a}^{b} |F'_{n}(t) - g(t)| dt = 0$$

For $\epsilon > 0$ there exists a positive integer n_{ϵ} such that

$$(\mathcal{L})\int_{a}^{b}|F_{n}^{'}(t)-g(t)|dt<\frac{\epsilon}{2} \text{ and } |F_{n}(x_{o})-\ell|<\frac{\epsilon}{2}$$

whenever $n \ge n_{\epsilon}$. Suppose that $x \ge x_o$. Then

$$|F_n(x) - G(x)| = \left| F_n(x_o) + (\mathcal{L}) \int_{x_o}^x F'_n(t)dt - \ell - (\mathcal{L}) \int_{x_o}^x g(t)dt \right|$$

$$\leq |F_n(x_o) - \ell| + (\mathcal{L}) \int_{x_o}^x |F'_n(t) - g(t)|dt < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

whenever $n > n_{\epsilon}$. Similarly, if $x < x_o$, then we obtain $|F_n(x) - G(x)| < \epsilon$, whenever $n > n_{\epsilon}$. Therefore $\{F_n\}_n$ converges uniformly to G on [a, b]. That G'(x) = g(x) a.e. on [a, b] is obvious.

Definition 4. ([3], p. 38). Let $P \subset [a, b]$ and $F_n : [a, b] \to \mathbb{R}, n = 1, 2, \dots$

• The sequence $\{F_n\}_n$ is said to be UAC^* on P if it has the following property: for every $\epsilon > 0$ there exists a $\delta_{\epsilon} > 0$ such that

$$\sum_{k=1}^{m} \mathcal{O}(F_n; [\alpha_k, \beta_k]) < \epsilon, \quad n = 1, 2, \dots,$$

whenever $\{[\alpha_k, \beta_k]\}, k = 1, 2, ..., m$ is a set of nonoverlapping closed intervals with endpoints in P and $\sum_{k=1}^{m} (\beta_k - \alpha_k) < \delta_{\epsilon}$.

• The sequence $\{F_n\}_n$ is said to be UAC^*G on P, if $P = \bigcup P_k$ and $\{F_n\}_n$ is UAC^* on each P_k . If in addition each P_k is supposed to be closed, then $\{F_n\}_n$ is said to be $[UAC^*G]$ on P.

Remark 2. If P is a closed set, then $[UAC^*G]$ is in fact Džvaršeišvili's condition " $UACG^*$ " of [3], p. 38. (This follows using the technique of the proof of Theorem 9.1 of [11], p. 233.) If P = [a, b] and each F_n is supposed to be continuous on [a, b], then $[UAC^*G]$ on [a, b] is identical with P. Y. Lee's Definition 7.4, (ii) of [7], p. 39.

Lemma 4. Let $P \subset [a, b]$ and $F, F_n : [a, b] \rightarrow \mathbb{R}$, $n = 1, 2, \ldots$

- (i) If $\{F_n\}_n$ is UAC on P and converges pointwise to F on P, then $F \in AC$ on P.
- (ii) If $\{F_n\}_n$ is UAC^{*} on P and converges pointwise to F on [a,b], then $F \in AC^*$ on P.

PROOF. (i) For $\epsilon > 0$ let $\delta_{\epsilon} > 0$ be given by the fact that $\{F_n\}_n$ is UAC on P. Let $\{[a_i, b_i]\}, i = 1, 2, ..., m$ be a set of nonoverlapping closed intervals with endpoints in P such that $\sum_{i=1}^{m} (b_i - a_i) < \delta_{\epsilon/2}$. Then for each n = 1, 2, ... we have

$$\sum_{i=1}^{m} |F_n(b_i) - F_n(a_i)| < \frac{\epsilon}{2}$$

Passing to the limit, we obtain that

$$\sum_{i=1}^{m} |F(b_i) - F(a_i)| \le \frac{\epsilon}{2} < \epsilon.$$

Hence $F \in AC$ on P.

(ii) For $\epsilon > 0$ let $\delta_{\epsilon} > 0$ be given by the fact that $\{F_n\}_n$ is UAC^* on P. Let $\{[a_i, b_i]\}, i = 1, 2, \ldots, m$, be a set of nonoverlapping closed intervals with endpoints in P, such that $\sum_{i=1}^m (b_i - a_i) < \delta_{\epsilon/3}$. Then for each $n = 1, 2, \ldots$

$$\sum_{i=1}^m \mathcal{O}(F_n; [a_i, b_i]) < \frac{\epsilon}{3}.$$

Since $\{F_n\}_n$ converges pointwise to F on [a, b], it follows that for each $i = 1, 2, \ldots, m$ we have $\mathcal{O}(F; [a_i, b_i]) \leq \epsilon < +\infty$. Thus, for each $i = 1, 2, \ldots, m$, there exists $[\alpha_i, \beta_i] \subseteq [a_i, b_i]$ such that

$$\mathcal{O}(F; [a_i, b_i]) < |F(\beta_i) - F(\alpha_i)| + \frac{\epsilon}{2^i}.$$

