ON THE MAXIMAL FAMILIES FOR SOME SPECIAL CLASSES OF STRONGLY QUASI-CONTINUOUS FUNCTIONS

Abstract

The maximal families (additive, multiplicative, lattice and with respect to the composition) for some special classes of strongly quasicontinuous functions are investigated.

Let \mathcal{R} be the set of all reals and let $\mu_{e}(\mu)$ denote the outer Lebesgue measure (the Lebesgue measure) in \mathcal{R}. Denote by

$$
\begin{aligned}
& d_{u}(A, x)=\limsup _{h \rightarrow 0^{+}} \mu_{e}(A \cap(x-h, x+h)) / 2 h \\
& \left(d_{l}(A, x)=\liminf _{h \rightarrow 0^{+}} \mu_{e}(A \cap(x-h, x+h)) / 2 h\right.
\end{aligned}
$$

the upper (lower) density of a set $A \subset \mathcal{R}$ at a point x. A point $x \in \mathcal{R}$ is called a density point of a set $A \subset \mathcal{R}$ if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_{l}(B, x)=1$. The family
$\mathcal{T}_{d}=\{A \subset \mathcal{R} ; A$ is measurable and every point $x \in A$ is a density point of $A\}$ is a topology called the density topology [1]. Denote by $\operatorname{int}(A)$ the interior (Euclidean) of the set A. The family

$$
\mathcal{T}_{a e}=\left\{A \in \mathcal{T}_{d} ; \mu(A-\operatorname{int}(A))=0\right\}
$$

is also a topology [5].
A function f (from \mathcal{R} into \mathcal{R}) is called $\mathcal{T}_{a e}-$ continuous $\left(\mathcal{T}_{d}-\right.$ continuous or approximately continuous) at a point x if it is continuous at x as the application from $\left(\mathcal{R}, \mathcal{T}_{a e}\right)$ (from $\left(\mathcal{R}, \mathcal{T}_{d}\right)$) into $\left(\mathcal{R}, \mathcal{T}_{e}\right)$, where \mathcal{T}_{e} denotes the

Key Words: continuity, strong quasicontinuity, density topology, maximal additive and multiplicative families

Mathematical Reviews subject classification: 26A15, 54C08, 54C30
Received by the editors April 4, 1997
*Supported by Bydgoszcz WSP grant (1996)

Euclidean topology in \mathcal{R}. A function f is $\mathcal{T}_{a e}-$ continuous (everywhere on \mathcal{R}) if and only if it is $\mathcal{T}_{d}-$ continuous (everywhere) and almost everywhere (relative to μ) continuous [5]. A function f is said to be strongly quasicontinuous (in short s.q.c.) at a point x if for every set $A \in \mathcal{T}_{d}$ containing x and for every positive real η there is an open interval I such that $I \cap A \neq \emptyset$ and $|f(t)-f(x)|<\eta$ for all $t \in A \cap I$ [2]. If a function f is s.q.c-continuous at every point then we say that f is s.q.c-continuous.

In this paper the main results are some modifications of the results of Z.Grande in [4].

Let $\mathcal{P}(x)$ be a property of a function f at a point x (we will write $f \in \mathcal{P}(x)$) such that:
if f is continuous at x then $f \in \mathcal{P}(x)$;
if $f \in \mathcal{P}(x)$ then $-f \in \mathcal{P}(x)$;
if $f \in \mathcal{P}(x)$ and $g / I=f / I$ for some open interval I containing x then $g \in \mathcal{P}(x)$.

Denote by P the family of all functions f such that for every positive real η and for every point x and for every set $A \in \mathcal{T}_{d}$ containing x there is an open interval I such that $I \cap A \neq \emptyset,|f(t)-f(x)|<\eta$ and $f \in \mathcal{P}(t)$ for all $t \in I \cap A$.

Now, let:
$-C=\{f ; f$ is continuous $\} ;$

- $C_{a e}=\left\{f ; f\right.$ is $\mathcal{T}_{a e}-$ continuous $\} ;$
- $Q_{s}=\{f ; f$ is s.q.c. $\} ;$
- $\operatorname{Max}_{a d d}(P)=\{f ; f+g \in P$ for every $g \in P\} ;$
- $_{\text {Max }}^{\text {mult }}(P)=\{f ; f g \in P$; for every $g \in P\}$;
$-\operatorname{Max}_{\max }(P)=\{f ; \max (f, g) \in P$ for every $g \in P\} ;$
$-\operatorname{Max}_{\min }(P)=\{f ; \min (f, g) \in P$ for every $g \in P\} ;$
$-\operatorname{Max}_{\text {comp }}(P)=\{f ; f \circ g \in P$ for every $g \in P\}$.

