Ewa Strońska, Mathematics Department, Pedagogical University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland. e-mail strewa@wsp.bydgoszcz.pl

ON THE MAXIMAL FAMILIES FOR SOME SPECIAL CLASSES OF STRONGLY QUASI-CONTINUOUS FUNCTIONS

Abstract

The maximal families (additive, multiplicative, lattice and with respect to the composition) for some special classes of strongly quasicontinuous functions are investigated.

Let \mathcal{R} be the set of all reals and let μ_e (μ) denote the outer Lebesgue measure (the Lebesgue measure) in \mathcal{R} . Denote by

$$d_u(A, x) = \limsup_{h \to 0^+} \mu_e(A \cap (x - h, x + h))/2h$$
$$(d_l(A, x) = \liminf_{h \to 0^+} \mu_e(A \cap (x - h, x + h))/2h$$

the upper (lower) density of a set $A \subset \mathcal{R}$ at a point x. A point $x \in \mathcal{R}$ is called a density point of a set $A \subset \mathcal{R}$ if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_l(B, x) = 1$. The family

 $\mathcal{T}_d = \{A \subset \mathcal{R}; A \text{ is measurable and every point } x \in A \text{ is a density point of } A\}$ is a topology called the density topology [1]. Denote by int(A) the interior (Euclidean) of the set A. The family

$$\mathcal{T}_{ae} = \{A \in \mathcal{T}_d; \mu(A - int(A)) = 0\}$$

is also a topology [5].

A function f (from \mathcal{R} into \mathcal{R}) is called \mathcal{T}_{ae} - continuous (\mathcal{T}_d - continuous or approximately continuous) at a point x if it is continuous at x as the application from $(\mathcal{R}, \mathcal{T}_{ae})$ (from $(\mathcal{R}, \mathcal{T}_d)$) into $(\mathcal{R}, \mathcal{T}_e)$, where \mathcal{T}_e denotes the

Key Words: continuity , strong quasicontinuity , density topology, maximal additive and multiplicative families

Mathematical Reviews subject classification: 26A15, 54C08, 54C30

Received by the editors April 4, 1997 *Supported by Bydgoszcz WSP grant (1996)

⁷⁴³

Euclidean topology in \mathcal{R} . A function f is \mathcal{T}_{ae} – continuous (everywhere on \mathcal{R}) if and only if it is \mathcal{T}_d – continuous (everywhere) and almost everywhere (relative to μ) continuous [5]. A function f is said to be strongly quasicontinuous (in short s.q.c.) at a point x if for every set $A \in \mathcal{T}_d$ containing x and for every positive real η there is an open interval I such that $I \cap A \neq \emptyset$ and $|f(t) - f(x)| < \eta$ for all $t \in A \cap I$ [2]. If a function f is s.q.c-continuous at every point then we say that f is s.q.c-continuous.

In this paper the main results are some modifications of the results of Z.Grande in [4].

Let $\mathcal{P}(x)$ be a property of a function f at a point x (we will write $f \in \mathcal{P}(x)$) such that:

if f is continuous at x then $f \in \mathcal{P}(x)$;

if
$$f \in \mathcal{P}(x)$$
 then $-f \in \mathcal{P}(x)$;

if $f \in \mathcal{P}(x)$ and g/I = f/I for some open interval I containing x then $g \in \mathcal{P}(x)$.

Denote by P the family of all functions f such that for every positive real η and for every point x and for every set $A \in \mathcal{T}_d$ containing x there is an open interval I such that $I \cap A \neq \emptyset$, $|f(t) - f(x)| < \eta$ and $f \in \mathcal{P}(t)$ for all $t \in I \cap A$.