Let n be a positive integer such that

$$|F_n(\alpha_i) - F(\alpha_i)| < \frac{\epsilon}{6m}$$
 and $|F_n(\beta_i) - F(\beta_i)| < \frac{\epsilon}{6m}$ $i = 1, 2, \dots, m.$

(This is possible because $\{F_n\}_n$ converges pointwise to F on [a, b].) Then

$$\sum_{i=1}^{m} \mathcal{O}(F; [a_i, b_i]) < \frac{\epsilon}{3} + \sum_{i=1}^{m} |F(\beta_i) - F(\alpha_i)| \le \frac{\epsilon}{3} + \sum_{i=1}^{m} |F(\beta_i) - F_n(\beta_i)|$$
$$+ \sum_{i=1}^{m} |F_n(\beta_i) - F_n(\alpha_i)| + \sum_{i=1}^{m} |F_n(\alpha_i) - F(\alpha_i)| < \frac{\epsilon}{3} + \frac{\epsilon}{6} + \frac{\epsilon}{3} + \frac{\epsilon}{6} = \epsilon.$$

Hence $F \in AC^*$ on P .

Hence $F \in AC^*$ on P.

Lemma 5. Let P be a closed subset of [a, b], $a, b \in P$, and let $F, F_n : [a, b] \rightarrow C$ \mathbb{R} , n = 1, 2, ..., be such that F and each F_n are linear on the closure of each interval contiguous to P. If $\{F_n\}_n$ is UAC on P and converges pointwise to F on P, then $\{F_n\}_n$ is UAC on [a, b] and $F \in AC$ on [a, b]. Consequently F and F_n are derivable a.e. on [a, b]. Moreover, if $\{F'_n\}_n$ converges in measure to an a.e. finite function g on P, then F'(x) = g(x) a.e. on P.

PROOF. We consider for example the case when the set of all intervals contiguous to P is infinite. Let $\{(c_k, d_k)\}, k = 1, 2, \dots$ be the intervals contiguous to P. Since $\{F_n\}_n$ converges pointwise to F on P, it follows that $\{F_n\}_n$ converges pointwise to F on [a, b]. For $\epsilon > 0$ let $\delta_{\epsilon} > 0$ be given by the fact that $\{F_n\}_n$ is UAC on P. Let k_{ϵ} be a positive integer such that $\sum_{k=1+k_{\epsilon}}^{\infty} (d_k - c_k) < \delta_{\epsilon}$. Since $\{F_n\}_n$ converges pointwise to F on P, there exists a positive integer n_e such that

$$\frac{|F_n(d_k) - F_n(c_k)|}{d_k - c_k} < 1 + \frac{|F(d_k) - F(c_k)|}{d_k - c_k} \quad \text{for each } k = 1, 2, \dots, k_{\epsilon}, \quad (3)$$

whenever $n \ge 1 + n_{\epsilon}$. Let

$$M_{\epsilon} = 1 + \max_{\substack{n=1,\dots,n_{\epsilon}\\k=1,\dots,k_{\epsilon}}} \left\{ \frac{|F_{n}(d_{k}) - F_{n}(c_{k})|}{d_{k} - c_{k}}, \frac{|F(d_{k}) - F(c_{k})|}{d_{k} - c_{k}} \right\},$$
(4)

$$\eta_{\epsilon} = \min\left\{\frac{\epsilon}{M_{\epsilon}}, \delta_{\epsilon}\right\} \,. \tag{5}$$

Let $\{[\alpha_i, \beta_i]\}, i = 1, 2, ..., m$ be a finite set of nonoverlapping closed subintervals of [a, b] with $\sum_{i=1}^{m} (\beta_i - \alpha_i) < \eta_{\epsilon}$. If $(\alpha_i, \beta_i) \cap P \neq \emptyset$, let $\alpha'_i = \inf((\alpha_i, \beta_i) \cap P)$ P) and $\beta'_i = \sup((\alpha_i, \beta_i) \cap P)$. Then $[\alpha_i, \beta_i] = [\alpha_i, \alpha'_i] \cup [\alpha'_i, \beta'_i] \cup [\beta'_i, \beta_i]$. Therefore $\bigcup_{i=1}^{m} [\alpha_i, \beta_i]$ can also be written as the union of a finite set $\{[a_i, b_i]\},\$ $j = 1, 2, \ldots, p, p \leq 3m$, of nonoverlapping nondegenerate closed intervals such that either $[a_j, b_j] \subseteq [c_k, d_k]$ for some k, or both a_j and b_j belong to P. Let

$$\mathcal{A}_{1} = \{j : a_{j}, b_{j} \in P\};$$

$$\mathcal{A}_{2} = \{j : [a_{j}, b_{j}] \subset \bigcup_{k=1+k_{\epsilon}}^{\infty} [c_{k}, d_{k}]\};$$

$$\mathcal{A}_{3} = \{j : [a_{j}, b_{j}] \subset \bigcup_{k=1}^{k_{\epsilon}} [c_{k}, d_{k}]\}.$$

By (5) we have

$$\sum_{j \in \mathcal{A}_1} |F_n(b_j) - F_n(a_j)| < \epsilon \,, \quad \text{for each } n \,. \tag{6}$$