Remark 1. Evidently

$$
C \subset P \cup C_{a e} \subset Q_{s}
$$

So, every function $f \in P$ is almost everywhere continuous [2, 3].

Remark 2. The inclusion
$\operatorname{Max}_{a d d}(P) \cup \operatorname{Max}_{\operatorname{mult}}(P) \cup \operatorname{Max}_{\max }(P) \cup \operatorname{Max}_{\min }(P) \cup \operatorname{Max}_{\text {comp }}(P) \subset P$ is true.

Proof. Since the functions $g_{1}(t)=0, g_{2}(t)=1$ and $g_{3}(t)=t$ for $t \in$ \mathcal{R} belong to P, for all functions $f_{1} \in \operatorname{Max}_{\text {add }}(P), f_{2} \in \operatorname{Max}_{\text {mult }}(P)$ and $f_{3} \in \operatorname{Max}_{\text {comp }}(P)$ we obtain have $f_{1}=f_{1}+g_{1} \in P, f_{2}=f_{2} g_{2} \in P$ and $f_{3}=f_{3} \circ g_{3} \in P$. So,

$$
\operatorname{Max}_{a d d}(P) \cup \operatorname{Max}_{m u l t}(P) \cup \operatorname{Max}_{c o m p}(P) \subset P
$$

If a function f is not in P then there are a positive real η, a point x and a set $A \in \mathcal{T}_{d}$ containing x such for every open interval I with $I \cap A \neq \emptyset$ there is a point $t \in I \cap A$ such that $|f(t)-f(x)| \geq \eta$ or f is not in $\mathcal{P}(t)$. Then the functions $\max (f, f(x)-\eta)$ and $\min (f, f(x)+\eta)$ are not in P. So, f is not in $\operatorname{Max}_{\max }(P) \cup \operatorname{Max}_{\min }(P)$ and the proof is completed.
I. The family $\operatorname{Max}_{a d d}(P)$.

In this part we suppose that the property $\mathcal{P}(x)$ is such that if $f, g \in \mathcal{P}(x)$ then $f+g \in \mathcal{P}(x)$ (then we say that $\mathcal{P}()$ has the additive property).
Theorem 1. Assume $\mathcal{P}(x)$ has the additive property. Then

$$
C_{a e} \cap P=\operatorname{Max}_{a d d}(P)
$$

holds.
Proof. Let $f \in C_{a e} \cap P$ and $g \in P$ be functions. Fix a positive real η, a point x and a set $A \in \mathcal{T}_{d}$ containing x. Since $f \in C_{a e}$, the point x is a density point of the set $B=\operatorname{int}(\{t ;|f(t)-f(x)|<\eta / 2\})$. Consequently, x is a density point of the set $B \cap A$. Since $g \in P$, there is an open interval $J \subset B$ such that $J \cap A \neq \emptyset,|g(t)-g(x)|<\eta / 2$ and $g \in \mathcal{P}(t)$ for every $t \in J \cap A$. From the relation $f \in P$ follows that there is an open interval $I \subset J$ such that $I \cap A \neq \emptyset$ and $f \in \mathcal{P}(t)$ for all points $t \in I \cap A$. Consequently, $I \cap A \neq \emptyset, f+g \in \mathcal{P}(t)$ and $|(f(t)+g(t))-(f(x)+g(x))|<\eta / 2+\eta / 2=\eta$ for all points $t \in I \cap A$. So, the function $f \in \operatorname{Max}_{a d d}(P)$ and the inclusion $C_{a e} \cap P \subset \operatorname{Max}_{a d d}(P)$ is proved.

