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ON THE MAXIMAL FAMILIES FOR SOME
SPECIAL CLASSES OF STRONGLY
QUASI–CONTINUOUS FUNCTIONS

Abstract

The maximal families (additive, multiplicative, lattice and with re-
spect to the composition) for some special classes of strongly quasicon-
tinuous functions are investigated.

Let R be the set of all reals and let µe (µ) denote the outer Lebesgue
measure (the Lebesgue measure) in R. Denote by

du(A, x) = lim sup
h→0+

µe(A ∩ (x− h, x+ h))/2h

(dl(A, x) = lim inf
h→0+

µe(A ∩ (x− h, x+ h))/2h

the upper (lower) density of a set A ⊂ R at a point x. A point x ∈ R is called
a density point of a set A ⊂ R if there exists a measurable (in the sense of
Lebesgue) set B ⊂ A such that dl(B, x) = 1. The family
Td = {A ⊂ R;A is measurable and every point x ∈ A is a density point of A}
is a topology called the density topology [1]. Denote by int(A) the interior
(Euclidean) of the set A. The family

Tae = {A ∈ Td;µ(A− int(A)) = 0}

is also a topology [5].
A function f (from R into R) is called Tae− continuous (Td− continuous

or approximately continuous) at a point x if it is continuous at x as the
application from (R, Tae) (from (R, Td)) into (R, Te), where Te denotes the
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Euclidean topology in R. A function f is Tae− continuous (everywhere on
R) if and only if it is Td− continuous (everywhere) and almost everywhere
(relative to µ) continuous [5]. A function f is said to be strongly quasi-
continuous (in short s.q.c.) at a point x if for every set A ∈ Td containing x
and for every positive real η there is an open interval I such that I ∩ A 6= ∅
and |f(t) − f(x)| < η for all t ∈ A ∩ I [2]. If a function f is s.q.c-continuous
at every point then we say that f is s.q.c-continuous.

In this paper the main results are some modifications of the results of
Z.Grande in [4].

Let P(x) be a property of a function f at a point x (we will write f ∈ P(x))
such that:

if f is continuous at x then f ∈ P(x);

if f ∈ P(x) then −f ∈ P(x);

if f ∈ P(x) and g/I = f/I for some open interval I containing x then
g ∈ P(x).

Denote by P the family of all functions f such that for every positive real
η and for every point x and for every set A ∈ Td containing x there is an open
interval I such that I ∩A 6= ∅, |f(t)− f(x)| < η and f ∈ P(t) for all t ∈ I ∩A.

Now, let:

– C = {f ; f is continuous };

– Cae = {f ; f is Tae− continuous };

– Qs = {f ; f is s.q.c.};

– Maxadd(P ) = {f ; f + g ∈ P for every g ∈ P};

– Maxmult(P ) = {f ; fg ∈ P ; for every g ∈ P};

– Maxmax(P ) = {f ; max(f, g) ∈ P for every g ∈ P};

– Maxmin(P ) = {f ; min(f, g) ∈ P for every g ∈ P};

– Maxcomp(P ) = {f ; f ◦ g ∈ P for every g ∈ P}.

.

Remark 1. Evidently
C ⊂ P ∪ Cae ⊂ Qs.

So, every function f ∈ P is almost everywhere continuous [2, 3].
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Remark 2. The inclusion

Maxadd(P ) ∪Maxmult(P ) ∪Maxmax(P ) ∪Maxmin(P ) ∪Maxcomp(P ) ⊂ P

is true.

Proof. Since the functions g1(t) = 0, g2(t) = 1 and g3(t) = t for t ∈
R belong to P , for all functions f1 ∈ Maxadd(P ), f2 ∈ Maxmult(P ) and
f3 ∈ Maxcomp(P ) we obtain have f1 = f1 + g1 ∈ P , f2 = f2g2 ∈ P and
f3 = f3 ◦ g3 ∈ P . So,

Maxadd(P ) ∪Maxmult(P ) ∪Maxcomp(P ) ⊂ P.

If a function f is not in P then there are a positive real η, a point x and a
set A ∈ Td containing x such for every open interval I with I ∩ A 6= ∅ there
is a point t ∈ I ∩ A such that |f(t)− f(x)| ≥ η or f is not in P(t). Then the
functions max(f, f(x)− η) and min(f, f(x) + η) are not in P . So, f is not in
Maxmax(P ) ∪Maxmin(P ) and the proof is completed.

I. The family Maxadd(P ).
In this part we suppose that the property P(x) is such that if f, g ∈ P(x)

then f + g ∈ P(x) (then we say that P() has the additive property).

