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ON THE PROBLEM OF CHARACTERIZING
DERIVATIVES

Abstract

We observe how a slight and even natural change in the Kurzweil-
Henstock integral leads to a characterization of derivatives. We will
also argue that the only way to characterize derivatives is by using some
object or procedure which is at least as complicated as an integral.

A function f : R → R is called a derivative if there exists a function
F : R→ R such that for all x ∈ R, f(x) = F ′(x). A longstanding problem in
real analysis is to characterize derivatives ([10]).

Any problem which simply asks us to characterize something is, of course,
vague. After all, there are always trivial characterizations. For example,

“f is a derivative if and only if it has a primitive F .”
That is, to see if f is a derivative, just integrate it then differentiate it and see if
you get f again. Presumably this does not count as a solution to the problem.
But what would? Several characterizations have been proposed. Some of these
are mentioned below. What would make one of them interesting and/or non-
trivial and/or useful enough to be recognized as a solution? The standards
are not clear. It is generally believed to be one of those things which will be
recognized when it is seen, and also generally believed to be something which
hasn’t been seen yet. But if anything does seem clear about the standards, it
is that we should rule out integrating f as a method of solution.

Derivatives have some nice structural properties. For example, they are
both Baire-one and Darboux. So it is natural to ask (see [1], [10]) whether
such structural properties might provide a characterization. It is also true that
certain types of characterizations, for example, characterizations in terms of
associated sets, are impossible (see [1]).

Descriptive set theoretic results by Mazurkiewicz ([7]) and by Dougherty
and Kechris ([5]) show that the set of derivatives is sufficiently complicated
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to rule out many natural (Borel) types of characterizations. However, such
results do not render the problem impossible, since what is complicated in one
context may be simple and even natural in another. Indeed, many of the basic
concepts of analysis are inherently non-Borel.

In this note, we would like to assert that perhaps no “satisfactory” solu-
tion is possible, since any characterization must either explicitly or implicitly
contain integration.

To be more precise, consider the following three questions:

1. Given a Baire-one function f , is f a derivative?

2. Given a derivative f and a number L, is
∫ 1

0
f(x)dx = L?

3. Given a derivative f and a number L, is
∫ 1

0
f(x)dx ≥ L?

The first is our characterization problem. The third is a form of the prim-
itive problem. That is, any method of answering 3) immediately yields a
method of determining (to any desired accuracy) what the primitive is. In
general, this is a complicated procedure.

The second problem is asking for an equivalent definition for the definite
integral of a derivative. Instead of being asked for the value of the integral,
we are only asked to check whether a certain “guess” is correct.

We will observe below that any solution to the first problem must already
contain a solution to the second problem. It is in this sense, then, that we can’t
“know” which functions are derivatives without already having “knowledge”
of what their integrals are! The argument would be somewhat stronger if we
could show that any solution to 1) gives a solution to 3).

This seems to severely restrict the possibilities for a characterization. We
still might have:

1. A characterization of derivatives in terms of their primitives (like the
trivial one mentioned above).

2. A characterization of derivatives using some sort of integration proce-
dure.

3. A characterization of the set of derivatives in terms of some other compli-
cated construct (ie. a relative characterization). For example, we might
define the set of derivatives in terms of itself.

We might also have a combination or disguised version of one of these.
None of these types of characterizations are the kind which analysts have



On the Problem of Characterizing Derivatives 807

been searching for, yet it is hard to imagine how anything else is possible!?
In section three we will give an example of each of these types, including a
simple characterization making a natural change in the definition of Kurzweil-
Henstock integrability.

1 Using a Characterization of Derivatives to Define an
Integral

Suppose we are given a derivative f and a number L and we wish to know

whether
∫ 1

0
fdx = L, but we are only allowed to ask questions of the form “Is

g(x) a derivative?”

Assume without loss of generality that f(0) = f(1) = 0. For each positive
integer n, let an = 1− 1

n , mn = 1
an+1−an = n(n+ 1), and let hn(x) denote the

line with slope mn mapping an to 0 and an+1 to 1. Define

gL(x) =


0 if x ≤ 0

f(hn(x)) if x ∈ [an, an+1]

L if x ≥ 1.

Note that at the points x = an there is no discrepancy since f(0) = f(1) =
0.

Theorem 1. Let f be a derivative with f(0) = f(1) = 0. Then
∫ 1

0
f(x)dx = L

if and only if gL(x) is a derivative, where gL(x) is defined as above.

Proof. Let F denote the antiderivative of f with F (0) = 0, so that
∫ 1

0
f(x)dx

= F (1). Fix L and let g(x) = gL(x) be defined as above. Define G(x) as
follows:

G(x) =


0 if x ≤ 0

anF (1) + 1
mn

F (hn(x)) if x ∈ [an, an+1]

F (1) + L(x− 1) if x ≥ 1.