Because F_n is linear on each $[c_k, d_k]$ it follows that

$$\sum_{j \in \mathcal{A}_2} |F_n(b_j) - F_n(a_j)| \le \sum_{k=1+k_\epsilon}^\infty |F_n(d_k) - F_n(c_k)| < \epsilon.$$
(7)

Let $i \in \mathcal{A}_3$ and $k \leq k_{\epsilon}$ such that $[a_i, b_i] \subset [c_k, d_k]$. If $n \geq 1 + n_{\epsilon}$, then by (3) and (4) it follows that

$$\frac{|F_n(b_j) - F_n(a_j)|}{b_j - a_j} = \frac{|F_n(d_k) - F_n(c_k)|}{d_k - c_k} < 1 + \frac{|F(d_k) - F(c_k)|}{d_k - c_k} < M_\epsilon.$$

If $n \leq n_{\epsilon}$, then by (4) it follows that

$$\frac{|F_n(b_j) - F_n(a_j)|}{b_j - a_j} = \frac{|F_n(d_k) - F_n(c_k)|}{d_k - c_k} < M_{\epsilon} \,.$$

By (5), for each n we have

$$\sum_{j \in \mathcal{A}_3} |F_n(b_j) - F_n(a_j)| < M_{\epsilon} \cdot \sum_{j \in \mathcal{A}_3} (b_j - a_j) < M_{\epsilon} \cdot \frac{\epsilon}{M_{\epsilon}} = \epsilon.$$
(8)

By (6), (7) and (8) it follows that

$$\sum_{i=1}^{m} |F_n(\beta_i) - F_n(\alpha_i)| \le \sum_{j=1}^{p} |F(b_j) - F(a_j)| < 3\epsilon,$$

for each n. Therefore $\{F_n\}_n$ is UAC on [a, b]. That $F \in AC$ on [a, b] follows by Lemma 4, (i). Clearly F and F_n are derivable a.e. on [a, b].

We prove the second part. Let $x \in (c_k, d_k)$ for some k. Then

$$F_n'(x) = \frac{F_n(d_k) - F_n(c_k)}{d_k - c_k} \longrightarrow \frac{F(d_k) - F(c_k)}{d_k - c_k} \quad \text{if } n \to \infty \,.$$

Let

$$g_o(x) = \begin{cases} g(x) & \text{if } x \in P\\ \frac{F(d_k) - F(c_k)}{d_k - c_k} & \text{if } x \in (c_k, d_k) \text{ for each } k\\ 0 & \text{if } x \in [a, c_o] \cup [d_o, b] \end{cases}$$

Since $\{F'_n\}_n$ converges in measure to g on P, it follows that it also converges in measure to g_o on [a, b]. By Corollary 3, g_o is Lebesgue integrable on [a, b] and $\{F_n\}_n$ converges uniformly to G on [a, b], where $G(x) = F(a) + (\mathcal{L}) \int_a^x g_o(t) dt$. Since $\{F_n\}_n$ converges to F on [a, b] it follows that F = G on [a, b]. Hence $F'(x) = G'(x) = g_o(x)$ a.e. on [a, b]. Therefore F'(x) = g(x) a.e. on P. \Box

Remark 3. In Lemma 5, the condition " $\{F_n\}_n$ converges pointwise to $F : P \to \mathbb{R}$ on P" is essential. Indeed, let $P = [0, 1/3] \cup [2/3, 1]$ and let $F_n : P \to \mathbb{R}$,

$$F_n(x) = \begin{cases} 0 & \text{if } x \in [0, 1/3] \\ n & \text{if } x \in [2/3, 1] \end{cases}$$

For $\epsilon > 0$ and $\delta_{\epsilon} < 1/3$ we see easily that $\{F_n\}_n$ is UAC on P, but $\{\tilde{F}_n\}_n$ is not UAC on [0, 1].

Corollary 4. Let P be a closed subset of [a,b]. Let $F, F_n : [a,b] \to \mathbb{R}$, $n = 1, 2, \ldots$

- (I) Suppose that $\{F_n\}_n$ is UAC on P and converges pointwise to F on P. We have:
 - (i) $F \in AC$ on P. Consequently F and F_n are approximately derivable a.e. on P;
 - (ii) If $\{(F_n)'_{ap}\}_n$ converges in measure to an almost everywhere finite function g on P, then $F'_{ap}(x) = g(x)$ a.e. on P.
- (II) Suppose that $\{F_n\}_n$ is UAC^{*} on P and converges pointwise to F on [a,b]. We have:
 - (i) $F \in AC^*$ on P. Consequently F and F_n are derivable a.e. on P.
 - (ii) If $\{F'_n\}_n$ converges in measure to an almost everywhere finite function g on P, then F'(x) = g(x) a.e. on P.