Now, let:

- $-C = \{f; f \text{ is continuous }\};$
- $C_{ae} = \{f; f \text{ is } \mathcal{T}_{ae} \text{ continuous } \};$
- $-Q_s = \{f; f \text{ is s.q.c.}\};$
- $Max_{add}(P) = \{f; f + g \in P \text{ for every } g \in P\};$
- $Max_{mult}(P) = \{f; fg \in P; \text{ for every } g \in P\};$
- $Max_{max}(P) = \{f; \max(f, g) \in P \text{ for every } g \in P\};\$
- $Max_{min}(P) = \{f; \min(f, g) \in P \text{ for every } g \in P\};$
- $-Max_{comp}(P) = \{f; f \circ g \in P \text{ for every } g \in P\}.$

Remark 1. Evidently

$$C \subset P \cup C_{ae} \subset Q_s.$$

So, every function $f \in P$ is almost everywhere continuous [2, 3].

Remark 2. The inclusion

 $Max_{add}(P) \cup Max_{mult}(P) \cup Max_{max}(P) \cup Max_{min}(P) \cup Max_{comp}(P) \subset P$

 $is \ true.$

PROOF. Since the functions $g_1(t) = 0$, $g_2(t) = 1$ and $g_3(t) = t$ for $t \in \mathcal{R}$ belong to P, for all functions $f_1 \in Max_{add}(P)$, $f_2 \in Max_{mult}(P)$ and $f_3 \in Max_{comp}(P)$ we obtain have $f_1 = f_1 + g_1 \in P$, $f_2 = f_2g_2 \in P$ and $f_3 = f_3 \circ g_3 \in P$. So,

$$Max_{add}(P) \cup Max_{mult}(P) \cup Max_{comp}(P) \subset P.$$

If a function f is not in P then there are a positive real η , a point x and a set $A \in \mathcal{T}_d$ containing x such for every open interval I with $I \cap A \neq \emptyset$ there is a point $t \in I \cap A$ such that $|f(t) - f(x)| \ge \eta$ or f is not in $\mathcal{P}(t)$. Then the functions $\max(f, f(x) - \eta)$ and $\min(f, f(x) + \eta)$ are not in P. So, f is not in $Max_{max}(P) \cup Max_{min}(P)$ and the proof is completed.

I. The family $Max_{add}(P)$.

In this part we suppose that the property $\mathcal{P}(x)$ is such that if $f, g \in \mathcal{P}(x)$ then $f + g \in \mathcal{P}(x)$ (then we say that $\mathcal{P}()$ has the additive property).

Theorem 1. Assume $\mathcal{P}(x)$ has the additive property. Then

$$C_{ae} \cap P = Max_{add}(P)$$

holds.

PROOF. Let $f \in C_{ae} \cap P$ and $g \in P$ be functions. Fix a positive real η , a point x and a set $A \in \mathcal{T}_d$ containing x. Since $f \in C_{ae}$, the point x is a density point of the set $B = int(\{t; |f(t) - f(x)| < \eta/2\})$. Consequently, x is a density point of the set $B \cap A$. Since $g \in P$, there is an open interval $J \subset B$ such that $J \cap A \neq \emptyset$, $|g(t) - g(x)| < \eta/2$ and $g \in \mathcal{P}(t)$ for every $t \in J \cap A$. From the relation $f \in P$ follows that there is an open interval $I \subset J$ such that $I \cap A \neq \emptyset$ and $f \in \mathcal{P}(t)$ for all points $t \in I \cap A$. Consequently, $I \cap A \neq \emptyset$, $f + g \in \mathcal{P}(t)$ and $|(f(t) + g(t)) - (f(x) + g(x))| < \eta/2 + \eta/2 = \eta$ for all points $t \in I \cap A$. So, the function $f \in Max_{add}(P)$ and the inclusion $C_{ae} \cap P \subset Max_{add}(P)$ is proved.