For the proof of the inclusion $\operatorname{Max}_{a d d}(P) \subset C_{a e} \cap P$ fix a function $f \in$ $\operatorname{Max}_{a d d}(P)$. By Remark 1 the function $f \in P$. If f is not in $C_{a e}$ then there are a point $x \in \mathcal{R}$ and a positive number η such that the closure $\operatorname{cl}(\{t ; \mid f(t)-$ $f(x) \mid>\eta\}$) of the set $\{t ;|f(t)-f(x)|>\eta\}$ has positive upper density at a point x. We can assume that the closure

$$
c l(\{t ; f(t)>f(x)+\eta\})
$$

has positive upper density at a point x. Since f belonging to $P \subset Q_{s}$ is almost everywhere continuous [2, 3], we obtain

$$
\mu(c l(\{t ; f(t)>f(x)+\eta\}) \backslash\{t ; f(t) \geq f(x)+\eta\})=0
$$

and consequently,

$$
d_{u}(i n t(\{t ; f(t)>f(x)+\eta / 2\}), x)>0
$$

Thus there is a sequence of disjoint closed intervals $I_{n}=\left[a_{n}, b_{n}\right] \subset\{t ; f(t)>$ $f(x)+\eta / 2\}, n=1,2, \ldots$, such that:
(1) x is not in I_{n} for $n=1,2, \ldots$;
(2) f is continuous at all points $a_{n}, b_{n}, n=1,2, \ldots$;
(3) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=x$;
(4) $d_{u}\left(\bigcup_{n} I_{n}, x\right)>0$.

Put

$$
g(t)=\left\{\begin{array}{cc}
-f(x)+\eta / 2 & \text { if } \\
-f(t) & \text { otherwise. }
\end{array} \quad(t=x) \vee\left(t \in I_{n}, n=1,2, \ldots\right)\right.
$$

Fix a positive real η, a point t and a set $A \in \mathcal{T}_{d}$ containing t. For a positive integer n and a point $t=a_{n}$ or $t=b_{n}$ the function g is unilaterally continuous at t and g / I_{n} is constant. So, there is an open interval $I \subset I_{n}$ with $I \cap A \neq \emptyset$. Evidently, $g \in \mathcal{P}(u)$ and $|g(u)-g(x)|=0<\eta$ for each point $u \in I \cap A$. If $t \in \operatorname{int}\left(I_{n}\right)$ for some positive integer n we proceed the same as above. If $t \neq x$ and t is not in I_{n} for $n=1,2, \ldots$ then there is an open interval I with $I \cap I_{n} \neq \emptyset$ for $n=1,2, \ldots, I \cap A \neq \emptyset$ and such that $\mid f(u)-f(t \mid<\eta$ and $f \in \mathcal{P}(u)$ for $u \in I \cap A$. Since $g / I=-f / I$, we obtain $|g(u)-g(t)|=|f(u)-f(t)|<\eta$ and $g \in \mathcal{P}(u)$ for all points $u \in I \cap A$. If $t=x$ then, by (4), there is a positive integer n with $A \cap \operatorname{int}\left(I_{n}\right) \neq \emptyset$. Since $g(u)=-f(x)+\eta / 2$ for $u=x$ and for $u \in \operatorname{int}\left(I_{n}\right)$, we have $g \in \mathcal{P}(u)$ and $|g(u)-g(t)|=0<\eta$ for $u \in A \cap \int\left(I_{n}\right)$. So, $g \in P$. Moreover, $f(x)+g(x)=\eta / 2, f(t)+g(t) \geq \eta$ for $t \in I_{n}, n=1,2, \ldots$ and $f(t)+g(t)=0$ otherwise on \mathcal{R}. So, $f+g$ is not in P and consequently f is not in $\operatorname{Max}_{\text {add }}(P)$. This contradiction finishes the proof.
II.The families $\operatorname{Max}_{\max }(P)$ and $\operatorname{Max}_{\min }(P)$.

In this part we suppose about the property $\mathcal{P}(x)$ that if $f, g \in \mathcal{P}(x)$ then also $\max (f, g), \min (f, g) \in \mathcal{P}(x)$ (then we say that $\mathcal{P}()$ has the lattice property).