We will show below that G is well-defined and continuous. We will also
show thatG′(x) = g(x) at each x 6= 1. From this it follows that g is a derivative
if and only if it is the derivative of G. The third claim is that the derivative
of G from the left is F (1) and the derivative from the right is g(1) = L. From
this it follows that G′ = g if and only if L = F (1). Combining these proves
the theorem. It remains only to verify the three claims.



808 Chris Freiling

First, notice that if x = an+1 then G is defined twice. The first definition,
using [an, an+1] gives

G(an+1) = anF (1) +
1

mn
F (hn(an+1))

= anF (1) + (an+1 − an)F (1) = an+1F (1) ,

while the second, using [an+1, an+2] gives

G(an+1) = an+1F (1) +
1

mn+1
F (hn+1(an+1))

= an+1F (1) +
1

mn+1
F (0) = an+1F (1) ,

and the two agree. Similarly, at a1 = 0 we get G(a1) = 0 · F (1) + 1
m1
F (0) =

0 which agrees with G(0) = 0. Also, since F is bounded on [0, 1] and
limn→∞

1
mn

= 0 and limn→∞ an = 1, we get limx→1− G(x) = F (1) = G(1)
and so G is continuous.

If x < 0 then G′(x) = 0 = g(x). Also, the derivative from the left at x = 0
is 0 = g(0). If x ∈ [an, an+1], then

G′(x) =
1

mn
F ′(hn(x)) · h′n(x)

=
1

mn
f(hn(x))mn = f(hn(x)) = g(x).

Similarly, the derivative from the right at an and from the left at an+1 both
agree with the function g. If x > 1 then G′(x) = L and g(x) = L. So it only
remains to show that the derivative of G from the left at x = 1 is F (1). Let
x ∈ [an, an+1]. We compute

G(1)−G(x)

1− x
=

F (1)− anF (1)− 1
mn

F (hn(x))

1− x

= F (1)
1− an
1− x

− (an+1 − an)F (hn(x))

= F (1) + F (1)
x− an
1− x

− (an+1 − an)F (hn(x)) .
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so, if B is a bound for F on [0, 1], then

|G(1)−G(x)

1− x
− F (1)| ≤ B

x− an
1− x

+B(an+1 − an)

≤ B
an+1 − an
1− an+1

+B(an+1 − an)

= B(an+1 − an)(
1

1− an+1
+ 1)

= B(
1

n(n+ 1)
)(n+ 1 + 1) ,

which approaches zero as n→∞.

2 Examples

An example of the first type of characterization (in terms of the primitive)
was given by Neugebauer [8]. A simplified version of this characterization goes
as follows.

Recall that a result of Gleyzal [6] says that a function is Baire-one if and
only if it is the limit of an interval function, H(I). That is, H maps closed
intervals to reals and f(x) is the limit of H(I) as |I| → 0 with x ∈ I. Let us call
an interval function “balanced” if H(I)|I|+H(J)|J | = H(K)|K| whenever the
interval K is partitioned by the intervals I and J . That is, whenever K = I∪J
and I ∩ J contains only one point. Functions which are the limits of balanced
interval functions are exactly the derivatives.

To see this, suppose for example that f is a derivative with a primitive F .
Define H(I) to be the difference quotient of F over the interval I and H is
immediately seen to have the desired properties. In the other direction, sup-
pose that f(x) is the limit of such an interval function. Let F (x) = xH([0, x]).
Then,

F (x+ h)− F (x)

h
=

(x+ h)H([0, x+ h])− xH([0, x])

h
.

Using that H is balanced, this is

=
hH([x, x+ h])

h
= H([x, x+ h]),

and then from the limiting property of H it follows that F ′(x) = f(x).
This characterization makes a nice analogy between Baire-one functions

and derivatives. (Neugebauer’s original version was designed to draw a similar
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analogy between derivatives and Baire-one Darboux functions.) Yet it is easy
to see that the function H is just a disguised form of the primitive function.

For an example of the second type, consider the definition of Kurzweil-
Henstock integrability:

Definition 1. Let I be a closed interval and let I1, . . . , In be a partition of I
and let x1, . . . , xn be a sequence of points such that for each i, xi ∈ Ii. Then
the system of intervals and points is called a “tagged” partition of I. If f is
any function on I then the tagged partition yields a “Riemann sum”, given
by

∑n
i=1 f(xi)|Ii|. If δ(x) is a positive function defined on I each |Ii| < δ(xi)

then the tagged partition is called “δ-fine”. Positive functions δ(x) are often
called “gauge” functions.