For the proof of the inclusion $Max_{add}(P) \subset C_{ae} \cap P$ fix a function $f \in Max_{add}(P)$. By Remark 1 the function $f \in P$. If f is not in C_{ae} then there are a point $x \in \mathcal{R}$ and a positive number η such that the closure $cl(\{t; |f(t) - f(x)| > \eta\})$ of the set $\{t; |f(t) - f(x)| > \eta\}$ has positive upper density at a point x. We can assume that the closure

$$cl(\{t; f(t) > f(x) + \eta\})$$

has positive upper density at a point x. Since f belonging to $P \subset Q_s$ is almost everywhere continuous [2, 3], we obtain

$$\mu(cl(\{t; f(t) > f(x) + \eta\}) \setminus \{t; f(t) \ge f(x) + \eta\}) = 0$$

and consequently,

$$d_u(int(\{t; f(t) > f(x) + \eta/2\}), x) > 0$$

Thus there is a sequence of disjoint closed intervals $I_n = [a_n, b_n] \subset \{t; f(t) > f(x) + \eta/2\}, n = 1, 2, \dots$, such that:

- (1) x is not in I_n for n = 1, 2, ...;
- (2) f is continuous at all points $a_n, b_n, n = 1, 2, \ldots$;
- (3) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = x;$
- (4) $d_u(\bigcup_n I_n, x) > 0.$

Put

$$g(t) = \begin{cases} -f(x) + \eta/2 & if \\ -f(t) & otherwise. \end{cases} \quad (t = x) \lor (t \in I_n, n = 1, 2, ...)$$

Fix a positive real η , a point t and a set $A \in \mathcal{T}_d$ containing t. For a positive integer n and a point $t = a_n$ or $t = b_n$ the function g is unilaterally continuous at t and g/I_n is constant. So, there is an open interval $I \subset I_n$ with $I \cap A \neq \emptyset$. Evidently, $g \in \mathcal{P}(u)$ and $|g(u) - g(x)| = 0 < \eta$ for each point $u \in I \cap A$. If $t \in int(I_n)$ for some positive integer n we proceed the same as above. If $t \neq x$ and t is not in I_n for $n = 1, 2, \ldots$ then there is an open interval I with $I \cap I_n \neq \emptyset$ for $n = 1, 2, \ldots, I \cap A \neq \emptyset$ and such that $|f(u) - f(t)| < \eta$ and $f \in \mathcal{P}(u)$ for $u \in I \cap A$. Since g/I = -f/I, we obtain $|g(u) - g(t)| = |f(u) - f(t)| < \eta$ and $g \in \mathcal{P}(u)$ for all points $u \in I \cap A$. If t = x then, by (4), there is a positive integer n with $A \cap int(I_n) \neq \emptyset$. Since $g(u) = -f(x) + \eta/2$ for u = x and for $u \in int(I_n)$, we have $g \in \mathcal{P}(u)$ and $|g(u) - g(t)| = 0 < \eta$ for $t \in I_n$, $n = 1, 2, \ldots$ and f(t) + g(t) = 0 otherwise on \mathcal{R} . So, f + g is not in P and consequently f is not in $Max_{add}(P)$. This contradiction finishes the proof.

II.The families $Max_{max}(P)$ and $Max_{min}(P)$.

In this part we suppose about the property $\mathcal{P}(x)$ that if $f, g \in \mathcal{P}(x)$ then also $max(f,g), min(f,g) \in \mathcal{P}(x)$ (then we say that $\mathcal{P}()$) has the lattice property). **Theorem 2.** Let $\mathcal{P}(x)$ has the lattice property. Then

$$Max_{max}(P) = Max_{min}(P) = C_{ae} \cap P$$

holds.

