F. S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207, USA

ON MONOTONIC AND ANALYTIC FUNCTIONS IN C ${ }^{\infty}$

Abstract

We generalize the theorem of Bernstein that any infinitely many times differentiable function on an interval, I, that is regularly monotonic on I must be a real analytic function on I.

Let f be a function in C^{∞} (that is, f has derivatives of all orders) on the interval $(-d, d)$. S. Bernstein in [1] proved a classic result.

Theorem B. For each n let $f^{(n)}$ not change sign on $(-d, d)$. Then f is a real analytic function on $(-d, d)$.

For an easier proof of Theorem B consult [3]. Unfortunately many analytic functions on $(-d, d)$ do not satisfy the hypothesis of Theorem B. Consider, for example, the elementary functions $\sin x$ and $\cos x$ on $(-4,4)$. We will provide a variation on Theorem B whose hypothesis is satisfied by a wider class of functions including most of the elementary functions on all the interiors of compact intervals on which they are analytic. We offer:

Theorem I. Let $\left(c_{n}\right)$ be a sequence of real numbers such that the sequence $\left(\frac{c_{n} d^{n}}{n!}\right)$ is bounded and the functions $f^{(n)}-c_{n}$ do not change sign on the interval $(-\dot{d}, d)$. Then for any $x \in(-d, d)$ we have

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

It seems to be difficult to construct a convergent power series on $(-1,1)$ whose sum has bounded derivatives of all orders and fails to satisfy the hypothesis of Theorem I for all appropriate sequences $\left(c_{n}\right)$. Consult the problems at the end of this paper.

We also offer:

[^0]Theorem II. Let $\left(c_{n}\right)$ be a sequence of real numbers such that the sequence $\left(\frac{c_{n} d^{n}}{n!}\right)$ is bounded and the functions $f^{(n)}-c_{n}$ do not change sign on $(-d, 0)$ or on $(0, d)$. Then for any $u \in\left(-\frac{1}{2} d, \frac{1}{2} d\right)$ and $x \in\left(u-\frac{1}{2} d, u+\frac{1}{2} d\right)$, we have

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(u)}{n!}(x-u)^{n} .
$$

Functions in $C^{\infty}(a, b)$ satisfying the hypotheses of Theorem B on an interval (a, b) are called regularly monotonic on (a, b). We modify this definition as follows:

Definition. We say that $f \in C^{\infty}(a, b)$ is a generalized regularly monotonic function on (a, b) if at each $x \in(a, b)$, there exist a positive number d and a sequence of numbers $\left(c_{n}\right)$, depending on x, such that the sequence $\left(\frac{c_{n} d^{n}}{n!}\right)$ is bounded and for any n the function $f^{(n)}-c_{n}$ does not change sign on $(x-d, x)$ or on $(x, x+d)$.

Theorem III. If f is a generalized regularly monotonic function on (a, b), then f is a real analytic function on (a, b).

This follows from Theorem II.
Theorem IV. Let $f \in C^{\infty}(\mathbb{R})$ and let f satisfy the hypothesis of Theorem II. Let $f(x+2 d)=f(x)$ for all x. Then f is a real analytic function on \mathbb{R}, and the interval of convergence of the Taylor series of f at any point in \mathbb{R} has length $\geq d$.

This also follows from Theorem II.
Until further notice, let the hypothesis of Theorem I be satisfied. We classify the indices $n \geq 0$ as follows. We say that n is a glide index if $f^{(n)}-c_{n}$ and $f^{(n+1)}-c_{n+1}$ have the same sign. We say that n is a jump index if $f^{(n)}-c_{n}$ and $f^{(n+1)}-c_{n+1}$ have opposite sign. (Here we discard the possibility that $f^{(n)}-c_{n}$ is identically zero for some index n; for then $f(x)$ would equal a polynomial in x on $(-d, d)$.)