PROOF. (I) (i) This follows by Lemma 4, (i). (ii) We may suppose without loss of generality that $a, b \in P$ and that the

150

set of all intervals contiguous to P is infinite. Let $\{(c_k, d_k)\}_k$ be the intervals contiguous to P. Let $\tilde{F}, \tilde{F}_n : [a, b] \to \mathbb{R}$ be defined by

$$\tilde{F}(x) = \begin{cases} F(x) & \text{if } x \in P\\ linear & \text{on each } [c_k, d_k] \end{cases} \text{ and } \tilde{F}_n(x) = \begin{cases} F_n(x) & \text{if } x \in P\\ linear & \text{on each } [c_k, d_k] \end{cases}$$

Clearly \tilde{F}_n converges pointwise to \tilde{F} on [a, b]. By Lemma 5 it follows that $\{\tilde{F}_n\}_n$ is UAC on [a, b] and $\tilde{F} \in AC$ on [a, b]. Clearly $\tilde{F}'_n(x) = (F_n)'_{ap}(x)$ and $\tilde{F}'(x) = F'_{ap}(x)$ a.e. on P. By hypothesis $\{\tilde{F}'_n\}_n$ converges in measure to an almost everywhere finite function g on P, so, by Lemma 5, $\tilde{F}'(x) = g(x)$ a.e. on P. Hence $F'_{ap}(x) = g(x)$ a.e. on P.

(II) (i) follows by Lemma 4, (ii); (ii) follows by (II) (i) and (I) (ii). \Box

Remark 4. The condition " $\{F_n\}_n$ is UAC on P" in Corollary 4, (I) is essential (see Example 2). The condition " $\{F_n\}_n$ is UAC^* on P" in Corollary 4, (II) is essential. It cannot be replaced by " $\{f_n\}_n$ is UAC on P" (see Example 1).

Theorem 1. Let $P \subseteq [a,b]$ and let $F, F_n : [a,b] \to \mathbb{R}$, n = 1, 2, ..., bemeasurable functions such that $\{F_n\}_n$ converges pointwise to F on [a,b].

- (i) Suppose that F_n is approximately derivable a.e. on [a, b], $\{F_n\}_n$ is UACG on P, and $\{(F_n)'_{ap}\}_n$ converges in measure to a measurable function g, finite a.e. on [a, b]. Then F is approximately derivable a.e. on P and $F'_{ap}(x) = g(x)$ a.e. on P.
- (ii) Suppose that F_n is derivable a.e. on [a,b], $\{F_n\}_n$ is UAC*G on P, and $\{F'_n\}_n$ converges in measure to a measurable function g, finite a.e. on [a,b]. Then F is derivable a.e. on P and F'(x) = g(x) a.e. on P.

PROOF. (i) We may suppose without loss of generality that $\{F_n\}_n$ is UACon P. By Corollary 1 there exists $G_n : \overline{P} \to \mathbb{R}$ such that $\{G_n\}_n$ is UAC on \overline{P} and $(G_n)_{/P} = F_n$ for each n. Let $P_n = \{x \in \overline{P} : F_n(x) = G_n(x)\}$. Then each P_n is a Lebesgue measurable set which contains P. Let $Q = \bigcap_{n=1}^{\infty} P_n$. Then Qis a Lebesgue measurable subset of [a, b] which contains P. It follows that Qcan be written as the union of an ascending sequence of closed sets $\{Q_i\}_i$ and a null set Z. For each i, $\{F_n\}_n$ is UAC on Q_i . By hypothesis and Corollary 4, (I), it follows that F is approximately derivable *a.e.* on Q_i and $F'_{ap}(x) = g(x)$ *a.e.* on Q_i , for each i. Hence $F'_{ap}(x) = g(x)$ *a.e.* on P.

(ii) We may suppose without loss of generality that $\{F_n\}_n$ is UAC^* on P. By Lemma 4, (ii) it follows that $F \in AC^*$ on P. Therefore F is derivable *a.e.* on P. Now the proof follows by (i). **Remark 5.** The condition " $\{F_n\}_n$ is UACG on P" in Theorem 1, (i) is essential (see Example 2). The condition " $\{F_n\}_n$ is UAC*G on P" in Theorem 1, (ii) is also essential. It cannot be replaced by " $\{F_n\}_n$ is UAC on P" (see Example 1).

Remark 6. In Corollary 3, Lemma 5, Corollary 4 and Theorem 1 the condition "converges in measure" may be replaced by "converges a.e." (see for example Lebesgue's theorem of [8], p. 95).

3 Applications of the Main Theorem to Some Integrals, More General Than \mathcal{D} and \mathcal{D}^*

Definition 5. Let $\mathcal{M}([a,b]) = \{F : [a,b] \to \mathbb{R} : F \text{ is a Lebesgue measurable function on } [a,b]\}$. Let L_1, L_2, L_3 and L_4 be linear subspaces of $\mathcal{M}([a,b])$ with the following properties:

- 1) If $F \in ACG \cap L_1$ on [a, b] and $F'_{ap} = 0$ a.e. on [a, b], then F is a constant function on [a, b].
- 2) If $F \in [ACG] \cap L_2$ on [a, b] and $F'_{ap} = 0$ a.e. on [a, b], then F is a constant function on [a, b].
- 3) If $F \in AC^*G \cap L_3$ on [a, b] and F' = 0 a.e. on [a, b], then F is a constant function on [a, b].
- 4) If $F \in [AC^*G] \cap L_2$ on [a, b] and F' = 0 a.e. on [a, b], then F is a constant function on [a, b].