PROOF. For the proof of the inclusion

$$C_{ae} \cap P \subset Max_{max}(P) \cap Max_{min}(P).$$

we take a function $f \in C_{ae} \cap P$ and a function $g \in P$. Fix a positive real η , a point x and a set $A \in \mathcal{T}_d$ containing x. Let $h = \max(f, g)$. Consider the following cases:

(1) f(x) > g(x). Then let r = f(x) - g(x) and let $s = \min(r/2, \eta)$. Since $f \in C_{ae}$, x is a density point of the set $B = int(\{t; |f(t) - f(x)| < s\})$. From the relation $g \in P$ follows that there is an open interval $J \subset B$ such that $J \cap A \neq \emptyset$, $g \in \mathcal{P}(t)$ and |g(t) - g(x)| < s for all points $t \in J \cap A$. Since $f \in P$, there is an open interval $I \subset J$ with $I \cap A \neq \emptyset$ and $f \in \mathcal{P}(t)$ for all points $t \in I \cap A$. Observe that for $u \in I \cap A$ we have

$$f(u) > f(x) - s \ge g(x) + 2s - s = g(x) + s > g(u),$$

whence h(u) = f(u). Moreover, h(x) = f(x), $h \in \mathcal{P}(u)$ and

$$|h(u) - h(x)| = |f(u) - f(x)| < s \le \eta$$

for all point $u \in I \cap A$.

(2)f(x) < g(x). In this case the proof is analogous as above.

(3) f(x) = g(x). In this case we put $s = \eta$ and we find an open interval as above. Then $I \cap A \neq \emptyset$ and for $u \in I \cap A$ we obtain $h \in \mathcal{P}(u)$ and

$$|h(u) - h(x)| \le \max(|f(u) - f(x)|, |g(u) - g(x)|) < s = \eta.$$

So, $h = \max(f, g) \in P$. The prof that $\min(f, g) \in P$ is analogous.

Since by Remark 1 the inclusion $Max_{max}(P) \cup Max_{min}(P) \subset P$ is true, we will show the inclusion $Max_{max}(P) \cup Max_{min}(P) \subset C_{ae}$. We will show only that $Max_{max}(P) \subset C_{ae}$, because the proof of the inclusion $Max_{min}(P) \subset C_{ae}$ is similar. Let $f \in Max_{max}(P)$ be a function. By Remark 1 the function $f \in P$. If f is not in C_{ae} then there are a point x and a positive number η such that

$$d_u(cl(\{t; |f(t) - f(x)| > \eta\}), x) > 0.$$

If

$$d_u(cl(\{t; f(t) > f(x) + \eta\}), x) > 0$$

then the same as in the proof of Theorem 1 there are disjoint closed intervals

$$I_n = [a_n, b_n] \subset \{t; f(t) > f(x) + \eta/2\},\$$

such that conditions (1) - (4) from the proof of Theorem 1 are satisfied. Let

$$g(t) = \begin{cases} f(x) - \eta & if \\ f(x) + \eta & otherwise. \end{cases} \quad (t = x) \lor (t \in I_n, n = 1, 2, \dots,)$$

Analogously as in the proof of Theorem 1 we can show that $g \in P$. Moreover, $\max(f(x), g(x)) = f(x)$ and $\max(f(t), g(t)) \geq f(x) + \eta/2$ for $t \neq x$. So, $\max(f, g)$ is not in P and consequently, f is not in $Max_{max}(P)$. Now consider the case where

$$d_u(cl(\{t; f(t) < f(x) - \eta\}), x) > 0$$

. Then there are disjoint closed intervals $I_n = [a_n, b_n] \subset \{t; f(t) < f(x) - \eta/2\}$, n = 1, 2, ..., which satisfy conditions (1)–(4) from the proof of Theorem 1. Let the function g be defined the same as above. Then $g \in P$, $\max(f(x), g(x)) = f(x), \max(f(t), g(t)) \leq f(x) - \eta/2$ for $t \in I_n, n = 1, 2, ...$, and $\max(f(t), g(t)) \geq f(x) + \eta$ otherwise on \mathcal{R} . So, in this case also $\max(f, g)$ is not in P, and consequently f is not in $Max_{max}(P)$. This contradiction finishes the proof.