Theorem 1. Assume P(x) has the additive property. Then

Cae ∩ P = Maxadd(P )

holds.

Proof. Let f ∈ Cae ∩ P and g ∈ P be functions. Fix a positive real η, a
point x and a set A ∈ Td containing x. Since f ∈ Cae, the point x is a density
point of the set B = int({t; |f(t)−f(x)| < η/2}). Consequently, x is a density
point of the set B ∩A. Since g ∈ P , there is an open interval J ⊂ B such that
J ∩ A 6= ∅, |g(t) − g(x)| < η/2 and g ∈ P(t) for every t ∈ J ∩ A. From the
relation f ∈ P follows that there is an open interval I ⊂ J such that I ∩A 6= ∅
and f ∈ P(t) for all points t ∈ I ∩ A. Consequently, I ∩ A 6= ∅, f + g ∈ P(t)
and |(f(t) + g(t)) − (f(x) + g(x))| < η/2 + η/2 = η for all points t ∈ I ∩ A.
So, the function f ∈ Maxadd(P ) and the inclusion Cae ∩ P ⊂ Maxadd(P ) is
proved.

For the proof of the inclusion Maxadd(P ) ⊂ Cae ∩ P fix a function f ∈
Maxadd(P ). By Remark 1 the function f ∈ P . If f is not in Cae then there
are a point x ∈ R and a positive number η such that the closure cl({t; |f(t)−
f(x)| > η}) of the set {t; |f(t) − f(x)| > η} has positive upper density at a
point x. We can assume that the closure

cl({t; f(t) > f(x) + η})



746 Ewa Strońska

has positive upper density at a point x. Since f belonging to P ⊂ Qs is almost
everywhere continuous [2, 3], we obtain

µ(cl({t; f(t) > f(x) + η}) \ {t; f(t) ≥ f(x) + η}) = 0

and consequently,

du(int({t; f(t) > f(x) + η/2}), x) > 0.

Thus there is a sequence of disjoint closed intervals In = [an, bn] ⊂ {t; f(t) >
f(x) + η/2}, n = 1, 2, . . . , such that:

(1) x is not in In for n = 1, 2, . . .;

(2) f is continuous at all points an, bn, n = 1, 2, . . .;

(3) limn→∞ an = limn→∞ bn = x;

(4) du(
⋃

n In, x) > 0.

Put

g(t) =
{ −f(x) + η/2 if (t = x) ∨ (t ∈ In, n = 1, 2, . . .)

−f(t) otherwise.

Fix a positive real η, a point t and a set A ∈ Td containing t. For a positive
integer n and a point t = an or t = bn the function g is unilaterally continuous
at t and g/In is constant. So, there is an open interval I ⊂ In with I ∩A 6= ∅.
Evidently, g ∈ P(u) and |g(u) − g(x)| = 0 < η for each point u ∈ I ∩ A. If
t ∈ int(In) for some positive integer n we proceed the same as above. If t 6= x
and t is not in In for n = 1, 2, . . . then there is an open interval I with I∩In 6= ∅
for n = 1, 2, . . ., I ∩ A 6= ∅ and such that |f(u) − f(t| < η and f ∈ P(u) for
u ∈ I ∩A. Since g/I = −f/I, we obtain |g(u)− g(t)| = |f(u)− f(t)| < η and
g ∈ P(u) for all points u ∈ I ∩ A. If t = x then, by (4), there is a positive
integer n with A ∩ int(In) 6= ∅. Since g(u) = −f(x) + η/2 for u = x and for
u ∈ int(In), we have g ∈ P(u) and |g(u)−g(t)| = 0 < η for u ∈ A∩

∫
(In). So,

g ∈ P . Moreover, f(x) + g(x) = η/2, f(t) + g(t) ≥ η for t ∈ In, n = 1, 2, . . .
and f(t) + g(t) = 0 otherwise on R. So, f + g is not in P and consequently f
is not in Maxadd(P ). This contradiction finishes the proof.

II.The families Maxmax(P ) and Maxmin(P ).
In this part we suppose about the property P(x) that if f, g ∈ P(x) then

also max(f, g),min(f, g) ∈ P(x) (then we say that P() has the lattice prop-
erty).
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Theorem 2. Let P(x) has the lattice property. Then

Maxmax(P ) = Maxmin(P ) = Cae ∩ P

holds.

