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CONVERGENCE AND APPROXIMATE
DIFFERENTIATION

Abstract

The main result of this paper is Theorem 1, which states the fol-
lowing: Let F, Fn : [a, b] → R, n = 1, 2, . . . be Lebesgue measurable
functions such that {Fn}n converges pointwise to F on [a, b]. If each Fn

is approximately derivable a.e. on [a, b], {Fn}n is uniformly absolutely

continuous on a set P ⊂ [a, b], and {(Fn)
′
ap}n converges in measure to

a measurable function g, finite a.e. on [a, b], then F is approximately

derivable a.e. on P and F
′
ap(x) = g(x) a.e. on P . An immediate con-

sequence of this result is the famous theorem of Džvaršěı̌svili on the
passage to the limit for the Denjoy and Denjoy∗ integrals (see Theorem
47, p. 40 of [3]). As was pointed out by Bullen in [3] (p. 309), “the D∗

integral case of Theorem 47 of [3] was rediscovered by Lee P. Y.” (see
also Theorem 7.6 of [7]).

1 Preliminaries

We shall denote the Lebesgue measure of the set A by m(A), whenever A⊂
R is Lebesgue measurable. If f : [a, b] → R and [α, β] ⊆ [a, b], then let
O(F ; [α, β] = sup{|F (y) − F (x)| : x, y ∈ [α, β]}. Let C denote the class
of all continuous functions and Cap the class of all approximately continuous
functions. A function f : P → R is said to satisfy Lusin’s condition (N), if
m(F (Z)) = 0, whenever m(Z) = 0. For the definitions of AC, AC∗, V B and
V B∗ see [11].

Definition 1. ([11], p. 221). Let F : P → R, and Q ⊆ P . We denote by
V (F ;Q) the upper bound of the numbers

∑
i |F (bi)−F (ai)|, where {[ai, bi]}i

is any sequence of nonoverlapping closed intervals with endpoints in Q. (We
may suppose without loss of generality that {[ai, bi]}i is a finite set.)
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Definition 2. Let E ⊆ [a, b]. A function F : [a, b] → R is said to be ACG
(respectively AC∗G, V BG, V B∗G, CG) on E if there exists a sequence of sets
{En} with E = ∪nEn, such that F is AC (respectively AC∗, V B, V B∗, C) on
each En. If in addition the sets En are supposed to be closed we obtain the
classes [ACG], [AC∗G], [V BG], [V B∗G], [CG]. Note that ACG and AC∗G
used here differ from those of [11] (because in our definitions the continuity is
not assumed).

2 Main Theorem

Lemma 1. Let P be a subset of [a, b] and F : P → R an AC function. Then
there exists a function G : P → R, G ∈ AC such that G|P = F . Moreover, if
for ε > 0, δε > 0 is given by the fact that F ∈ AC on P , then δ ε

3
satisfies the

definition of G being AC on P for ε. As a consequence, if F is measurable,
then F is approximately derivable a.e. on P .

Proof. Let xo ∈ P . For ε > 0 let δε > 0 be given by the fact that F ∈ AC
on P . Then |F (x)− F (y)| < ε whenever x, y ∈ (xo − δε/2, xo + δε/2) ∩ P . By
the Cauchy criterion, the following limits exist and are finite:

lim
x↗xo,x∈P

F (x), lim
x↘xo,x∈P

F (x), lim
x→xo,x∈P

F (x),

whenever xo is a left, right or bilateral accumulation point of P respectively.
If xo ∈ P any of the three limits equals F (xo), provided they exist.
Let G : P → R be defined by

G(x) =


F (x) if x is an isolated point of P

limx↗xo
x∈P

F (x) if x is a right accumulation point of P

limx↘xo
x∈P

F (x) if x is a left accumulation point of P .

Let {[ai, bi]}, i = 1, 2, . . . , n be a finite set of closed intervals with endpoints
in P , a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn, such that

∑n
i=1(bi − ai) < δ ε

3
. Let

A1 = {i : i = odd, i ≤ n} and A2 = {i : i = even, i ≤ n}. Then there exists
a finite set {[xi, yi]}i∈A1

of nonoverlapping closed intervals with endpoints in
P such that

|F (xi)−G(ai)| <
ε

6(n+ 1)
, |F (yi)−G(bi)| <

ε

6(n+ 1)

and ∑
i∈A1

(yi − xi) < δ ε
3
.
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It follows that ∑
i∈A1

|G(bi)−G(ai)| ≤
∑
i∈A1

|G(ai)− F (xi)| +

+
∑
i∈A1

|F (xi)− F (yi)|+
∑
i∈A1

|F (yi)−G(bi)| <
ε

12
+
ε

3
+

ε

12
=
ε

2
.

Similarly it follows that ∑
i∈A2

|G(bi)−G(ai)| < ε/2 .

Therefore
∑n
i=1 |G(bi)−G(ai)| < ε. The last assertion follows from Theorem

4.2 of [11], p. 222 and by the fact that an AC function on a set is V B on that
set.

Definition 3. ([3], p. 38). Let P be a real set and Fn : P → R, n = 1, 2, . . . .