The plan is to prove Theorem I under various restrictions until all cases are covered. We begin with:

Lemma 1. Let all but finitely many indices n be glide indices. Then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \quad \text { for all } x \in(-d, d)
$$

Proof. Let $d_{o}<0$. It suffices to prove the conclusion on the interval $\left(-d_{o}, d_{o}\right)$ because d_{o} is arbitrary. Note that the series $\sum \frac{\left|c_{n}\right| d_{o}^{n}}{n!}$ converges because $\left(\frac{\left|c_{n}\right| d^{n}}{n!}\right)$ is bounded. Let N be an index such that $n>N$ implies that n is a glide index and $\frac{\left|c_{n}\right| d_{o}^{n}}{n!}<1$. Without loss of generality, we assume that $f^{(n)}-c_{n} \geq 0$ for $n>N$. (The proof for the opposite inequality is analogous.)

For each N and $x \in\left(0, d_{o}\right)$, put

$$
p_{n}(x)=\sum_{j=0}^{n} \frac{f^{(j)}(0)}{j!} x^{j}-\sum_{j=0}^{n} \frac{c_{j}}{j!} x^{j}
$$

It follows that $p_{N+1}(x) \leq p_{N+2}(x) \leq p_{N+3}(x) \leq \ldots$. By Taylor's Theorem,

$$
R_{n}(x)=f(x)-\sum_{j=0}^{n} \frac{f^{(j)}(0)}{j!} x^{j}=\frac{f^{(n+1)}(v)}{(n+1)!} x^{n+1}
$$

for some $v \in(0, x)$. It follows that

$$
R_{n}(x) \geq \frac{c_{n+1}}{(n+1)!} x^{n+1} \quad \text { and } \quad R_{n}(x) \geq-\frac{\left|c_{n+1} d_{o}^{n+1}\right|}{(n+1)!}>-1
$$

Hence

$$
p_{n}(x)+\sum_{j=0}^{n} \frac{c_{j}}{j!} x^{j}=\sum_{j=0}^{n} \frac{f^{(j)}(0)}{j!} x^{j}=f(x)-R_{n}(x) \leq f(x)+1
$$

From the fact that $\sum_{j=0}^{\infty} \frac{c_{j}}{j!} x^{j}$ converges, we deduce that $\left(p_{n}(x)\right)_{n}$ is a nondecreasing sequence bounded above. Hence $\left(p_{n}(x)\right)_{n}$ converges and likewise $\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} x^{j}$ converges for $x \in\left(0, d_{o}\right)$. Clearly $\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} x^{j}$ converges for $x \in\left(-d_{o}, d_{o}\right)$. Put $g(x)=\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} x^{j}$. Then g is a real analytic function on $\left(-d_{o}, d_{o}\right)$.

It remains to prove that $f(x)=g(x)$ for $x \in\left(-d_{o}, d_{o}\right)$. Select $u>0$ such that $2 u<d_{o}$. For each $n>N$, let $v_{n} \in\left(u-d_{o}, d_{o}-u\right)$. Put $h_{n}(x)=$ $f^{(n)}(x)-c_{n+1} x$ for each $n>N$. Then h_{n}^{\prime} does not change sign on $(-d, d)$. It follows that $h_{n}\left(v_{n}\right)$ lies between $h_{n}\left(u-d_{o}\right)$ and $h_{n}\left(d_{o}-u\right)$, and therefore

$$
\left|h_{n}\left(v_{n}\right)\right| \leq\left|h_{n}\left(u-d_{o}\right)\right|+\left|h_{n}\left(d_{o}-u\right)\right|
$$

Hence

$$
\left|f^{(n)}\left(v_{n}\right)-c_{n+1} v_{n}\right| \leq\left|f^{(n)}\left(u-d_{o}\right)-c_{n+1}\left(u-d_{o}\right)\right|+\left|f^{(n)}\left(d_{o}-u\right)-c_{n+1}\left(d_{o}-u\right)\right|
$$

and

$$
\left|f^{(n)}\left(v_{n}\right)\right| \leq\left|f^{(n)}\left(u-d_{o}\right)\right|+\left|f^{(n)}\left(d_{o}-u\right)\right|+2\left|c_{n+1}\left(u-d_{o}\right)\right|+\left|c_{n+1} v_{n}\right|
$$

We multiply by $\frac{u^{n}}{n!}$ to obtain

$$
\left|\frac{f^{(n)}\left(v_{n}\right) u^{n}}{n!}\right| \leq \frac{\left|f^{(n)}\left(u-d_{o}\right)\right| u^{n}}{n!}+\frac{\left|f^{(n)}\left(d_{o}-u\right)\right| u^{n}}{n!}+\frac{3\left|c_{n+1}\right| d u^{n}}{n!}
$$