Proof. For the proof of the inclusion

Cae ∩ P ⊂Maxmax(P ) ∩Maxmin(P ).

we take a function f ∈ Cae ∩ P and a function g ∈ P . Fix a positive real η,
a point x and a set A ∈ Td containing x. Let h = max(f, g). Consider the
following cases:

(1)f(x) > g(x). Then let r = f(x) − g(x) and let s = min(r/2, η). Since
f ∈ Cae, x is a density point of the set B = int({t; |f(t)− f(x)| < s}). From
the relation g ∈ P follows that there is an open interval J ⊂ B such that
J ∩A 6= ∅, g ∈ P(t) and |g(t)− g(x)| < s for all points t ∈ J ∩A. Since f ∈ P ,
there is an open interval I ⊂ J with I ∩ A 6= ∅ and f ∈ P(t) for all points
t ∈ I ∩A. Observe that for u ∈ I ∩A we have

f(u) > f(x)− s ≥ g(x) + 2s− s = g(x) + s > g(u),

whence h(u) = f(u). Moreover, h(x) = f(x), h ∈ P(u) and

|h(u)− h(x)| = |f(u)− f(x)| < s ≤ η

for all point u ∈ I ∩A.
(2)f(x) < g(x). In this case the proof is analogous as above.
(3)f(x) = g(x). In this case we put s = η and we find an open interval as

above. Then I ∩A 6= ∅ and for u ∈ I ∩A we obtain h ∈ P(u) and

|h(u)− h(x)| ≤ max(|f(u)− f(x)|, |g(u)− g(x)|) < s = η.

So, h = max(f, g) ∈ P . The prof that min(f, g) ∈ P is analogous.
Since by Remark 1 the inclusion Maxmax(P )∪Maxmin(P ) ⊂ P is true, we

will show the inclusion Maxmax(P ) ∪Maxmin(P ) ⊂ Cae. We will show only
that Maxmax(P ) ⊂ Cae, because the proof of the inclusion Maxmin(P ) ⊂ Cae

is similar. Let f ∈ Maxmax(P ) be a function. By Remark 1 the function
f ∈ P . If f is not in Cae then there are a point x and a positive number η
such that

du(cl({t; |f(t)− f(x)| > η}), x) > 0.

If
du(cl({t; f(t) > f(x) + η}), x) > 0
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then the same as in the proof of Theorem 1 there are disjoint closed intervals

In = [an, bn] ⊂ {t; f(t) > f(x) + η/2},

such that conditions (1) – (4) from the proof of Theorem 1 are satisfied. Let

g(t) =
{ f(x)− η if (t = x) ∨ (t ∈ In, n = 1, 2, . . . , )
f(x) + η otherwise.

Analogously as in the proof of Theorem 1 we can show that g ∈ P . Moreover,
max(f(x), g(x)) = f(x) and max(f(t), g(t)) ≥ f(x) + η/2 for t 6= x. So,
max(f, g) is not in P and consequently, f is not in Maxmax(P ). Now consider
the case where

du(cl({t; f(t) < f(x)− η}), x) > 0

. Then there are disjoint closed intervals In = [an, bn] ⊂ {t; f(t) < f(x) −
η/2}, n = 1, 2, . . ., which satisfy conditions (1)–(4) from the proof of The-
orem 1. Let the function g be defined the same as above. Then g ∈ P ,
max(f(x), g(x)) = f(x), max(f(t), g(t)) ≤ f(x) − η/2 for t ∈ In, n = 1, 2, . . .,
and max(f(t), g(t)) ≥ f(x) + η otherwise on R. So,in this case also max(f, g)
is not in P , and consequently f is not in Maxmax(P ). This contradiction
finishes the proof.

III. The family Maxcomp(P ).
In this part we suppose that for every continuous function g and for every

function f ∈ P(x) we have g ◦ f ∈ P(x); P() is invariant with respect to
composition with continuous function.

Theorem 3. Assume P(x) is invariant with respect to composition with con-
tinuous function. Then

Maxcomp(P ) = C

holds.

Proof. Let g be a continuous function and let f ∈ P be a function. Fix a
positive real η, a point x and a set A ∈ Td containing x. Since g is continuous at
f(x), there is a positive real r such that if |u−f(x)| < r then |g(u)−g(f(x))| <
η. From the relation f ∈ P follows that there is an open interval I such that
I ∩A 6= ∅, f ∈ P(t) and |f(t)−f(x)| < r for all points t ∈ I ∩A. Observe that
for every point t ∈ I ∩ A we obtain g ◦ f ∈ P(t) and |g(f(t)) − g(f(x))| < η.
So, g ◦ f ∈ P and consequently C ⊂Maxcomp(P ).