• The sequence {Fn}n is said to be UAC on P if it has the following
property: for every ε > 0 there is a δε > 0 such that

∑m
k=1 |Fn(βk) −

Fn(αk)| < ε for all n = 1, 2, . . . , whenever {[αk, βk]}, k = 1, 2, . . . ,m is
a finite set of nonoverlapping closed intervals with endpoints in P and∑m
k=1(βk − αk) < δε.

• The sequence {Fn}n is said to be UACG on P , if P = ∪Pk and {Fn}n is
UAC on each Pk. If in addition each Pk is supposed to be closed, then
{Fn}n is said to be [UACG] on P .

Remark 1. If P is a closed set, then [UACG] is in fact Džvaršěı̌svili’s con-
dition “UACG” of [3], p. 38 (this follows using the technique of the proof of
Theorem 9.1 of [11], p. 233). This fact, for P = [a, b], was pointed out by
Bullen (see [3], p. 308).

Corollary 1. Let P be a subset of [a, b] and let Fn : P → R, n = 1, 2, . . .. If
{Fn}n is UAC on P , then there exist Gn : P → R, n = 1, 2, . . ., (Gn)/P = Fn,

such that {Gn}n is UAC on P . Moreover, if for ε > 0, δε > 0 is given by the
fact that {Fn}n is UAC on P , then δε/3 satisfies the definition of {Gn}n being

UAC on P for ε.

Lemma 2. Let P be a closed subset of [a, b], a, b ∈ P and let F : [a, b] → R
be a function which is linear on the closure of each interval contiguous to P .
Then V (F ; [a, b]) = V (F ;P ).



144 Vasile Ene

Proof. Clearly V (F ;P ) ≤ V (F ; [a, b]). Therefore we only need to show that
V (F ; [a, b]) ≤ V (F ;P ). Let

∆ : a = ao < a1 < . . . < am = b

be a division of [a, b]. Let ∆1 := ∆ ∪ {the endpoints of those intervals con-
tiguous to P which contain points of ∆}. Suppose that

∆1 : a = αo < α1 < . . . < αn = b .

Let ∆2 = ∆1 ∩ P . Suppose that

∆2 : a = β1 < . . . < βp = b .

Then

m∑
i=1

|F (ai)− F (ai−1)| ≤
n∑
i=1

|F (αi)− F (αi−1)| =
p∑
i=1

|F (βi)− F (βi−1)|.

(The equality follows by the fact that F is linear on the closure of each interval
contiguous to P .) Therefore V (F ; [a, b]) ≤ V (F ;P ).

Lemma 3. Let P be a subset of [a, b] and let F : P → R, F ∈ AC. For ε > 0
let δε > 0 be given by the fact that F ∈ AC on P . Then there exists a function
F̃ : [a, b]→ R, F̃ ∈ AC such that F̃/P = F and

(L)

∫
A

|F̃
′
(t)|dt < ε

whenever A is a measurable subset of P with m(A) < δε/6.

Proof. For ε > 0 let δε > 0 be given by the fact that F ∈ AC on P .
Let co = inf(P ), do = sup(P ), and let (ck, dk), k = 1, 2, . . . be the intervals
contiguous to P . By Lemma 1 there exists G : P → R such that G ∈ AC on
P , G/P = F and for ε, the number δ ε

3
is the δ given by the fact that G ∈ AC

on P . Let F̃ : [a, b]→ R be defined by

F̃ (x) =


G(co) if x ∈ [a, co]

G(x) if x ∈ P
linearly on each [ck, dk]

G(do) if x ∈ [do, b].

Then F̃ ∈ AC on [a, b]. (See for example Theorem 2.11.1 (xviii) of [4].)
Let A be a measurable subset of P with m(A) < δε/6. Then there exists a
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sequence {(αi, βi)}i such that (αi, βi)∩A 6= ∅ for each i, A ⊂ ∪∞i=1(αi, βi) and∑∞
i=1(βi − αi) < δε/6. Let ai = inf(αi, βi)∩ P and bi = sup(αi, βi)∩ P . Then

ai, bi ∈ P and

(L)

∫
A

|F̃
′
(t)|dt ≤

∞∑
i=1

(L)

∫ bi

ai

|F̃
′
(t)|dt =

=

∞∑
i=1

V (F̃ ; [ai, bi]) =

∞∑
i=1

V (G; [ai, bi] ∩ P ).

(1)

(The first equality follows by Theorem 8 of [8], p. 259, and the second equality
follows by Lemma 2.)
For each i there exists a division

∆i : ai = ai,0 < ai,1 . . . < ai,ji = bi ,

with each point in P such that

V (G; [ai, bi] ∩ P ) <
ε

2i+1
+

ji∑
k=1

|G(ai,k)−G(ai,k−1)| . (2)

By (1) and (2), it follows that

(L)

∫
A

|F̃
′
(t)|dt ≤

∞∑
i=1

V (G; [ai, bi] ∩ P ) <
ε

2
+
ε

2
= ε .

Corollary 2. (An extension of Lemma 2 of [3], p. 38). Let P ⊆ [a, b] and let
{Fn}n be a UAC sequence on P . For ε > 0 let δε > 0 be given by the latter
fact. Then there exist F̃n : [a, b]→ R such that F̃n ∈ AC, (F̃n)/P = Fn and

(L)

∫
A

|F̃
′

n(t)|dt < ε ,

for all n = 1, 2, . . . , whenever A is a measurable subset of P with m(A) < δε/6.