III. The family $Max_{comp}(P)$.

In this part we suppose that for every continuous function g and for every function $f \in \mathcal{P}(x)$ we have $g \circ f \in \mathcal{P}(x)$; $\mathcal{P}()$ is invariant with respect to composition with continuous function.

Theorem 3. Assume $\mathcal{P}(x)$ is invariant with respect to composition with continuous function. Then

$$Max_{comp}(P) = C$$

holds.

PROOF. Let g be a continuous function and let $f \in P$ be a function. Fix a positive real η , a point x and a set $A \in \mathcal{T}_d$ containing x. Since g is continuous at f(x), there is a positive real r such that if |u - f(x)| < r then $|g(u) - g(f(x))| < \eta$. From the relation $f \in P$ follows that there is an open interval I such that $I \cap A \neq \emptyset$, $f \in \mathcal{P}(t)$ and |f(t) - f(x)| < r for all points $t \in I \cap A$. Observe that for every point $t \in I \cap A$ we obtain $g \circ f \in \mathcal{P}(t)$ and $|g(f(t)) - g(f(x))| < \eta$. So, $g \circ f \in P$ and consequently $C \subset Max_{comp}(P)$.

Suppose that a function f is not continuous at a point y. Then there is a sequence of points $y_n \neq y, n = 1, 2, ...$, such that $\lim_{n\to\infty} y_n = y$ and $\lim_{n\to\infty} f(y_n) \neq f(y)$. Let $I_n = [a_n, b_n], n = 1, 2, ...$, be disjoint closed intervals such that

$$- \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0;$$

- $a_n b_n > 0$ for $n = 1, 2, ...,;$
- $d_u(\bigcup_n I_n, 0) > 0.$

 Put

$$g(x) = \begin{cases} y_n & if & x \in I_n, n = 1, 2, \dots, \\ y & if & x = 0 \\ y_1 & otherwise. \end{cases}$$

Fix a positive real η , a point x and a set $A \in \mathcal{T}_d$ containing x. If $x \neq 0$ then g is unilaterally continuous and consequently, there is an open interval I such that $I \cap A \neq \emptyset$, g is continuous at every point $t \in I$ and g(t) = g(x)for each point $t \in I$. If x = 0 then there is a positive integer n such that $|y_n - y| < \eta$ and $I_n \cap A \neq \emptyset$. Consequently, there is an open interval $I \subset I_n$ with $I \cap A \neq \emptyset$. Observe that the reduced function g/I is continuous and $|g(u) - g(x)| = |y_n - y| < \eta$ for $u \in I$. This shows that $g \in P$. But $f \circ g$ is not in P, since $f \circ g$ is not s.q.c. at x = 0. So, $Max_{comp}(P) \subset C$, and the proof is completed.

IV. The family $Max_{mult}(P)$.

In this part we suppose about the property $\mathcal{P}(x)$ that:

- if $f, g \in \mathcal{P}(x)$ then $fg \in \mathcal{P}(x)$;
- if $f \in \mathcal{P}(x)$ and I is an open interval such that 0 is not in f(I) then the function

$$g(t) = \left\{ \begin{array}{cc} 1/f(t) & for & t \in I \\ 0 & otherwise. \end{array} \right.$$

belongs to P.

Remark 3. If a function $f \in P$ is not \mathcal{T}_{ae} - continuous at a point $x \in \mathcal{R}$ at which $f(x) \neq 0$ then there is a function $g \in P$ such that the product fg is not in P.