Remark 7. Clearly there are more subspaces of type L_2 than of type L_1 , and there are more subspaces of type L_4 than of type L_3 .

Definition 6. Let $f : [a, b] \to \overline{\mathbb{R}}$

- f is said to be $L_1\mathcal{D}$ (respectively $[L_2\mathcal{D}]$) integrable on [a, b], if there exists $F : [a, b] \to \mathbb{R}$ such that $F \in ACG \cap L_1$ (respectively $F \in [ACG] \cap L_2$) on [a, b], and $F'_{ap}(x) = f(x)$ a.e. on [a, b].
- f is said to be $L_3\mathcal{D}^*$ (respectively $[L_4\mathcal{D}^*]$) integrable on [a, b], if there exists $F : [a, b] \to \mathbb{R}$ such that $F \in AC^*G \cap L_3$ (respectively $F \in [AC^*G] \cap L_4$) on [a, b], and F'(x) = f(x) a.e. on [a, b].

We shall say that the function F is an indefinite $L_1\mathcal{D}$ (respectively $[L_2\mathcal{D}]$, $L_3\mathcal{D}^*$, $[L_4\mathcal{D}^*]$) integral of f(x). Its increment F(b) - F(a) is called the definite $L_1\mathcal{D}$ (respectively $[L_2\mathcal{D}]$, $L_3\mathcal{D}^*$, $[L_4\mathcal{D}^*]$) integral of f(x), and we denote it by $L_1\mathcal{D}\int_a^b f(t)dt$ (respectively $[L_2\mathcal{D}]\int_a^b f(t)dt$, $L_3\mathcal{D}^*\int_a^b f(t)dt$, $[L_4\mathcal{D}^*]\int_a^b f(t)dt$).

Remark 8.

- If $L_1 = L_2 = L_3 = L_4 = C$, then CD = [CD] = D (the wide Denjoy integral), and $CD^* = [CD^*] = D^*$ (the Denjoy* integral).
- If $L_1 = L_2 = L_3 = L_4 = C_{ap}$, then $[C_{ap}\mathcal{D}]$ is the β -Ridder integral (see Definition 7 of [9], p. 148), which is also called the *AD*-integral of Kubota (see [5], p. 715).
- We have

$$AC^*G \cap \mathcal{C}_{ap} \subset VB^*G \cap \mathcal{C}_{ap} \cap (N) = [VB^*G] \cap \mathcal{C}_{ap} \cap [\mathcal{C}G] \cap (N) =$$
$$= [VB^*G] \cap [ACG] \cap \mathcal{C}_{ap} \subset [AC^*G] \cap \mathcal{C}_{ap} \text{ on } [a,b].$$

For the first equality see Theorem 2.10.3, (vi) of [4] and use the fact that a C_{ap} function is a Darboux function on an interval. The second equality follows by the Banach-Zarecki Theorem ([11], p. 227). The last inclusion follows by Theorem 2.12.1, (ii) of [4]. Therefore

$$AC^*G \cap \mathcal{C}_{ap} = [AC^*G] \cap \mathcal{C}_{ap} \,,$$

 \mathbf{SO}

$$\mathcal{C}_{ap}\mathcal{D}^* = [\mathcal{C}_{ap}\mathcal{D}^*] = \alpha - \text{Ridder integral}$$

(for the α -Ridder integral see Definition 2 of [9], p. 138).

7

- The *LDG* integrals, introduced by C. M. Lee [6] are $[L_2\mathcal{D}]$ -type integrals.
- (*Question*) Does the $C_{ap}\mathcal{D}$ integral strictly extend the $[C_{ap}\mathcal{D}]$ integral?

Theorem 2. Let $\{f_n\}_n \subset L_1\mathcal{D}$ (respectively $[L_2\mathcal{D}]$) on [a, b] such that

$$\lim_{n \to \infty} f_n \to f, \ a.e. \quad on \quad [a,b].$$

For each positive integer n, let F_n be the indefinite $L_1\mathcal{D}$ (respectively $[L_2\mathcal{D}]$) integral of f_n . Suppose that $\{F_n\}_n$ converges pointwise to F on [a, b], $F \in L_1$ (respectively L_2). If $\{F_n\}_n \in UACG$ (respectively [UACG]) on [a, b], then $f \in L_1\mathcal{D}$ (respectively $[L_2\mathcal{D}]$) on [a, b] and

$$\lim_{n \to \infty} L_1 \mathcal{D} \int_a^b f_n(t) dt = L_1 \mathcal{D} \int_a^b f(t) dt$$

(respectively

$$\lim_{n \to \infty} [L_2 \mathcal{D}] \int_a^b f_n(t) dt = [L_2 \mathcal{D}] \int_a^b f(t) dt \right).$$

PROOF. See Lemma 4, (i) and Theorem 1, (i).