Proof. Apply Lemma 3 to each Fn.

Corollary 3. Let {Fn}n be an UAC sequence on [a, b], and let xo ∈ [a, b] such
that limn→∞ Fn(xo) = ` ∈ R. Let g : [a, b]→ R be finite a.e. such that {F ′n}n
converges to g in measure. Then g is Lebesgue integrable on [a, b]. Moreover,
if G(x) = `+(L)

∫ x
xo
g(t)dt, then {Fn}n converges uniformly to G on [a, b] and

G
′
(x) = g(x) a.e. on [a, b].
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Proof. By Corollary 2, the summable functions F
′

n, n = 1, 2, . . . have equi-
absolutely continuous integrals. (The functions of a family M of summable
functions defined on a set E, are said to have equi-absolutely continuous in-
tegrals, if for every ε > 0, there exists a δ > 0 such that |

∫
Q
f(x)dx| < ε,

(∀) f ∈ M, whenever Q is a measurable subset of E with m(Q) < δ; [8],
p. 151.) By Vitali’s theorem ([8], p. 152), g is Lebesgue integrable on [a, b],
and by the proof of the same theorem it follows that

lim
n→∞

(L)

∫ b

a

|F
′

n(t)− g(t)|dt = 0 .

For ε > 0 there exists a positive integer nε such that

(L)

∫ b

a

|F
′

n(t)− g(t)|dt < ε

2
and |Fn(xo)− `| <

ε

2

whenever n ≥ nε. Suppose that x ≥ xo. Then

|Fn(x)−G(x)| =
∣∣∣∣Fn(xo) + (L)

∫ x

xo

F
′

n(t)dt− `− (L)

∫ x

xo

g(t)dt

∣∣∣∣
≤ |Fn(xo)− `|+ (L)

∫ x

xo

|F
′

n(t)− g(t)|dt < ε

2
+
ε

2
= ε ,

whenever n > nε. Similarly, if x < xo, then we obtain |Fn(x) − G(x)| < ε,
whenever n > nε. Therefore {Fn}n converges uniformly to G on [a, b].
That G

′
(x) = g(x) a.e. on [a, b] is obvious.

Definition 4. ([3], p. 38). Let P ⊂ [a, b] and Fn : [a, b]→ R, n = 1, 2, . . ..

• The sequence {Fn}n is said to be UAC∗ on P if it has the following
property: for every ε > 0 there exists a δε > 0 such that

m∑
k=1

O(Fn; [αk, βk]) < ε , n = 1, 2, . . . ,

whenever {[αk, βk]}, k = 1, 2, . . . ,m is a set of nonoverlapping closed
intervals with endpoints in P and

∑m
k=1(βk − αk) < δε.

• The sequence {Fn}n is said to be UAC∗G on P , if P = ∪Pk and {Fn}n
is UAC∗ on each Pk. If in addition each Pk is supposed to be closed,
then {Fn}n is said to be [UAC∗G] on P .
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Remark 2. If P is a closed set, then [UAC∗G] is in fact Džvaršěı̌svili’s con-
dition “UACG∗” of [3], p. 38. (This follows using the technique of the proof
of Theorem 9.1 of [11], p. 233.) If P = [a, b] and each Fn is supposed to
be continuous on [a, b], then [UAC∗G] on [a, b] is identical with P. Y. Lee’s
Definition 7.4, (ii) of [7], p. 39.

Lemma 4. Let P ⊂ [a, b] and F, Fn : [a, b]→ R, n = 1, 2, . . ..

(i) If {Fn}n is UAC on P and converges pointwise to F on P , then F ∈ AC
on P .

(ii) If {Fn}n is UAC∗ on P and converges pointwise to F on [a, b], then
F ∈ AC∗ on P .

Proof. (i) For ε > 0 let δε > 0 be given by the fact that {Fn}n is UAC on P .
Let {[ai, bi]}, i = 1, 2, . . . ,m be a set of nonoverlapping closed intervals with
endpoints in P such that

∑m
i=1(bi − ai) < δε/2. Then for each n = 1, 2, . . . we

have
m∑
i=1

|Fn(bi)− Fn(ai)| <
ε

2
.

Passing to the limit, we obtain that

m∑
i=1

|F (bi)− F (ai)| ≤
ε

2
< ε .

Hence F ∈ AC on P .
(ii) For ε > 0 let δε > 0 be given by the fact that {Fn}n is UAC∗ on P .

Let {[ai, bi]}, i = 1, 2, . . . ,m, be a set of nonoverlapping closed intervals with
endpoints in P , such that

∑m
i=1(bi − ai) < δε/3. Then for each n = 1, 2, . . .

m∑
i=1

O(Fn; [ai, bi]) <
ε

3
.

Since {Fn}n converges pointwise to F on [a, b], it follows that for each i =
1, 2, . . . ,m we have O(F ; [ai, bi]) ≤ ε < +∞. Thus, for each i = 1, 2, . . . ,m,
there exists [αi, βi] ⊆ [ai, bi] such that

O(F ; [ai, bi]) < |F (βi)− F (αi)|+
ε

2i
.