Suppose that a function f is not continuous at a point y. Then there
is a sequence of points yn 6= y, n = 1, 2, . . . , such that limn→∞ yn = y and
limn→∞ f(yn) 6= f(y). Let In = [an, bn], n = 1, 2, . . . , be disjoint closed
intervals such that
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– limn→∞ an = limn→∞ bn = 0;

– anbn > 0 for n = 1, 2, . . . ,;

– du(
⋃

n In, 0) > 0.

Put

g(x) =
{ yn if x ∈ In, n = 1, 2, . . . ,

y if x = 0
y1 otherwise.

Fix a positive real η, a point x and a set A ∈ Td containing x. If x 6= 0
then g is unilaterally continuous and consequently, there is an open interval
I such that I ∩ A 6= ∅, g is continuous at every point t ∈ I and g(t) = g(x)
for each point t ∈ I. If x = 0 then there is a positive integer n such that
|yn − y| < η and In ∩ A 6= ∅. Consequently, there is an open interval I ⊂ In
with I ∩ A 6= ∅. Observe that the reduced function g/I is continuous and
|g(u)− g(x)| = |yn− y| < η for u ∈ I. This shows that g ∈ P . But f ◦ g is not
in P , since f ◦ g is not s.q.c. at x = 0. So, Maxcomp(P ) ⊂ C, and the proof
is completed.

IV. The family Maxmult(P ).
In this part we suppose about the property P(x) that:

– if f, g ∈ P(x) then fg ∈ P(x);

– if f ∈ P(x) and I is an open interval such that 0 is not in f(I) then the
function

g(t) =
{ 1/f(t) for t ∈ I

0 otherwise.

belongs to P .

Remark 3. If a function f ∈ P is not Tae− continuous at a point x ∈ R at
which f(x) 6= 0 then there is a function g ∈ P such that the product fg is not
in P .

Proof. The same as in the proof of Theorem 1 we prove that there exist a
positive real η and disjoint closed intervals In = [an, bn] ⊂ {t; |f(t) − f(x)| >
η/2} which satisfy conditions (1)–(4) from the proof of Theorem 1. Put

g(t) =
{ 1 if (t = x) ∨ (t ∈ In, n = 1, 2, . . . , )

0 otherwise.

Observe that g ∈ P . Since f(x)g(x) = f(x) 6= 0 and for every point t 6= x we
have f(t)g(t) = 0 or |f(t)g(t)− f(x)g(x)| = |f(t)− f(x)| > η, the function fg
is not s.q.c. at x, so fg is not in P . This completes the proof.
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Remark 4. Let f ∈ P be a function and let x ∈ R be a point such that
f(x) = 0. If du({t; f(t) = 0}, x) > 0 then for every function g ∈ P , for every
positive real η and for every set A ∈ Td containing x there is an open interval
I such that I ∩A 6= ∅, the product fg ∈ P(t) and |f(t)g(t)| < η for each point
t ∈ I ∩A.

Proof. Fix a function g ∈ P , a positive real η and a set A ∈ Td containing x.
The functions f, g ∈ P , so they are almost everywhere continuous. Observe
that the set B = {t; t ∈ A, f(t) = 0 and f is continuous at t} is of positive
measure. There are a nonempty set D ⊂ B belonging to Td and a point u ∈ D
such that f(u) = 0 and the function g is continuous at u. Let J be an open
interval containing u such that there is a positive real K with |g(t)| < K for all
points t ∈ J . Evidently, u ∈ J ∩A ∈ Td. Since f ∈ P and f(u) = 0, there is an
open interval I1 ⊂ J such that I1 ∩ A 6= ∅, f ∈ P(t), and |f(t)| < η/K for all
points t ∈ I1 ∩A. But g ∈ P and ∅ 6= I1 ∩A ∈ Td, so there is an open interval
I ⊂ I1 such that I ∩A 6= ∅ and g ∈ P(t) for each point t ∈ I ∩A. For t ∈ I ∩A
we have fg ∈ P(t) and |f(t)g(t)− f(x)g(x)| = |f(t)g(t)| < (η/K)K = η. This
completes the proof.

In the proof next Remark 4 we will apply the following Lemma which is
proved in [4] :

Lemma 1. Let A ⊂ R be a closed set and let x ∈ A be a point such that
du(A, x) = 0. Then there is a sequence of disjoint closed intervals In =
[an, bn] ⊂ (x− 2, x+ 2), n = 1, 2, . . ., such that:

– limn→∞ an = limn→∞ bn = x;

– du(
⋃

n In, x) = 0;

– (A \ {x}) ∩ [x− 1, x+ 1] ⊂
⋃

n int(In).

