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ON DENSITY POINTS OF SUBSETS OF
METRIC SPACE WITH RESPECT TO THE
MEASURE GIVEN BY RADON-NIKODYM

DERIVATIVE

We start from the well known definition of density point of measurable set
with respect to the Lebesgue measure on the real line.

Definition 1. 0 is a density point of the set E if

lim
h→0

λ(E ∩ (−h, h))

2h
= 1.

This is equivalent to saying that the sequence of characteristic functions
of the sets (nE) ∩ (−1, 1) tends in (Lebesgue) measure to the characteristic
function of the interval (−1, 1) (see [1]).

But (using the Riesz theorem) we have that 0 is a density point of E with
respect to the Lebesgue measure if and only if any subsequence of χ(nE∩(−1,1))
contains a subsequence which converges to χ(−1,1) almost everywhere.

To describe convergence almost everywhere we need only the σ-ideal of sets
of Lebesgue measure zero. So it follows that the notion of a density point of
any subset of real line with respect to the Lebesgue measure can be described
without measure. The only one thing that we need is the σ-ideal of null sets.

Now we will assume that µ is an arbitrary measure, finite on the balls, on
the Borel subsets of some metric space X. The natural generalization leads
to the following definition:

Definition 2. Let x0 be a point of support µ. We say that x0 is the density
point of the measurable set A if

lim
r→0

µ(A ∩Br)
µ(Br)

= 1

where Br denotes the ball B(x0, r).
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A natural problem is: what can we say about density points of sets with
respect to another measure ν, which has the same as µ σ- ideal of null sets.

We will show that, in general, the density point of A with respect to µ
need not be the density point of A with respect to ν, but we will find some
sufficient conditions for ν under which density points for µ are also density
points for ν.

In our considerations we will use the notion of Radon-Nikodym derivative
of measure ν with respect to an another measure µ, (i.e. the integrable function
f such that for any measurable set A, ν(A) =

∫
A
fdµ ).

We start from the following:

Lemma 1. Let D1, D2, . . . , Dk be a family of disjoint measurable sets,
such that for some r0 > 0, B(x0, r0) = Br0 ⊂

⋃k
i=1Di. Let d1, d2, . . , dk

be positive numbers. Denote by f the linear combination of characteristic
functions of the sets Di with coefficients di, i.e. f = d1χD1

+ d2χD2
+ . . . +

dkχDk . Let us define the new measure ν for any measurable set B as the
integral

ν(B) =

∫
B

fdµ =

k∑
i=1

diµ(B ∩Di).

Then, if x0 is a density point of the set A with respect to µ, it is also such a
point with respect to ν.

Proof. We want to show that

lim
r→0

ν(A ∩Br)
ν(Br)

= 1.

We know that for any positive ε there exists a positive δ such that for any
r < δ we have

1− µ(A ∩Br)
µ(Br)

=
µ(Br)− µ(A ∩Br)

µ(Br)
< ε.

So:

1− ν(A ∩Br)
ν(Br)

= 1−
∑k
i=1 diµ(A ∩Br ∩Di)∑k
i=1 diµ(Br ∩Di)

=

∑k
i=1 di(µ(Br ∩Di)− µ(A ∩Br ∩Di))∑k

i=1 diµ(Br ∩Di)
≤ M

m
· µ(Br)− µ(A ∩Br)

µ(Br)
<
M

m
· ε,

where m and M are the minimum and the maximum values of di respectively.
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Remark 1. Observe that the last inequality depends only on the maximum
and minimum values of di. We will use this fact subsequently.

Remark 2. It is quite easy to show that Lemma 1 is not true if di = 0 for
some i, 1 ≤ i ≤ k. For example, take A as a subset of 〈0, 1〉 with density
point 0 (with respect to the Lebesgue measure λ) and such that, for any r > 0,
λ(〈0, r〉 \ A) > 0. Evidently 0 is not a density point of A with respect to ν
given by the formula ν(B) =

∫
B
fdλ, where f = 0 ·χA+1 ·χ〈0,1〉\A. Moreover,

0 is the dispersion point of A with respect to ν and 0 belongs to the support of
ν.

Now we are in the position to prove the following theorem.

Theorem 1. Let f be an integrable function (with respect to µ) on the metric
space X, fulfilling the inequality 0 < m ≤ f(x) ≤ M for some radius r0, and
for x ∈ Br0 = B(x0, r0). Define ν(B) =

∫
B
fdµ. If x0 is a density point of a

set A with respect to µ, then it is also a density point of this set with respect to
ν. (Of course, the assumed condition of f is satisfied µ-almost everywhere.)

Proof. Let fn be a nondecreasing sequence of simple functions uniformly
tending to f a.e. Since f(x) ≥ m > 0 we can assume that fn(x) ≥ m
for each x ∈ Br0 and n. For if a nondecreasing sequence {gn} of functions
uniformly tends to f almost everywhere, then for each n and for each x ∈ Br0
we put fn(x) = max{m, gn(x)}.

Hence

lim
r→0

∫
Br
fndµ−

∫
Br∩A fndµ∫

Br
fndµ

= 0.

We have:

1−
∫
Br∩A fdµ∫
Br
fdµ

≤ I1 + I2

where

I1 = 1−
∫
Br∩A fndµ∫
Br
fndµ

and

I2 =
∣∣∫Br∩A fndµ∫

Br
fndµ

−
∫
Br∩A fdµ∫
Br
fdµ

∣∣.
The difference I1 is as small as we want, for sufficiently small r. Moreover (see
Remark 1), the inequality I1 <

M
m · ε does not depend of n!
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For I2 we have:

I2 =
|
∫
A∩Br fndµ

∫
Br
fdµ−

∫
A∩Br fdµ

∫
Br
fndµ |∫

Br
fndµ ·

∫
Br
fdµ

≤

≤
|
∫
A∩Br fndµ

∫
Br
fdµ−

∫
A∩Br fdµ

∫
Br
fdµ |∫

Br
fndµ ·

∫
Br
fdµ

+

+
|
∫
A∩Br fdµ

∫
Br
fdµ−

∫
A∩Br fdµ

∫
Br
fndµ |∫

Br
fndµ ·

∫
Br
fdµ

=

∫
Br
fdµ∫

Br
fndµ

·
|
∫
A∩Br fndµ−

∫
A∩Br fdµ |∫

Br
fdµ

+

+

∫
A∩Br fdµ∫
Br
fndµ

·
|
∫
Br
fdµ−

∫
Br
fndµ |∫

Br
fdµ

<
2M · ε
m2

if n is so large that | f − fn |< ε on Br0 .

Remark 3. It is not difficult to see, that without the assumptions about the
double boundedness of f Theorem 1 can be false.

Corollary 1. Let µ, ν be the finite on balls Borel measures on the metric
space X. Assume that µ and ν are equivalent, i.e. the σ- ideals of null sets
with respect to µ and ν are the same. Let the Radon-Nikodym derivative dµ

dν
have the property that for any ball B(x0, r) there exist positive numbers m, M
such that m ≤ dν

dµ (x) ≤ M for x belonging to B(x0, r). Then any measurable
set A has the same sets of density points with respect to µ and ν.

Proof. By our Theorem we have, that if x0 is a density point of A with
respect to µ, it is also a density point with respect to ν. But, as is well known,
the Radon-Nikodym derivative dµ

dν = 1
dν
dµ

has the same property of double

boundedness on balls as dν
dµ and hence density points with respect to ν are

also density points with respect to µ.
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