Let n be a positive integer such that

|Fn(αi)− F (αi)| <
ε

6m
and |Fn(βi)− F (βi)| <

ε

6m
i = 1, 2, . . . ,m.



148 Vasile Ene

(This is possible because {Fn}n converges pointwise to F on [a, b].) Then

m∑
i=1

O(F ; [ai, bi]) <
ε

3
+

m∑
i=1

|F (βi)− F (αi)| ≤
ε

3
+

m∑
i=1

|F (βi)− Fn(βi)|

+

m∑
i=1

|Fn(βi)− Fn(αi)|+
m∑
i=1

|Fn(αi)− F (αi)| <
ε

3
+
ε

6
+
ε

3
+
ε

6
= ε .

Hence F ∈ AC∗ on P .

Lemma 5. Let P be a closed subset of [a, b], a, b ∈ P , and let F, Fn : [a, b]→
R, n = 1, 2, . . ., be such that F and each Fn are linear on the closure of each
interval contiguous to P . If {Fn}n is UAC on P and converges pointwise to
F on P , then {Fn}n is UAC on [a, b] and F ∈ AC on [a, b]. Consequently F
and Fn are derivable a.e. on [a, b]. Moreover, if {F ′n}n converges in measure
to an a.e. finite function g on P , then F

′
(x) = g(x) a.e. on P .

Proof. We consider for example the case when the set of all intervals contigu-
ous to P is infinite. Let {(ck, dk)}, k = 1, 2, . . . be the intervals contiguous to
P . Since {Fn}n converges pointwise to F on P , it follows that {Fn}n converges
pointwise to F on [a, b]. For ε > 0 let δε > 0 be given by the fact that {Fn}n
is UAC on P . Let kε be a positive integer such that

∑∞
k=1+kε

(dk − ck) < δε.
Since {Fn}n converges pointwise to F on P , there exists a positive integer nε
such that

|Fn(dk)− Fn(ck)|
dk − ck

< 1 +
|F (dk)− F (ck)|

dk − ck
for each k = 1, 2, . . . , kε, (3)

whenever n ≥ 1 + nε. Let

Mε = 1 + max
n=1,...,nε
k=1,...,kε

{
|Fn(dk)− Fn(ck)|

dk − ck
,
|F (dk)− F (ck)|

dk − ck

}
, (4)

ηε = min

{
ε

Mε
, δε

}
. (5)

Let {[αi, βi]}, i = 1, 2, . . . ,m be a finite set of nonoverlapping closed subinter-
vals of [a, b] with

∑m
i=1(βi−αi) < ηε. If (αi, βi)∩P 6= ∅, let α

′

i = inf((αi, βi)∩
P ) and β

′

i = sup((αi, βi)∩P ). Then [αi, βi] = [αi, α
′

i]∪[α
′

i, β
′

i ]∪[β
′

i , βi]. There-
fore ∪mi=1[αi, βi] can also be written as the union of a finite set {[aj , bj ]},
j= 1, 2, . . . , p, p≤ 3m, of nonoverlapping nondegenerate closed intervals such
that either [aj , bj ] ⊆ [ck, dk] for some k, or both aj and bj belong to P . Let
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A1 = {j : aj , bj ∈ P} ;

A2 = {j : [aj , bj ] ⊂ ∪∞k=1+kε
[ck, dk]} ;

A3 = {j : [aj , bj ] ⊂ ∪kεk=1[ck, dk]} .

By (5) we have ∑
j∈A1

|Fn(bj)− Fn(aj)| < ε , for each n . (6)

Because Fn is linear on each [ck, dk] it follows that

∑
j∈A2

|Fn(bj)− Fn(aj)| ≤
∞∑

k=1+kε

|Fn(dk)− Fn(ck)| < ε . (7)

Let i ∈ A3 and k ≤ kε such that [ai, bi] ⊂ [ck, dk].
If n ≥ 1 + nε, then by (3) and (4) it follows that

|Fn(bj)− Fn(aj)|
bj − aj

=
|Fn(dk)− Fn(ck)|

dk − ck
< 1 +

|F (dk)− F (ck)|
dk − ck

< Mε .

If n ≤ nε, then by (4) it follows that

|Fn(bj)− Fn(aj)|
bj − aj

=
|Fn(dk)− Fn(ck)|

dk − ck
< Mε .

By (5), for each n we have∑
j∈A3

|Fn(bj)− Fn(aj)| < Mε ·
∑
j∈A3

(bj − aj) < Mε ·
ε

Mε
= ε . (8)

By (6), (7) and (8) it follows that

m∑
i=1

|Fn(βi)− Fn(αi)| ≤
p∑
j=1

|F (bj)− F (aj)| < 3ε ,

for each n. Therefore {Fn}n is UAC on [a, b]. That F ∈ AC on [a, b] follows
by Lemma 4, (i). Clearly F and Fn are derivable a.e. on [a, b].