Remark 5. Suppose that a function f ∈ P is not Tae− continuous at a point
x at which f(x) = 0. If

du({t; f(t) = 0}, x) = 0

then there is a function g ∈ P such that the product fg is not in P .

Proof. Since f is almost everywhere continuous, we obtain

µ(cl({t; f(t) = 0} \ {t; f(t) = 0}) = 0

and
du(cl({t; f(t) = 0}), x) = 0.

By Lemma 1 there are disjoint closed intervals In = [an, bn] ⊂ (x− 2, x+
2) \ {x}, n = 1, 2, . . ., such that
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– limn→∞ an = limn→∞ bn = x;

– [x− 1, x+ 1] ∩ cl({t; f(t) = 0}) \ {x} ⊂
⋃

n int(In);

– du(
⋃

n In, x) = 0.

Since the function f is not Tae− continuous at x, there are a positive real
η and disjoint closed intervals Jn = [cn, dn] ⊂ ({t; |f(t)| ≥ η/2} ∩ (x − 1, x +
1)) \

⋃
k Ik such that limn→∞ cn = limn→∞ dn = x and du(

⋃
n Jn, x) > 0.

Moreover, we can assume that f is continuous at all points an, bn, cn, dn, n =
1, 2, . . ..

Put

g(t) =
{ η if (t = x) ∨ (t ∈ Jn, n ≥ 1)

1 if (t ≤ x− 1) ∨ (t ≥ x+ 1) ∨ (t ∈ In, n ≥ 1)
1/f(t) otherwise.

By the methods used above we can show that the function g ∈ P . But
the product fg is not s.q.c. at x, since f(x)g(x) = 0, f(t)g(t) = 1 for t ∈
(x − 2, x + 2) \

⋃
n(In ∪ Jn) \ {x}, |f(t)g(t)| ≥ η2/2 for t ∈ Jn, n ≥ 1 and

du(
⋃

n In, x) = 0. So, the product fg is not in P and the proof is finished.

Remark 6. If a function f ∈ P is Tae− continuous at a point x then for all
functions g ∈ P , for every set A ∈ Td containing x and for every positive real
η there is an open interval I such that I ∩ A 6= ∅, fg ∈ P(t) and |f(t)g(t) −
f(x)g(x)| < η for all points t ∈ I ∩A.

Proof. Fix a positive real η, and a set A ∈ Td such that x ∈ A.Since f is
Tae-continuous at x, so x is a density point of the set

B = int({t; |f(t)− f(x)| < (η/2)(1/|c|+ 1)}),

where c = g(x). Consequently, x is a density point of the set B ∩ A. Since
f ∈ P , there is an open interval I ⊂ B such that I ∩ A 6= ∅ and f ∈ P(t) for
all points t ∈ I ∩A. Let g ∈ P be any function. Since g ∈ P , there is an open
interval J ⊂ I such that J ∩ A 6= ∅, |g(t) − g(x)| < (η/2)(1/|f(t)| + 1) and
g ∈ P(t) for all t ∈ J ∩A. Consequently we obtain fg ∈ P(t) and

|f(t)g(t)− f(x)g(x)| ≤ |f(t)||g(t)− g(x)|+ |g(x)||f(t)− g(t)|

< |f(t)|(η/2)(1/|f(t)|+ 1) + |g(x)|(η/2)(1/|g(x)|+ 1) < η

for all t ∈ J ∩A. So, fg ∈ P and the proof is completed.
From Remarks 1 – 6 it follows immediately:
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Theorem 4. A function f ∈Maxmult(P ) if and only if it is in P and satisfies
the following condition:

(F) if f is not Tae− continuous at a point x then f(x) = 0 and du({t; f(t) =
0}, x) > 0.

Remark 7. If the property P(x) denotes that f(x) ∈ R then all above results
are true for P = Qs (see [4]).

References

[1] Bruckner A.M.; Differentiation of real functions, Lectures Notes in
Math.659 (1978), Springer–Verlag.

[2] Grande Z.; On strong quasi–continuity of functions of two variables, Real
Anal. Exch. 21 No.2 (1995–96), 236–243;

[3] Grande Z.; Measurability, quasicontinuity and cliquishness of functions of
two variables, Real Anal. Exch. 20 No.2 (1994–95),744–752;

[4] Grande Z.; On the maximal families for the class of strongly quasi–
continuous functions, Real Anal. Exch. 20 No.2 (1995–96),

[5] O’Malley R.J.; Approximately differentiable functions. The r topology,
Pacific J. Math. 72 (1977), 207–222.