Definition 2. A function f(x) is KH-integrable if and only if, (∀I) (∀ε >
0)(∃δ : R → R+)(any two δ-fine tagged partitions of I have Riemann sums
which differ by less than ε|I|). The KH-integral is then defined to be the limit
of the corresponding Riemann sums as ε→ 0.

The importance of this definition is summarized by the following theorem.
The proof is provided for future reference. Note that if I is the interval [a, b]
then we use F (I) to abbreviate the difference F (b)− F (a).

Theorem 2. (Kurzweil-Henstock) Derivatives are KH-integrable.

Proof. Let f(x) be the derivative of a function F (x). Given ε > 0 there is
a δ(x) > 0 such that for any interval I containing x with |I| < δ(x) we have
F (I)|I| within ε

2 of f(x). Let I be an interval, partitioned into the subintervals
I1, . . . , In and let xi be chosen in each Ii so that the resulting tagged partition
is δ-fine. Then each F (Ii) is within ε

2 |Ii| of f(x)|Ii|. Summing over i we get
that F (I) is within ε

2 |I| of
∑n
i=1 f(xi)|Ii| which, of course, is the Riemann sum.

It follows that any two such Riemann sums are within ε|I| of each other.
The quantifier (∀I) is usually left out of the previous definition because if a

function is integrable over one interval, then it is provably integrable over every
subinterval. But here we leave it in so as to emphasize the often overlooked
fact that the gauge δ not only depends on x and ε but is also allowed to depend
on the interval which is being integrated! This dependence may even seem a
bit unnatural since we usually think of the gauge as a local property of the
function f . Who cares if we are integrating from 0 to 1 or 0 to 10? With this
motivation, suppose that we demand that the gauge be interval independent.
Then we get a characterization of derivatives:

Proposition 1. A function f is a derivative if and only if (∀ε > 0)(∃δ : R→
R+)(∀I)(any two δ-fine tagged partitions have Riemann sums which differ by
less than ε|I|).
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Proof. The⇒ direction is exactly like the proof given above that derivatives
are integrable. One simply notices that the choice of δ comes from the defi-
nition of derivative and has nothing to do with the interval being integrated.
For the other direction, notice that if f satisfies the right side then it is KH-
integrable. Let F(x) be its integral. Given ε > 0 there is a corresponding gauge
δ : R→ R+. Let I be an interval containing x with |I| < δ(x). Then I with x
as a tag, is itself a δ-fine partition of I, with Riemann sum f(x)|I|. This must
differ from the Riemann sum of any other such tagged partition by at most
ε|I|, and hence differs from the integral F(I) by at most ε|I|. Therefore, f(x)
differs from F (I)/|I| by at most ε.

An example of the third type is provided by Preiss and Tartaglia [9], who
give, using the Axiom of Choice, an interesting characterization of derivatives
in terms of the set of derivatives, a sort of circular characterization. Their
result says that f is a derivative if and only if for each set of real numbers E,
there is a derivative g such that {x|f(x) ∈ E} = {x|g(x) ∈ E}. Despite the
circularity, this characterization really seems to say something. If a function
fails to be a derivative, then it is prevented from being one solely because it
has the wrong kind of inverse image on some set.

This characterization has been recently improved by Ciesielski ([2]). There
is a collection of sets A of cardinality no larger than than of the reals, and a
property D such that a Borel function f is a derivative if and only if the inverse
image of every set in A has property D. This makes it look remarkably similar
to familiar characterizations of continuity, etc. Here D = {f−1(S)|S ∈ A, f
is a derivative}. Moreover, given that f is already known to be Darboux and
Baire-one, the collection A can be just the translations of a single set.

3 Conclusion

The characterization problem for derivatives may be impossible for the
structural kind of characterization we would like. But that doesn’t mean that
we shouldn’t keep searching. Perhaps we will find ones which are nontrivial,
interesting, perhaps even useful. All of the characterizations given so far are in
terms of more complicated objects, be it the primitive, the gauge functions, or
the set of derivatives itself. We have suggested that this may be unavoidable.

One direction, which might be more appealing, is to give some sort of “first
return” characterization. The idea would be to make the more complicated
object just a countable sequence of real numbers, and the test as to whether
a function is a derivative would only depend on the limiting properties of the
original function on this sequence. There seems to be good hope for this.
Baire-one and Baire-one Darboux functions have been similarly characterized



812 Chris Freiling

in terms of such limits (see [3], [4]). At least on the surface, this type of
characterization might appear to be a more structural.

Another possibility, suggested by Brian Thomson, is to investigate charac-
terizations of functions which are not exact derivatives, but which come close,
for example, functions which, except on a countable set, are the derivative of
their integral.
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