We prove the second part. Let x ∈ (ck, dk) for some k. Then

F
′

n(x) =
Fn(dk)− Fn(ck)

dk − ck
−→ F (dk)− F (ck)

dk − ck
if n→∞ .
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Let

go(x) =


g(x) if x ∈ P
F (dk)−F (ck)

dk−ck if x ∈ (ck, dk) for each k

0 if x ∈ [a, co] ∪ [do, b]

Since {F ′n}n converges in measure to g on P , it follows that it also converges in
measure to go on [a, b]. By Corollary 3, go is Lebesgue integrable on [a, b] and
{Fn}n converges uniformly to G on [a, b], where G(x) = F (a) + (L)

∫ x
a
go(t)dt.

Since {Fn}n converges to F on [a, b] it follows that F = G on [a, b]. Hence
F
′
(x) = G

′
(x) = go(x) a.e. on [a, b]. Therefore F

′
(x) = g(x) a.e. on P .

Remark 3. In Lemma 5, the condition “{Fn}n converges pointwise to F :
P → R on P” is essential. Indeed, let P = [0, 1/3]∪[2/3, 1] and let Fn : P → R,

Fn(x) =

{
0 if x ∈ [0, 1/3]

n if x ∈ [2/3, 1]

For ε > 0 and δε < 1/3 we see easily that {Fn}n is UAC on P , but {F̃n}n is
not UAC on [0, 1].

Corollary 4. Let P be a closed subset of [a, b]. Let F, Fn : [a, b] → R, n =
1, 2, . . ..

(I) Suppose that {Fn}n is UAC on P and converges pointwise to F on P .
We have:

(i) F ∈ AC on P . Consequently F and Fn are approximately deriv-
able a.e. on P ;

(ii) If {(Fn)
′

ap}n converges in measure to an almost everywhere finite

function g on P , then F
′

ap(x) = g(x) a.e. on P .

(II) Suppose that {Fn}n is UAC∗ on P and converges pointwise to F on
[a, b]. We have:

(i) F ∈ AC∗ on P . Consequently F and Fn are derivable a.e. on P .

(ii) If {F ′n}n converges in measure to an almost everywhere finite func-
tion g on P , then F

′
(x) = g(x) a.e. on P .

Proof. (I) (i) This follows by Lemma 4, (i).
(ii) We may suppose without loss of generality that a, b ∈ P and that the



Convergence and Approximate Differentiation 151

set of all intervals contiguous to P is infinite. Let {(ck, dk)}k be the intervals
contiguous to P . Let F̃ , F̃n : [a, b]→ R be defined by

F̃ (x) =

{
F (x) if x ∈ P
linear on each [ck, dk]

and F̃n(x) =

{
Fn(x) if x ∈ P
linear on each [ck, dk]

Clearly F̃n converges pointwise to F̃ on [a, b]. By Lemma 5 it follows that
{F̃n}n is UAC on [a, b] and F̃ ∈ AC on [a, b]. Clearly F̃

′

n(x) = (Fn)
′

ap(x) and

F̃
′
(x) = F

′

ap(x) a.e. on P . By hypothesis {F̃ ′n}n converges in measure to an

almost everywhere finite function g on P , so, by Lemma 5, F̃
′
(x) = g(x) a.e.

on P . Hence F
′

ap(x) = g(x) a.e. on P .
(II) (i) follows by Lemma 4, (ii); (ii) follows by (II) (i) and (I) (ii).

Remark 4. The condition “{Fn}n is UAC on P” in Corollary 4, (I) is essential
(see Example 2). The condition “{Fn}n is UAC∗ on P” in Corollary 4, (II) is
essential. It cannot be replaced by “{fn}n is UAC on P” (see Example 1).

Theorem 1. Let P ⊆ [a, b] and let F, Fn : [a, b] → R, n = 1, 2, . . ., be
measurable functions such that {Fn}n converges pointwise to F on [a, b].

(i) Suppose that Fn is approximately derivable a.e. on [a, b], {Fn}n is UACG
on P , and {(Fn)

′

ap}n converges in measure to a measurable function g,
finite a.e. on [a, b]. Then F is approximately derivable a.e. on P and
F
′

ap(x) = g(x) a.e. on P .

(ii) Suppose that Fn is derivable a.e. on [a, b], {Fn}n is UAC∗G on P , and
{F ′n}n converges in measure to a measurable function g, finite a.e. on
[a, b]. Then F is derivable a.e. on P and F

′
(x) = g(x) a.e. on P .

Proof. (i) We may suppose without loss of generality that {Fn}n is UAC
on P . By Corollary 1 there exists Gn : P → R such that {Gn}n is UAC on P
and (Gn)/P = Fn for each n. Let Pn = {x ∈ P : Fn(x) = Gn(x)}. Then each
Pn is a Lebesgue measurable set which contains P . Let Q = ∩∞n=1Pn. Then Q
is a Lebesgue measurable subset of [a, b] which contains P . It follows that Q
can be written as the union of an ascending sequence of closed sets {Qi}i and
a null set Z. For each i, {Fn}n is UAC on Qi. By hypothesis and Corollary 4,
(I), it follows that F is approximately derivable a.e. on Qi and F

′

ap(x) = g(x)

a.e. on Qi, for each i. Hence F
′

ap(x) = g(x) a.e. on P .
(ii) We may suppose without loss of generality that {Fn}n is UAC∗ on P .