Theorem 3. Let $\{f_n\}_n \subset L_3\mathcal{D}^*$ (respectively $[L_4\mathcal{D}^*]$) on [a, b] such that

$$\lim_{n \to \infty} f_n \to f, \ a.e. \quad on \quad [a,b].$$

For each n, let F_n be the indefinite $L_2\mathcal{D}^*$ (respectively $[L_4\mathcal{D}^*]$) integral of f_n . Suppose that $\{F_n\}_n$ converges pointwise to F on [a,b], $F \in L_3$ (respectively L_4). If $\{F_n\}_n \in UAC^*G$ (respectively $[UAC^*G]$) on [a,b], then $f \in L_3\mathcal{D}^*$ (respectively $[L_4\mathcal{D}^*]$) on [a,b] and

$$\lim_{n \to \infty} L_3 \mathcal{D}^* \int_a^b f_n(t) dt = L_3 \mathcal{D}^* \int_a^b f(t) dt$$

(respectively

$$\lim_{n \to \infty} [L_4 \mathcal{D}^*] \int_a^b f_n(t) dt = [L_4 \mathcal{D}^*] \int_a^b f(t) dt$$

PROOF. See Lemma 4, (ii) and Theorem 1, (ii).

Remark 9. Suppose that L_1 , L_2 , L_3 and L_4 are closed under uniform convergence. Then the condition " $\{F_n\}_n$ converges pointwise to F on [a, b], $F \in L_1$ (respectively L_2)" in Theorem 2 may be replaced with the condition " $\{F_n\}_n$ converges uniformly to F on [a, b]". Similarly the condition " $\{F_n\}_n$ converges pointwise to F on [a, b], $F \in L_3$ (respectively L_4)" in Theorem 3 may be replaced with the condition " $\{F_n\}_n$ converges uniformly to F on $[a, b], F \in L_3$ (respectively L_4)" in Theorem 3 may be replaced with the condition " $\{F_n\}_n$ converges uniformly to F on [a, b]".

Note that Theorem 2 contains Theorem 47, a) of [3] and Theorem 3 contains Theorem 47, b) of [3] (in fact Theorem 47, b) is identical with L. P. Yee's Theorem 7.6 of [7]). Theorem 3 also contains L. P. Yee's Corollary 7.7 of [7].

4 Sequences of Approximately Derivable Functions on an Interval

We recall the following classical theorems.

Theorem A. ([10], p. 140). Let $\{f_n\}_n$ be a sequence of differentiable functions on [a,b], such that $\{f_n(x_o)\}_n$ converges for some point x_o on [a,b]. If $\{f'_n\}_n$ converges uniformly on [a,b] to g, then $\{f_n\}_n$ converges uniformly on [a,b] to a function f, and f'(x) = g(x) on [a,b].

Remark 10. If in Theorem A, the condition " $\{f'_n\}_n$ converges uniformly on [a, b] to g" is replaced by " $\{f'_n\}_n$ converges pointwise on [a, b] to g", then, even if $\{f_n\}_n$ converges uniformly to f on [a, b], it may happen that f'(x) does not exist (finite or infinite) on a perfect set of positive measure as close as we want to b-a. It follows that $f'(x) \neq g(x)$ on a set of positive measure (see Example 1).

Theorem B. ([2], p. 44). Let $\{f_n\}_n$ be a sequence of approximately differentiable functions on [a,b], such that $\{f_n(x_o)\}_n$ converges for some point x_o on [a,b]. If $\{(f_n)'_{ap}\}_n$ converges uniformly on [a,b] to g, then $\{f_n\}_n$ converges uniformly on [a,b] to a function f, and $f'_{ap}(x) = g(x)$ on [a,b].

PROOF. We follow the proof of [2], p. 44. Since

$$(f_n)'_{ap} \longrightarrow g [unif] \text{ on } [a,b].$$

it follows that there exists a positive integer n_1 such that

 $|(f_n)'_{ap}(x) - (f_{n_1})'_{ap}(x)| < 1, \quad (\forall) \ n \ge n_1.$

By Tolstoff's Theorem ([1], p. 175) it follows that $f_n - f_{n_1}$ is a Lipschitz function, and by the Khintchine–Mišik Theorem ([12], p. 139 or [1], Theorem 2.4, p. 155) we have

$$(f_n)'_{ap}(x) - (f_{n_1})'_{ap}(x) = (f_n - f_{n_1})'(x)$$
 on $[a, b], \quad (\forall) \ n \ge n_1.$

Hence

$$(f_n - f_{n_1})' \longrightarrow g - (f_{n_1})'_{ap} [unif] \text{ on } [a, b].$$

By Theorem A

$$f_n - f_{n_1} \longrightarrow f - f_{n_1} [unif]$$
 on $[a, b]$ for some f

and

$$(f - f_{n_1})'(x) = g(x) - (f_{n_1})'_{ap}(x)$$
 on $[a, b]$

Therefore

$$(f_n)'_{ap}(x) = (f_{n_1})'_{ap}(x) + (f - f_{n_1})'(x) = g(x) \text{ on } [a, b].$$

Remark 11. If in Theorem A the condition " $\{f'_n\}_n$ converges uniformly on [a, b] to g" is replaced by " $\{f'_n\}_n$ converges pointwise on [a, b] to g", then, even if $\{f_n\}_n$ converges uniformly to f on [a, b], it may happen that f' exists and

is continuous on [a, b], but $f' \neq g$ on a perfect set of positive measure as close as we want to b - a (see Example 2).