Theorem 2. Let $\mathcal{P}(x)$ has the lattice property. Then

$$
\operatorname{Max}_{\max }(P)=\operatorname{Max}_{\min }(P)=C_{a e} \cap P
$$

holds.
Proof. For the proof of the inclusion

$$
C_{a e} \cap P \subset \operatorname{Max}_{\max }(P) \cap \operatorname{Max}_{\min }(P)
$$

we take a function $f \in C_{a e} \cap P$ and a function $g \in P$. Fix a positive real η, a point x and a set $A \in \mathcal{T}_{d}$ containing x. Let $h=\max (f, g)$. Consider the following cases:
(1) $f(x)>g(x)$. Then let $r=f(x)-g(x)$ and let $s=\min (r / 2, \eta)$. Since $f \in C_{a e}, x$ is a density point of the set $B=\operatorname{int}(\{t ;|f(t)-f(x)|<s\})$. From the relation $g \in P$ follows that there is an open interval $J \subset B$ such that $J \cap A \neq \emptyset, g \in \mathcal{P}(t)$ and $|g(t)-g(x)|<s$ for all points $t \in J \cap A$. Since $f \in P$, there is an open interval $I \subset J$ with $I \cap A \neq \emptyset$ and $f \in \mathcal{P}(t)$ for all points $t \in I \cap A$. Observe that for $u \in I \cap A$ we have

$$
f(u)>f(x)-s \geq g(x)+2 s-s=g(x)+s>g(u)
$$

whence $h(u)=f(u)$. Moreover, $h(x)=f(x), h \in \mathcal{P}(u)$ and

$$
|h(u)-h(x)|=|f(u)-f(x)|<s \leq \eta
$$

for all point $u \in I \cap A$.
(2) $f(x)<g(x)$. In this case the proof is analogous as above.
(3) $f(x)=g(x)$. In this case we put $s=\eta$ and we find an open interval as above. Then $I \cap A \neq \emptyset$ and for $u \in I \cap A$ we obtain $h \in \mathcal{P}(u)$ and

$$
|h(u)-h(x)| \leq \max (|f(u)-f(x)|,|g(u)-g(x)|)<s=\eta
$$

So, $h=\max (f, g) \in P$. The prof that $\min (f, g) \in P$ is analogous.
Since by Remark 1 the inclusion $\operatorname{Max}_{\max }(P) \cup \operatorname{Max}_{\min }(P) \subset P$ is true, we will show the inclusion $\operatorname{Max}_{\max }(P) \cup \operatorname{Max}_{\min }(P) \subset C_{a e}$. We will show only that $\operatorname{Max}_{\max }(P) \subset C_{a e}$, because the proof of the inclusion $\operatorname{Max}_{\min }(P) \subset C_{a e}$ is similar. Let $f \in \operatorname{Max}_{\max }(P)$ be a function. By Remark 1 the function $f \in P$. If f is not in $C_{a e}$ then there are a point x and a positive number η such that

$$
d_{u}(c l(\{t ;|f(t)-f(x)|>\eta\}), x)>0
$$

If

$$
d_{u}(c l(\{t ; f(t)>f(x)+\eta\}), x)>0
$$

then the same as in the proof of Theorem 1 there are disjoint closed intervals

$$
I_{n}=\left[a_{n}, b_{n}\right] \subset\{t ; f(t)>f(x)+\eta / 2\}
$$

such that conditions $(1)-(4)$ from the proof of Theorem 1 are satisfied. Let

$$
g(t)=\left\{\begin{array}{cc}
f(x)-\eta & \text { if } \\
f(x)+\eta & \text { otherwise. }
\end{array} \quad(t=x) \vee\left(t \in I_{n}, n=1,2, \ldots,\right)\right.
$$

Analogously as in the proof of Theorem 1 we can show that $g \in P$. Moreover, $\max (f(x), g(x))=f(x)$ and $\max (f(t), g(t)) \geq f(x)+\eta / 2$ for $t \neq x$. So, $\max (f, g)$ is not in P and consequently, f is not in $\operatorname{Max}_{\max }(P)$. Now consider the case where

$$
d_{u}(c l(\{t ; f(t)<f(x)-\eta\}), x)>0
$$

. Then there are disjoint closed intervals $I_{n}=\left[a_{n}, b_{n}\right] \subset\{t ; f(t)<f(x)-$ $\eta / 2\}, n=1,2, \ldots$, which satisfy conditions (1)-(4) from the proof of Theorem 1. Let the function g be defined the same as above. Then $g \in P$, $\max (f(x), g(x))=f(x), \max (f(t), g(t)) \leq f(x)-\eta / 2$ for $t \in I_{n}, n=1,2, \ldots$, and $\max (f(t), g(t)) \geq f(x)+\eta$ otherwise on \mathcal{R}. So,in this case also $\max (f, g)$ is not in P, and consequently f is not in $\operatorname{Max}_{\max }(P)$. This contradiction finishes the proof.
III. The family $\operatorname{Max}_{\text {comp }}(P)$.