By Lemma 4, (ii) it follows that F ∈ AC∗ on P . Therefore F is derivable a.e.
on P . Now the proof follows by (i).
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Remark 5. The condition “{Fn}n is UACG on P” in Theorem 1, (i) is
essential (see Example 2). The condition “{Fn}n is UAC∗G on P” in Theorem
1, (ii) is also essential. It cannot be replaced by “{Fn}n is UAC on P” (see
Example 1).

Remark 6. In Corollary 3, Lemma 5, Corollary 4 and Theorem 1 the con-
dition “converges in measure” may be replaced by “converges a.e.” (see for
example Lebesgue’s theorem of [8], p. 95).

3 Applications of the Main Theorem to Some Integrals,
More General Than D and D∗

Definition 5. Let M([a, b]) = {F : [a, b]→ R : F is a Lebesgue measurable
function on [a, b]}. Let L1, L2, L3 and L4 be linear subspaces of M([a, b])
with the following properties:

1) If F ∈ ACG ∩ L1 on [a, b] and F
′

ap = 0 a.e. on [a, b], then F is a constant
function on [a, b].

2) If F ∈ [ACG] ∩L2 on [a, b] and F
′

ap = 0 a.e. on [a, b], then F is a constant
function on [a, b].

3) If F ∈ AC∗G ∩ L3 on [a, b] and F
′

= 0 a.e. on [a, b], then F is a constant
function on [a, b].

4) If F ∈ [AC∗G] ∩L2 on [a, b] and F
′

= 0 a.e. on [a, b], then F is a constant
function on [a, b].

Remark 7. Clearly there are more subspaces of type L2 than of type L1, and
there are more subspaces of type L4 than of type L3.

Definition 6. Let f : [a, b]→ R

• f is said to be L1D (respectively [L2D]) integrable on [a, b], if there exists
F : [a, b] → R such that F ∈ ACG ∩ L1 (respectively F ∈ [ACG] ∩ L2)
on [a, b], and F

′

ap(x) = f(x) a.e. on [a, b].

• f is said to be L3D∗ (respectively [L4D∗]) integrable on [a, b], if there
exists F : [a, b] → R such that F ∈ AC∗G ∩ L3 (respectively F ∈
[AC∗G] ∩ L4) on [a, b], and F

′
(x) = f(x) a.e. on [a, b].

We shall say that the function F is an indefinite L1D (respectively [L2D],
L3D∗, [L4D∗]) integral of f(x). Its increment F (b)−F (a) is called the definite
L1D (respectively [L2D], L3D∗, [L4D∗]) integral of f(x), and we denote it by

L1D
∫ b
a
f(t)dt (respectively [L2D]

∫ b
a
f(t)dt, L3D∗

∫ b
a
f(t)dt, [L4D∗]

∫ b
a
f(t)dt).
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Remark 8.

• If L1 = L2 = L3 = L4 = C, then CD = [CD] = D (the wide Denjoy
integral), and CD∗ = [CD∗] = D∗ (the Denjoy∗ integral).

• If L1 = L2 = L3 = L4 = Cap, then [CapD] is the β-Ridder integral
(see Definition 7 of [9], p. 148), which is also called the AD-integral of
Kubota (see [5], p. 715).

• We have

AC∗G ∩ Cap ⊂ V B∗G ∩ Cap ∩ (N) = [V B∗G] ∩ Cap ∩ [CG] ∩ (N) =

= [V B∗G] ∩ [ACG] ∩ Cap ⊂ [AC∗G] ∩ Cap on [a, b] .

For the first equality see Theorem 2.10.3, (vi) of [4] and use the fact that
a Cap function is a Darboux function on an interval. The second equality
follows by the Banach-Zarecki Theorem ([11], p. 227). The last inclusion
follows by Theorem 2.12.1, (ii) of [4]. Therefore

AC∗G ∩ Cap = [AC∗G] ∩ Cap ,

so
CapD∗ = [CapD∗] = α− Ridder integral

(for the α-Ridder integral see Definition 2 of [9], p. 138).

• The LDG integrals, introduced by C. M. Lee [6] are [L2D]-type integrals.

• (Question) Does the CapD integral strictly extend the [CapD] integral?

Theorem 2. Let {fn}n ⊂ L1D (respectively [L2D]) on [a, b] such that

lim
n→∞

fn → f , a.e. on [a, b] .

For each positive integer n, let Fn be the indefinite L1D (respectively [L2D])
integral of fn. Suppose that {Fn}n converges pointwise to F on [a, b], F ∈ L1

(respectively L2). If {Fn}n ∈ UACG (respectively [UACG]) on [a, b], then
f ∈ L1D (respectively [L2D]) on [a, b] and

lim
n→∞

L1D
∫ b

a

fn(t)dt = L1D
∫ b

a

f(t)dt

(respectively

lim
n→∞

[L2D]

∫ b

a

fn(t)dt = [L2D]

∫ b

a

f(t)dt

)
.
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Proof. See Lemma 4, (i) and Theorem 1, (i).