If in Theorem B the condition " $\{(f_n)'_{ap}\}_n$ converges uniformly on [a, b] to g" is replaced by " $\{(f_n)'_{ap}\}_n$ converges pointwise on [a, b] to g", then, even if $\{f_n\}_n$ converges uniformly to f on [a, b], it may happen that f'_{ap} exists and is continuous on [a, b], but $f'_{ap} \neq g$ on a perfect set of positive measure as close as we want to b - a (see Example 2).

5 Examples

Example 1. First we construct a Cantor type perfect set, contained in [0, 1]. Let $\beta \in (0, 1]$ and let $\{\beta_n\}_n$ be a sequence of positive numbers such that $\sum_{n=1}^{\infty} 2^{n-1}\beta_n = \beta$. We extract from [0, 1] the open interval $G_1 = (a_1, b_1)$, centered in 1/2 with length β_1 .

Let

$$P_1 = [0,1] \setminus G_1 \, .$$

Clearly P_1 consists of two disjoint closed intervals, each of length

$$\frac{1-\beta_1}{2}\,.$$

From each of the two intervals of P_1 we extract from the left to the right the centered open intervals (a_2, b_2) and (a_3, b_3) , with length β_2 . Let

$$G_2 = G_1 \cup (a_2, b_2) \cup (a_3, b_3)$$
 and $P_2 = [0, 1] \setminus G_2$.

Clearly P_2 consists of 2^2 nonoverlapping closed intervals, each of length

$$\frac{1-(\beta_1+2\beta_2)}{2^2}$$
.

Suppose we have already defined the sets G_{n-1} and P_{n-1} , $n \ge 2$. Then P_{n-1} consists of 2^{n-1} nonoverlapping closed intervals, each of length

$$\frac{1 - (\beta_1 + 2\beta_2 + \dots + 2^{n-1}\beta_{n-1})}{2^{n-1}}.$$

From each interval of P_{n-1} we extract from the left to the right the centered open intervals

$$(a_{2^{n-1}}, b_{2^{n-1}}), (a_{2^{n-1}+1}, b_{2^{n-1}+1}), \dots, (a_{2^n-1}, b_{2^n-1})$$

with length β_n . Let

$$G_n = G_{n-1} \cup \left(\cup_{i=2^{n-1}}^{2^n-1} (a_i, b_i) \right) \text{ and } P_n = [0, 1] \setminus G_n.$$

Then P_n consists of 2^n nonoverlapping closed intervals, each of length

$$\frac{1-(\beta_1+2\beta_2+\cdots+2^n\beta_n)}{2^n}.$$

Let

$$G = \bigcup_{n=1}^{\infty} G_n$$
 and $P = \bigcap_{n=1}^{\infty} P_n$.

Then $m(G) = \beta$ and $m(P) = 1 - \beta$. Let $f : [0, 1] \to \mathbb{R}$,

$$f(x) = \begin{cases} 0 & \text{if } x \in P \\ \frac{1}{4n} \left(1 + \cos \left(\frac{2\pi}{(b_i - a_i)} (x - a_i) - \pi \right) \right) & \text{if } x \in (a_i, b_i), \\ & i = 2^{n-1}, 2^{n-1} + 1, \dots, 2^n - 1 \\ & n = 1, 2, \dots \end{cases}$$

Let $f_n: [0,1] \to \mathbb{R}$ (for f_3 see Figure 1), $f_n(x) = \begin{cases} f(x) & \text{if } x \in G_n \\ 0 & \text{if } x \in P_n. \end{cases}$

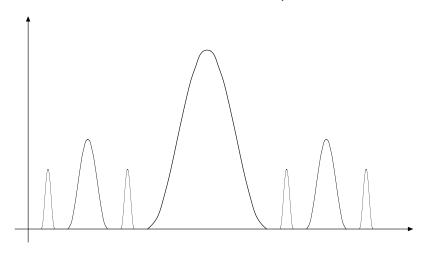


Figure 1: The graph of f_3 in Example 1

Then we have

- 1) $f'_n(x) = \begin{cases} 0 & \text{if } x \in P_n \\ f'(x) & \text{if } x \in G_n, \ n = 1, 2, \dots \end{cases}$ hence $\{f_n\}_n \in C^1([0, 1]);$
- 2) $f_n \longrightarrow f[unif]$ on [0,1];
- 3) Let $g : [0,1] \to \mathbb{R}, g(x) = \begin{cases} 0 & x \in P \\ f'(x) & x \in G \end{cases}$. Then $f'_n(x) \to g(x), (\forall) x \in [0,1].$
- 4) f'(x) does not exist (finite or infinite) if $x \in P$, but $f'_{ap} = g$ a.e. on [0, 1].
- 5) $\{f_n\}_n$ is UAC on P, but $\{f_n\}_n$ is not UAC^{*} (and neither UAC^{*}G) on P (see Corollary 4, (II) and Theorem 1, (ii)).