But $\sum \frac{f^{(n)}\left(u-d_{o}\right) \mid u^{n}}{n!}$ and $\sum \frac{\left|f^{(n)}\left(d_{o}-u\right)\right| u^{n}}{n!}$ converge by the same argument as in the preceding paragraph. From the hypothesis and from $u<d$ we deduce that $\sum \frac{c_{n+1} u^{n}}{n!}$ converges. Finally,

$$
\frac{c_{n+1} u^{n}}{n!} \rightarrow 0, \quad \frac{f^{(n)}\left(d_{o}-u\right) u^{n}}{n!} \rightarrow 0 \quad \text { and } \quad \frac{f^{(n)}\left(u-d_{o}\right) u^{n}}{n!} \rightarrow 0
$$

It follows that $\frac{f^{(n)}\left(v_{n}\right) u^{n}}{n!} \rightarrow 0$. But $\frac{f^{(n)}\left(v_{n}\right) u^{n}}{n!}$ has the form of the remainder R_{n} in Taylor's Theorem,

$$
f(t)=\sum_{j=1}^{n-1} \frac{f^{(j)}(t-u) u^{n}}{n!}+R_{n}
$$

for any $t \in\left(2 u-d_{o}, d_{o}-u\right)$. Thus f is analytic at each point in $\left(2 u-d_{o}, d_{o}-u\right)$. But $u>0$ is arbitrary, so f is analytic on $\left(-d_{o}, d_{o}\right)$. Moreover, f equals the analytic function g on some neighborhood of 0 , so $f(x)=g(x)$ for $x \in$ $\left(-d_{o}, d_{o}\right)$.

The conclusion follows from the fact that $d_{o}<d$ was arbitrary.
Next we see that jump index can replace glide index in Lemma 1.
Lemma 2. Let all but finitely many indices n be jump indices. Then

$$
f(x)=\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} x^{j} \quad \text { for all } x \in(-d, d)
$$

Proof. Put $g(x)=f(-x)$ for $x \in(-d, d)$. Then $g^{(n)}(x)=(-1)^{n} f^{(n)}(-x)$ for all n and all $x \in(-d, d)$. It follows that each jump index for g is a glide index for f, and each glide index for g is a jump index for f. Thus all but finitely many indices are glide indices for g. By Lemma 1 ,

$$
g(x)=\sum_{j=1}^{\infty} \frac{g^{(j)}}{j!} x^{j} \quad \text { for } x \in(-d, d)
$$

Finally, for $x \in(-d, d)$,

$$
f(x)=g(-x)=\sum_{j=0}^{\infty} \frac{g^{(j)}(0)}{j!}(-x)^{j}=\sum_{j=0}^{\infty} \frac{(-1)^{j} g^{(j)}(0)}{j!} x^{j}=\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} x^{j}
$$

Proof. [Proof of Theorem I] In view of Lemmas 1 and 2 we can assume, without loss of generality, that there are infinitely many jump indices and infinitely many glide indices. Fix an index N that exceeds at least one jump index and exceeds at least one glide index. Fix $u \in(0, d)$. We write

$$
\begin{gathered}
f(u)=\sum_{j=0}^{n} \frac{f^{(j)}(0) u^{j}}{j!}+\frac{f^{(n+1)}\left(t_{n}\right) u^{n+1}}{(n+1)!} \\
f(-u)=\sum_{j=0}^{n} \frac{f^{(j)}(0)(-u)^{j}}{j!}+\frac{f^{(n+1)}\left(s_{n}\right)(-u)^{n+1}}{(n+1)!}
\end{gathered}
$$

for each index n, where t_{n} is some point in $(0, u)$ and s_{n} is some point in $(-u, 0)$. Put

$$
\begin{gathered}
E_{n}(u)=\sum_{j=0}^{n} \frac{f^{(j)}(0) u^{j}}{j!}, \quad E_{n}(-u)=\sum_{j=0}^{n} \frac{f^{(j)}(0)(-u)^{j}}{j!}, \\
R_{n}(u)=\frac{f^{(n+1)}\left(t_{n}\right) u^{n+1}}{(n+1)!}, \quad R_{n}(-u)=\frac{f^{(n+1)}\left(s_{n}\right)(-u)^{n+1}}{(n+1)!} .
\end{gathered}
$$