Theorem 3. Let {fn}n ⊂ L3D∗ (respectively [L4D∗]) on [a, b] such that

lim
n→∞

fn → f , a.e. on [a, b] .

For each n, let Fn be the indefinite L2D∗ (respectively [L4D∗]) integral of fn.
Suppose that {Fn}n converges pointwise to F on [a, b], F ∈ L3 (respectively
L4). If {Fn}n ∈ UAC∗G (respectively [UAC∗G]) on [a, b], then f ∈ L3D∗
(respectively [L4D∗]) on [a, b] and

lim
n→∞

L3D∗
∫ b

a

fn(t)dt = L3D∗
∫ b

a

f(t)dt

(respectively

lim
n→∞

[L4D∗]
∫ b

a

fn(t)dt = [L4D∗]
∫ b

a

f(t)dt

)
.

Proof. See Lemma 4, (ii) and Theorem 1, (ii).

Remark 9. Suppose that L1, L2, L3 and L4 are closed under uniform conver-
gence. Then the condition “{Fn}n converges pointwise to F on [a, b], F ∈ L1

(respectively L2)” in Theorem 2 may be replaced with the condition “{Fn}n
converges uniformly to F on [a, b]”. Similarly the condition “{Fn}n converges
pointwise to F on [a, b], F ∈ L3 (respectively L4)” in Theorem 3 may be
replaced with the condition “{Fn}n converges uniformly to F on [a, b]”.

Note that Theorem 2 contains Theorem 47, a) of [3] and Theorem 3 con-
tains Theorem 47, b) of [3] (in fact Theorem 47, b) is identical with L. P. Yee’s
Theorem 7.6 of [7]). Theorem 3 also contains L. P. Yee’s Corollary 7.7 of [7].

4 Sequences of Approximately Derivable Functions on
an Interval

We recall the following classical theorems.

Theorem A. ([10], p. 140). Let {fn}n be a sequence of differentiable func-
tions on [a, b], such that {fn(xo)}n converges for some point xo on [a, b]. If
{f ′n}n converges uniformly on [a, b] to g,, then {fn}n converges uniformly on
[a, b] to a function f , and f

′
(x) = g(x) on [a, b].



Convergence and Approximate Differentiation 155

Remark 10. If in Theorem A, the condition “{f ′n}n converges uniformly on
[a, b] to g” is replaced by “{f ′n}n converges pointwise on [a, b] to g”, then, even
if {fn}n converges uniformly to f on [a, b], it may happen that f

′
(x) does not

exist (finite or infinite) on a perfect set of positive measure as close as we want
to b−a. It follows that f

′
(x) 6= g(x) on a set of positive measure (see Example

1).

Theorem B. ([2], p. 44). Let {fn}n be a sequence of approximately differ-
entiable functions on [a, b], such that {fn(xo)}n converges for some point xo
on [a, b]. If {(fn)

′

ap}n converges uniformly on [a, b] to g, then {fn}n converges

uniformly on [a, b] to a function f , and f
′

ap(x) = g(x) on [a, b].

Proof. We follow the proof of [2], p. 44. Since

(fn)
′

ap −→ g [unif ] on [a, b].

it follows that there exists a positive integer n1 such that

|(fn)
′

ap(x)− (fn1
)
′

ap(x)| < 1 , (∀)n ≥ n1 .

By Tolstoff’s Theorem ([1], p. 175) it follows that fn − fn1
is a Lipschitz

function, and by the Khintchine–Mǐsik Theorem ([12], p. 139 or [1], Theorem
2.4, p. 155) we have

(fn)
′

ap(x)− (fn1
)
′

ap(x) = (fn − fn1
)
′
(x) on [a, b], (∀)n ≥ n1 .

Hence
(fn − fn1

)
′
−→ g − (fn1

)
′

ap [unif ] on [a, b].

By Theorem A

fn − fn1
−→ f − fn1

[unif ] on [a, b] for some f

and
(f − fn1)

′
(x) = g(x)− (fn1)

′

ap(x) on [a, b] .

Therefore

(fn)
′

ap(x) = (fn1)
′

ap(x) + (f − fn1)
′
(x) = g(x) on [a, b] .

Remark 11. If in Theorem A the condition “{f ′n}n converges uniformly on
[a, b] to g” is replaced by “{f ′n}n converges pointwise on [a, b] to g”, then, even
if {fn}n converges uniformly to f on [a, b], it may happen that f

′
exists and
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is continuous on [a, b], but f
′ 6= g on a perfect set of positive measure as close

as we want to b− a (see Example 2).
If in Theorem B the condition “{(fn)

′

ap}n converges uniformly on [a, b] to

g” is replaced by “{(fn)
′

ap}n converges pointwise on [a, b] to g”, then, even if

{fn}n converges uniformly to f on [a, b], it may happen that f
′

ap exists and is

continuous on [a, b], but f
′

ap 6= g on a perfect set of positive measure as close
as we want to b− a (see Example 2).

5 Examples

Example 1. First we construct a Cantor type perfect set, contained in [0, 1].
Let β ∈ (0, 1] and let {βn}n be a sequence of positive numbers such that∑∞
n=1 2n−1βn = β. We extract from [0, 1] the open interval G1 = (a1, b1),

centered in 1/2 with length β1.
Let

P1 = [0, 1] \G1 .