PROOF. The same as in the proof of Theorem 1 we prove that there exist a positive real η and disjoint closed intervals $I_n = [a_n, b_n] \subset \{t; |f(t) - f(x)| > \eta/2\}$ which satisfy conditions (1)–(4) from the proof of Theorem 1. Put

$$g(t) = \begin{cases} 1 & if \\ 0 & otherwise. \end{cases} \quad (t = x) \lor (t \in I_n, n = 1, 2, \dots,)$$

Observe that $g \in P$. Since $f(x)g(x) = f(x) \neq 0$ and for every point $t \neq x$ we have f(t)g(t) = 0 or $|f(t)g(t) - f(x)g(x)| = |f(t) - f(x)| > \eta$, the function fg is not s.q.c. at x, so fg is not in P. This completes the proof. \Box

Remark 4. Let $f \in P$ be a function and let $x \in \mathcal{R}$ be a point such that f(x) = 0. If $d_u(\{t; f(t) = 0\}, x) > 0$ then for every function $g \in P$, for every positive real η and for every set $A \in \mathcal{T}_d$ containing x there is an open interval I such that $I \cap A \neq \emptyset$, the product $fg \in \mathcal{P}(t)$ and $|f(t)g(t)| < \eta$ for each point $t \in I \cap A$.

PROOF. Fix a function $g \in P$, a positive real η and a set $A \in \mathcal{T}_d$ containing x. The functions $f, g \in P$, so they are almost everywhere continuous. Observe that the set $B = \{t; t \in A, f(t) = 0 \text{ and } f \text{ is continuous at } t\}$ is of positive measure. There are a nonempty set $D \subset B$ belonging to \mathcal{T}_d and a point $u \in D$ such that f(u) = 0 and the function g is continuous at u. Let J be an open interval containing u such that there is a positive real K with |g(t)| < K for all points $t \in J$. Evidently, $u \in J \cap A \in \mathcal{T}_d$. Since $f \in P$ and f(u) = 0, there is an open interval $I_1 \subset J$ such that $I_1 \cap A \neq \emptyset$, $f \in \mathcal{P}(t)$, and $|f(t)| < \eta/K$ for all points $t \in I_1 \cap A$. But $g \in P$ and $g \in \mathcal{P}(t)$ for each point $t \in I \cap A$. For $t \in I \cap A$ we have $fg \in \mathcal{P}(t)$ and $|f(t)g(t) - f(x)g(x)| = |f(t)g(t)| < (\eta/K)K = \eta$. This completes the proof.

In the proof next Remark 4 we will apply the following Lemma which is proved in [4] :

Lemma 1. Let $A \subset \mathcal{R}$ be a closed set and let $x \in A$ be a point such that $d_u(A, x) = 0$. Then there is a sequence of disjoint closed intervals $I_n = [a_n, b_n] \subset (x - 2, x + 2), n = 1, 2, \ldots$, such that:

 $-\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x;$ - $d_u(\bigcup_n I_n, x) = 0;$ - $(A \setminus \{x\}) \cap [x - 1, x + 1] \subset \bigcup_n int(I_n).$

Remark 5. Suppose that a function $f \in P$ is not \mathcal{T}_{ae} - continuous at a point x at which f(x) = 0. If

$$d_u(\{t; f(t) = 0\}, x) = 0$$

then there is a function $g \in P$ such that the product fg is not in P.

PROOF. Since f is almost everywhere continuous, we obtain

$$\mu(cl(\{t; f(t) = 0\} \setminus \{t; f(t) = 0\}) = 0$$

and

$$d_u(cl(\{t; f(t) = 0\}), x) = 0.$$

By Lemma 1 there are disjoint closed intervals $I_n = [a_n, b_n] \subset (x - 2, x + 2) \setminus \{x\}, n = 1, 2, \ldots$, such that

 $-\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = x;$ - $[x-1, x+1] \cap cl(\{t; f(t) = 0\}) \setminus \{x\} \subset \bigcup_n int(I_n);$ - $d_u(\bigcup_n I_n, x) = 0.$

Since the function f is not \mathcal{T}_{ae} - continuous at x, there are a positive real η and disjoint closed intervals $J_n = [c_n, d_n] \subset (\{t; |f(t)| \ge \eta/2\} \cap (x - 1, x + 1)) \setminus \bigcup_k I_k$ such that $\lim_{n\to\infty} c_n = \lim_{n\to\infty} d_n = x$ and $d_u(\bigcup_n J_n, x) > 0$. Moreover, we can assume that f is continuous at all points $a_n, b_n, c_n, d_n, n = 1, 2, \ldots$