Example 2. We consider all the notations of Example 1. Let $\{\alpha_n\}$ be a strictly increasing sequence of positive numbers, converging to 1. From each $(a_i, b_i), i = 1, 2, \ldots, 2^n - 1$, we extract the centered closed interval $[c_i^n, d_i^n]$ of length $\alpha_n(b_i - a_i)$. Let

$$K_n = \bigcup_{i=1}^{2^n - 1} [c_i^n, d_i^n]$$

Then $m(K_n) = \alpha_n \cdot m(G_n)$ and $G = \bigcup_{n=1}^{\infty} K_n$. Let $f_n : [0, 1] \to \mathbb{R}, n = 1, 2, \dots$ First we define f_n on $P_n \cup K_n$ by

$$f_n(x) = \begin{cases} \alpha & \text{if } x \in [\alpha, \beta] \\ x - \frac{m(P_n)}{2^{n+1}} & \text{if } x \in K_n, \end{cases}$$

where $[\alpha, \beta]$ is any of the 2^n closed intervals of P_n . Clearly f_n is increasing on $P_n \cup K_n$. On each $[a_i, c_i^n]$, $i = 1, 2, ..., 2^n - 1$, we define f_n such that f_n is strictly increasing, f_n has a continuous derivative on $[a_i, c_i^n]$, $f'_n(a_i) = 0$ and $f'_n(c_i^n) = 1$. On each $[d_i^n, b_i]$, $i = 1, 2, ..., 2^n - 1$, we define f_n such that f_n is strictly increasing, f_n has a continuous derivative on $[d_i^n, b_i]$, $f'(d_i^n) = 1$ and $f'_n(b_i) = 0$ (for f_3 and f see Figure 2).

Then we have

- 1) $f_n \in C^1([0,1]);$
- 2) $f_n \longrightarrow f$ [unif] on [0,1], where $f: [0,1] \to [0,1], f(x) = x, f \in C^1[0,1];$
- 3) $f'_{n}(x) = 0$ on P_{n} . Hence $f'_{n}(x) = 0$ on P.

158

- 4) $\lim_{n\to\infty} f'_n(x) = 1$ for each $x \in G$. (Indeed, for $x \in G = \bigcup_{n=1}^{\infty} K_n$, there exists a positive integer m such that $x \in \operatorname{int}(K_n)$, $(\forall) n \ge m$, because $K_1 \subset K_2 \subset \ldots \subset K_m \subset \ldots \subset K_n \subset \ldots$; it follows that $f'_n(x) = 1$, $(\forall) n \ge m$, so $\lim_{n\to\infty} f'_n(x) = 1$).
- 5) $\lim_{n\to\infty} f'_n(x) = g(x), x \in [0,1], \text{ where } g: [0,1] \to [0,1],$

$$g(x) = \begin{cases} 0 & \text{if } x \in P\\ 1 & \text{if } x \in G \end{cases}$$

6) $\{f_n\}_n$ is UAC (or UACG) neither on [0, 1] nor on P (see Corollary 4, (I) and Theorem 1, (i)).

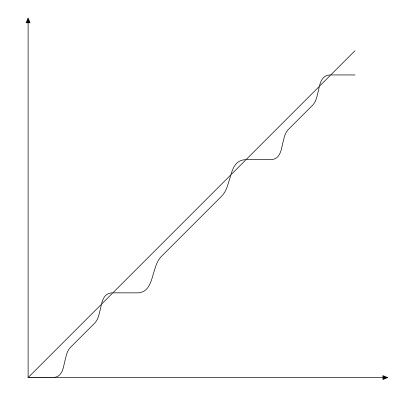


Figure 2: The graph of f_3 and f in Example 2

References

- A. M. Bruckner, Differentiation of real functions, Lect. Notes in Math., vol. 659, Springer-Verlag, 1978.
- [2] A. M. Bruckner and C. Goffman, Approximate differentiation, Real Analysis Exchange 6 (1980-81), 9–65.
- [3] V. G. Čelidze and A. G. Džvaršeišvili, The theory of the Denjoy integral and some applications, World Scientific, 1978.
- [4] V. Ene, *Real functions current topics*, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
- [5] Y. Kubota, An integral of Denjoy type, Proc. Japan Acad 40 (1964), 713–717.
- [6] C. M. Lee, An analogue of the theorem Hake-Alexandroff-Looman, Fund. Math. C (1978), 69–74.
- [7] P. Y. Lee, Lanzhou lectures on Henstock integration, World Scientific, Singapore, 1989.
- [8] I. P. Natanson, Theory of functions of a real variable, 2nd. rev. ed., Ungar, New York, 1961.
- J. Ridder, Uber die gegenseitigen Beziehungen verschiedener approximativ stetigen Denjoy-Perron Integrale, Fund. Math. 22 (1934), 136–162.
- [10] W. Rudin, *Principles of mathematical analysis*, 2nd. ed., McGraw-Hill Book Company, New York, San Francisco, Toronto, London, 1964.
- [11] S. Saks, *Theory of the integral*, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.
- [12] B. S. Thomson, *Real functions*, Lect. Notes in Math., vol. 1170, Springer-Verlag, 1985.