In this part we suppose that for every continuous function g and for every function $f \in \mathcal{P}(x)$ we have $g \circ f \in \mathcal{P}(x) ; \mathcal{P}()$ is invariant with respect to composition with continuous function.

Theorem 3. Assume $\mathcal{P}(x)$ is invariant with respect to composition with continuous function. Then

$$
\operatorname{Max}_{c o m p}(P)=C
$$

holds.
Proof. Let g be a continuous function and let $f \in P$ be a function. Fix a positive real η, a point x and a set $A \in \mathcal{T}_{d}$ containing x. Since g is continuous at $f(x)$, there is a positive real r such that if $|u-f(x)|<r$ then $|g(u)-g(f(x))|<$ η. From the relation $f \in P$ follows that there is an open interval I such that $I \cap A \neq \emptyset, f \in \mathcal{P}(t)$ and $|f(t)-f(x)|<r$ for all points $t \in I \cap A$. Observe that for every point $t \in I \cap A$ we obtain $g \circ f \in \mathcal{P}(t)$ and $|g(f(t))-g(f(x))|<\eta$. So, $g \circ f \in P$ and consequently $C \subset \operatorname{Max}_{\text {comp }}(P)$.

Suppose that a function f is not continuous at a point y. Then there is a sequence of points $y_{n} \neq y, n=1,2, \ldots$, such that $\lim _{n \rightarrow \infty} y_{n}=y$ and $\lim _{n \rightarrow \infty} f\left(y_{n}\right) \neq f(y)$. Let $I_{n}=\left[a_{n}, b_{n}\right], n=1,2, \ldots$, be disjoint closed intervals such that

$$
\begin{aligned}
& -\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0 \\
& -a_{n} b_{n}>0 \text { for } n=1,2, \ldots \\
& -d_{u}\left(\bigcup_{n} I_{n}, 0\right)>0
\end{aligned}
$$

Put

$$
g(x)=\left\{\begin{array}{ccl}
y_{n} & \text { if } & x \in I_{n}, n=1,2, \ldots, \\
y & \text { if } & x=0 \\
y_{1} & \text { otherwise } .
\end{array}\right.
$$

Fix a positive real η, a point x and a set $A \in \mathcal{T}_{d}$ containing x. If $x \neq 0$ then g is unilaterally continuous and consequently, there is an open interval I such that $I \cap A \neq \emptyset, g$ is continuous at every point $t \in I$ and $g(t)=g(x)$ for each point $t \in I$. If $x=0$ then there is a positive integer n such that $\left|y_{n}-y\right|<\eta$ and $I_{n} \cap A \neq \emptyset$. Consequently, there is an open interval $I \subset I_{n}$ with $I \cap A \neq \emptyset$. Observe that the reduced function g / I is continuous and $|g(u)-g(x)|=\left|y_{n}-y\right|<\eta$ for $u \in I$. This shows that $g \in P$. But $f \circ g$ is not in P, since $f \circ g$ is not s.q.c. at $x=0$. So, $\operatorname{Max}_{\text {comp }}(P) \subset C$, and the proof is completed.
IV. The family $\operatorname{Max}_{m u l t}(P)$.

In this part we suppose about the property $\mathcal{P}(x)$ that:

- if $f, g \in \mathcal{P}(x)$ then $f g \in \mathcal{P}(x)$;
- if $f \in \mathcal{P}(x)$ and I is an open interval such that 0 is not in $f(I)$ then the function

$$
g(t)=\left\{\begin{array}{cc}
1 / f(t) & \text { for } \\
0 & \text { otherwise }
\end{array} \quad t \in I\right.
$$

belongs to P.
Remark 3. If a function $f \in P$ is not $\mathcal{T}_{a e}-$ continuous at a point $x \in \mathcal{R}$ at which $f(x) \neq 0$ then there is a function $g \in P$ such that the product $f g$ is not in P.

Proof. The same as in the proof of Theorem 1 we prove that there exist a positive real η and disjoint closed intervals $I_{n}=\left[a_{n}, b_{n}\right] \subset\{t ;|f(t)-f(x)|>$ $\eta / 2\}$ which satisfy conditions (1)-(4) from the proof of Theorem 1. Put

$$
g(t)=\left\{\begin{array}{cc}
1 & \text { if } \\
0 & \text { otherwise. }
\end{array} \quad(t=x) \vee\left(t \in I_{n}, n=1,2, \ldots,\right)\right.
$$

Observe that $g \in P$. Since $f(x) g(x)=f(x) \neq 0$ and for every point $t \neq x$ we have $f(t) g(t)=0$ or $|f(t) g(t)-f(x) g(x)|=|f(t)-f(x)|>\eta$, the function $f g$ is not s.q.c. at x, so $f g$ is not in P. This completes the proof.