Put

$$g(t) = \begin{cases} \eta & if \quad (t=x) \lor (t \in J_n, n \ge 1) \\ 1 & if \quad (t \le x-1) \lor (t \ge x+1) \lor (t \in I_n, n \ge 1) \\ 1/f(t) & otherwise. \end{cases}$$

By the methods used above we can show that the function $g \in P$. But the product fg is not s.q.c. at x, since f(x)g(x) = 0, f(t)g(t) = 1 for $t \in$ $(x - 2, x + 2) \setminus \bigcup_n (I_n \cup J_n) \setminus \{x\}$, $|f(t)g(t)| \ge \eta^2/2$ for $t \in J_n$, $n \ge 1$ and $d_u(\bigcup_n I_n, x) = 0$. So, the product fg is not in P and the proof is finished. \Box

Remark 6. If a function $f \in P$ is \mathcal{T}_{ae} - continuous at a point x then for all functions $g \in P$, for every set $A \in \mathcal{T}_d$ containing x and for every positive real η there is an open interval I such that $I \cap A \neq \emptyset$, $fg \in \mathcal{P}(t)$ and $|f(t)g(t) - f(x)g(x)| < \eta$ for all points $t \in I \cap A$.

PROOF. Fix a positive real η , and a set $A \in T_d$ such that $x \in A$. Since f is \mathcal{T}_{ae} -continuous at x, so x is a density point of the set

$$B = int(\{t; |f(t) - f(x)| < (\eta/2)(1/|c| + 1)\}),$$

where c = g(x). Consequently, x is a density point of the set $B \cap A$. Since $f \in P$, there is an open interval $I \subset B$ such that $I \cap A \neq \emptyset$ and $f \in \mathcal{P}(t)$ for all points $t \in I \cap A$. Let $g \in P$ be any function. Since $g \in P$, there is an open interval $J \subset I$ such that $J \cap A \neq \emptyset$, $|g(t) - g(x)| < (\eta/2)(1/|f(t)| + 1)$ and $g \in \mathcal{P}(t)$ for all $t \in J \cap A$. Consequently we obtain $fg \in \mathcal{P}(t)$ and

$$|f(t)g(t) - f(x)g(x)| \le |f(t)||g(t) - g(x)| + |g(x)||f(t) - g(t)|$$

$$< |f(t)|(\eta/2)(1/|f(t)| + 1) + |g(x)|(\eta/2)(1/|g(x)| + 1) < \eta$$

for all $t \in J \cap A$. So, $fg \in P$ and the proof is completed. From Remarks 1 - 6 it follows immediately:

Theorem 4. A function $f \in Max_{mult}(P)$ if and only if it is in P and satisfies the following condition:

(F) if f is not \mathcal{T}_{ae} - continuous at a point x then f(x) = 0 and $d_u(\{t; f(t) = 0\}, x) > 0$.

Remark 7. If the property $\mathcal{P}(x)$ denotes that $f(x) \in \mathcal{R}$ then all above results are true for $P = Q_s$ (see [4]).

References

- Bruckner A.M.; Differentiation of real functions, Lectures Notes in Math.659 (1978), Springer-Verlag.
- Grande Z.; On strong quasi-continuity of functions of two variables, Real Anal. Exch. 21 No.2 (1995–96), 236–243;
- [3] Grande Z.; Measurability, quasicontinuity and cliquishness of functions of two variables, Real Anal. Exch. 20 No.2 (1994–95),744–752;
- [4] Grande Z.; On the maximal families for the class of strongly quasicontinuous functions, Real Anal. Exch. 20 No.2 (1995–96),
- [5] O'Malley R.J.; Approximately differentiable functions. The r topology, Pacific J. Math. 72 (1977), 207–222.