Clearly P1 consists of two disjoint closed intervals, each of length

1− β1
2

.

From each of the two intervals of P1 we extract from the left to the right the
centered open intervals (a2, b2) and (a3, b3), with length β2. Let

G2 = G1 ∪ (a2, b2) ∪ (a3, b3) and P2 = [0, 1] \G2 .

Clearly P2 consists of 22 nonoverlapping closed intervals, each of length

1− (β1 + 2β2)

22
.

Suppose we have already defined the sets Gn−1 and Pn−1, n ≥ 2. Then Pn−1
consists of 2n−1 nonoverlapping closed intervals, each of length

1− (β1 + 2β2 + · · ·+ 2n−1βn−1)

2n−1
.

From each interval of Pn−1 we extract from the left to the right the centered
open intervals

(a2n−1 , b2n−1), (a2n−1+1, b2n−1+1), . . . , (a2n−1, b2n−1)
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with length βn. Let

Gn = Gn−1 ∪
(
∪2

n−1
i=2n−1(ai, bi)

)
and Pn = [0, 1] \Gn .

Then Pn consists of 2n nonoverlapping closed intervals, each of length

1− (β1 + 2β2 + · · ·+ 2nβn)

2n
.

Let
G = ∪∞n=1Gn and P = ∩∞n=1Pn .

Then m(G) = β and m(P ) = 1− β.
Let f : [0, 1]→ R,

f(x) =


0 if x ∈ P
1
4n

(
1 + cos

(
2π

(bi−ai) (x− ai)− π
))

if x ∈ (ai, bi),

i = 2n−1, 2n−1 + 1, . . . , 2n − 1

n = 1, 2, . . .

Let fn : [0, 1]→ R (for f3 see Figure 1), fn(x) =

{
f(x) if x ∈ Gn
0 if x ∈ Pn.

Figure 1: The graph of f3 in Example 1
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Then we have

1) f
′

n(x) =

{
0 if x ∈ Pn
f
′
(x) if x ∈ Gn, n = 1, 2, . . . .

hence {fn}n ∈ C1([0, 1]);

2) fn −→ f [unif ] on [0, 1];

3) Let g : [0, 1]→ R, g(x) =

{
0 x ∈ P
f
′
(x) x ∈ G .

Then f
′

n(x)→ g(x), (∀)x ∈ [0, 1].

4) f
′
(x) does not exist (finite or infinite) if x ∈ P , but f

′

ap = g a.e. on [0, 1].

5) {fn}n is UAC on P , but {fn}n is not UAC∗ (and neither UAC∗G) on P
(see Corollary 4, (II) and Theorem 1, (ii)).

Example 2. We consider all the notations of Example 1. Let {αn} be a
strictly increasing sequence of positive numbers, converging to 1. From each
(ai, bi), i = 1, 2, . . . , 2n − 1, we extract the centered closed interval [cni , d

n
i ] of

length αn(bi − ai). Let

Kn = ∪2
n−1
i=1 [cni , d

n
i ] .

Then m(Kn) = αn ·m(Gn) and G = ∪∞n=1Kn. Let fn : [0, 1]→ R, n = 1, 2, . . ..
First we define fn on Pn ∪Kn by

fn(x) =

{
α if x ∈ [α, β]

x− m(Pn)
2n+1 if x ∈ Kn,

where [α, β] is any of the 2n closed intervals of Pn. Clearly fn is increasing
on Pn ∪Kn. On each [ai, c

n
i ], i = 1, 2, . . . , 2n − 1, we define fn such that fn is

strictly increasing, fn has a continuous derivative on [ai, c
n
i ], f

′

n(ai) = 0 and

f
′

n(cni ) = 1. On each [dni , bi], i = 1, 2, . . . , 2n − 1, we define fn such that fn is

strictly increasing, fn has a continuous derivative on [dni , bi], f
′
(dni ) = 1 and

f
′

n(bi) = 0 (for f3 and f see Figure 2).

Then we have

1) fn ∈ C1([0, 1]);

2) fn −→ f [unif ] on [0, 1], where f : [0, 1]→ [0, 1], f(x) = x, f ∈ C1[0, 1];

3) f
′

n(x) = 0 on Pn. Hence f
′

n(x) = 0 on P .
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4) limn→∞ f
′

n(x) = 1 for each x ∈ G. (Indeed, for x ∈ G = ∪∞n=1Kn, there
exists a positive integer m such that x ∈ int(Kn), (∀)n ≥ m, because
K1 ⊂ K2 ⊂ . . . ⊂ Km ⊂ . . . ⊂ Kn ⊂ . . .; it follows that f

′

n(x) = 1,
(∀)n ≥ m, so limn→∞ f

′

n(x) = 1).

5) limn→∞ f
′

n(x) = g(x), x ∈ [0, 1], where g : [0, 1]→ [0, 1],

g(x) =

{
0 if x ∈ P
1 if x ∈ G

6) {fn}n is UAC (or UACG) neither on [0, 1] nor on P (see Corollary 4, (I)
and Theorem 1, (i)).

Figure 2: The graph of f3 and f in Example 2
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