Remark 4. Let $f \in P$ be a function and let $x \in \mathcal{R}$ be a point such that $f(x)=0$. If $d_{u}(\{t ; f(t)=0\}, x)>0$ then for every function $g \in P$, for every positive real η and for every set $A \in \mathcal{T}_{d}$ containing x there is an open interval I such that $I \cap A \neq \emptyset$, the product $f g \in \mathcal{P}(t)$ and $|f(t) g(t)|<\eta$ for each point $t \in I \cap A$.
Proof. Fix a function $g \in P$, a positive real η and a set $A \in \mathcal{T}_{d}$ containing x. The functions $f, g \in P$, so they are almost everywhere continuous. Observe that the set $B=\{t ; t \in A, f(t)=0$ and f is continuous at $t\}$ is of positive measure. There are a nonempty set $D \subset B$ belonging to \mathcal{T}_{d} and a point $u \in D$ such that $f(u)=0$ and the function g is continuous at u. Let J be an open interval containing u such that there is a positive real K with $|g(t)|<K$ for all points $t \in J$. Evidently, $u \in J \cap A \in \mathcal{T}_{d}$. Since $f \in P$ and $f(u)=0$, there is an open interval $I_{1} \subset J$ such that $I_{1} \cap A \neq \emptyset, f \in \mathcal{P}(t)$, and $|f(t)|<\eta / K$ for all points $t \in I_{1} \cap A$. But $g \in P$ and $\emptyset \neq I_{1} \cap A \in \mathcal{T}_{d}$, so there is an open interval $I \subset I_{1}$ such that $I \cap A \neq \emptyset$ and $g \in \mathcal{P}(t)$ for each point $t \in I \cap A$. For $t \in I \cap A$ we have $f g \in \mathcal{P}(t)$ and $|f(t) g(t)-f(x) g(x)|=|f(t) g(t)|<(\eta / K) K=\eta$. This completes the proof.

In the proof next Remark 4 we will apply the following Lemma which is proved in [4]:
Lemma 1. Let $A \subset \mathcal{R}$ be a closed set and let $x \in A$ be a point such that $d_{u}(A, x)=0$. Then there is a sequence of disjoint closed intervals $I_{n}=$ $\left[a_{n}, b_{n}\right] \subset(x-2, x+2), n=1,2, \ldots$, such that:

$$
-\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=x
$$

$$
-d_{u}\left(\bigcup_{n} I_{n}, x\right)=0
$$

$$
-(A \backslash\{x\}) \cap[x-1, x+1] \subset \bigcup_{n} \operatorname{int}\left(I_{n}\right)
$$

Remark 5. Suppose that a function $f \in P$ is not $\mathcal{T}_{a e}-$ continuous at a point x at which $f(x)=0$. If

$$
d_{u}(\{t ; f(t)=0\}, x)=0
$$

then there is a function $g \in P$ such that the product $f g$ is not in P.
Proof. Since f is almost everywhere continuous, we obtain

$$
\mu(c l(\{t ; f(t)=0\} \backslash\{t ; f(t)=0\})=0
$$

and

$$
d_{u}(c l(\{t ; f(t)=0\}), x)=0
$$

By Lemma 1 there are disjoint closed intervals $I_{n}=\left[a_{n}, b_{n}\right] \subset(x-2, x+$ $2) \backslash\{x\}, n=1,2, \ldots$, such that
$-\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=x ;$
$-[x-1, x+1] \cap \operatorname{cl}(\{t ; f(t)=0\}) \backslash\{x\} \subset \bigcup_{n} \operatorname{int}\left(I_{n}\right) ;$
$-d_{u}\left(\bigcup_{n} I_{n}, x\right)=0$.
Since the function f is not $\mathcal{T}_{a e}-$ continuous at x, there are a positive real η and disjoint closed intervals $J_{n}=\left[c_{n}, d_{n}\right] \subset(\{t ;|f(t)| \geq \eta / 2\} \cap(x-1, x+$ 1)) $\backslash \bigcup_{k} I_{k}$ such that $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} d_{n}=x$ and $d_{u}\left(\bigcup_{n} J_{n}, x\right)>0$. Moreover, we can assume that f is continuous at all points $a_{n}, b_{n}, c_{n}, d_{n}, n=$ $1,2, \ldots$.

Put

$$
g(t)=\left\{\begin{array}{ccl}
\eta & \text { if } & (t=x) \vee\left(t \in J_{n}, n \geq 1\right) \\
1 & \text { if } & (t \leq x-1) \vee(t \geq x+1) \vee\left(t \in I_{n}, n \geq 1\right) \\
1 / f(t) & \text { otherwise. }
\end{array}\right.
$$

By the methods used above we can show that the function $g \in P$. But the product $f g$ is not s.q.c. at x, since $f(x) g(x)=0, f(t) g(t)=1$ for $t \in$ $(x-2, x+2) \backslash \bigcup_{n}\left(I_{n} \cup J_{n}\right) \backslash\{x\},|f(t) g(t)| \geq \eta^{2} / 2$ for $t \in J_{n}, n \geq 1$ and $d_{u}\left(\bigcup_{n} I_{n}, x\right)=0$. So, the product $f g$ is not in P and the proof is finished.

Remark 6. If a function $f \in P$ is $\mathcal{T}_{a e}-$ continuous at a point x then for all functions $g \in P$, for every set $A \in \mathcal{T}_{d}$ containing x and for every positive real η there is an open interval I such that $I \cap A \neq \emptyset, f g \in \mathcal{P}(t)$ and $\mid f(t) g(t)-$ $f(x) g(x) \mid<\eta$ for all points $t \in I \cap A$.

Proof. Fix a positive real η, and a set $A \in T_{d}$ such that $x \in A$. Since f is $\mathcal{T}_{a e}$-continuous at x, so x is a density point of the set

$$
B=\operatorname{int}(\{t ;|f(t)-f(x)|<(\eta / 2)(1 /|c|+1)\})
$$

where $c=g(x)$. Consequently, x is a density point of the set $B \cap A$. Since $f \in P$, there is an open interval $I \subset B$ such that $I \cap A \neq \emptyset$ and $f \in \mathcal{P}(t)$ for all points $t \in I \cap A$. Let $g \in P$ be any function. Since $g \in P$, there is an open interval $J \subset I$ such that $J \cap A \neq \emptyset,|g(t)-g(x)|<(\eta / 2)(1 /|f(t)|+1)$ and $g \in \mathcal{P}(t)$ for all $t \in J \cap A$. Consequently we obtain $f g \in \mathcal{P}(t)$ and

$$
\begin{aligned}
& |f(t) g(t)-f(x) g(x)| \leq|f(t)||g(t)-g(x)|+|g(x)||f(t)-g(t)| \\
& \quad<|f(t)|(\eta / 2)(1 /|f(t)|+1)+|g(x)|(\eta / 2)(1 /|g(x)|+1)<\eta
\end{aligned}
$$

for all $t \in J \cap A$. So, $f g \in P$ and the proof is completed.
From Remarks $1-6$ it follows immediately:

Theorem 4. A function $f \in \operatorname{Max}_{\text {mult }}(P)$ if and only if it is in P and satisfies the following condition:
(F) if f is not $\mathcal{T}_{\text {ae }}-$ continuous at a point x then $f(x)=0$ and $d_{u}(\{t ; f(t)=$ $0\}, x)>0$.

Remark 7. If the property $\mathcal{P}(x)$ denotes that $f(x) \in \mathcal{R}$ then all above results are true for $P=Q_{s}$ (see [4]).

References

[1] Bruckner A.M.; Differentiation of real functions, Lectures Notes in Math. 659 (1978), Springer-Verlag.
[2] Grande Z.; On strong quasi-continuity of functions of two variables, Real Anal. Exch. 21 No. 2 (1995-96), 236-243;
[3] Grande Z.; Measurability, quasicontinuity and cliquishness of functions of two variables, Real Anal. Exch. 20 No. 2 (1994-95),744-752;
[4] Grande Z.; On the maximal families for the class of strongly quasicontinuous functions, Real Anal. Exch. 20 No. 2 (1995-96),
[5] O'Malley R.J.; Approximately differentiable functions. The r topology, Pacific J. Math. 72 (1977), 207-222.