Thus $f(u)=E_{n}(u)+R_{n}(u)$ and $f(-u)=E_{n}(-u)+R_{n}(-u)$ for each index n.
Suppose that m is a jump index and $m+1, m+2, \ldots, m+v$ are glide indices. Then

$$
E_{m-1}(u)-f(u)+\frac{c_{m} u^{m}}{m!}=-\frac{f^{(m)}\left(t_{m}\right) u^{m}}{m!}+\frac{c_{m} u^{m}}{m!}
$$

has the same sign as

$$
E_{m+1}(u)-E_{m}(u)-\frac{c_{m+1} u^{m+1}}{(m+1)!}=\frac{f^{(m+1)}(0) u^{m+1}}{(m+1)!}-\frac{c_{m+1} u^{m+1}}{(m+1)!}
$$

and likewise the same sign as

$$
\begin{aligned}
& E_{m+2}(u)-E_{m+1}(u)-\frac{c_{m+2} u^{m+2}}{(m+2)!} \\
& \ldots \\
& E_{m+v}(u)-E_{m+v-1}(u)-\frac{c_{m+v} u^{m+v}}{(m+v)!}
\end{aligned}
$$

and

$$
\begin{gathered}
f(u)-E_{m+v}(u)-\frac{c_{m+v+1} u^{m+v+1}}{(m+v+1)!}= \\
=\frac{f^{(m+v+1)}\left(t_{m+v+1}\right) u^{m+v+1}}{(m+v+1)!}-\frac{c_{m+v+1} u^{m+v+1}}{(m+v+1)!} .
\end{gathered}
$$

The sum of these terms is

$$
E_{m-1}(u)-E_{m}(u)+\frac{c_{m} u^{m}}{m!}-\sum_{j=m+1}^{m+v+1} \frac{c_{j} u^{j}}{j!} .
$$

The absolute value of the sum of terms of the same sign is at least as large as the absolute value of any one of the summands, so

$$
\begin{align*}
& \left|E_{m-1}(u)-E_{m}(u)+\frac{c_{m} u^{m}}{m!}-\sum_{j=m+1}^{m+v+1} \frac{c_{j} u^{j}}{j!}\right| \geq \tag{1}\\
& \geq\left|E_{m+v}(u)-E_{m+v-1}(u)-\frac{c_{m+v} u^{m+v}}{(m+v)!}\right|
\end{align*}
$$

Now

$$
E_{m+1}(u)-E_{m}(u)=-\frac{f^{(m)}(0) u^{m}}{m!}
$$

and

$$
E_{m+v}(u)-E_{m+v-1}(u)=\frac{f^{(m+v)}(0) u^{m+v}}{(m+v)!}
$$

From (1) we obtain

$$
\begin{equation*}
\left|\frac{f^{(m)}(0) u^{m}}{m!}\right|+2 \sum_{j=m}^{m+v+1} \frac{\left|c_{j}\right| u^{j}}{j!} \geq\left|\frac{f^{(m+v)}(0) u^{m+v}}{(m+v)!}\right| . \tag{2}
\end{equation*}
$$

It follows that for any glide index $k>N$, there is a jump index $m<k$ such that

$$
\begin{equation*}
\left|\frac{f^{(m)}(0) u^{m}}{m!}\right|+2 \sum_{j=m}^{k+1} \frac{\left|c_{j}\right| u^{j}}{j!} \geq\left|\frac{f^{(k)}(0) u^{k}}{k!}\right| . \tag{3}
\end{equation*}
$$

Note that $(-u)^{j} u^{j}$ is positive for j even and negative for j odd. It follows that the roles of glide and jump index reverse in the preceding paragraph when $-u$
replaces $u,(-1)^{n} c_{n}$ replaces c_{n} and s_{n} replaces t_{n}. Thus for any jump index $p>N$, there is a glide index $n<p$ with

$$
\begin{equation*}
\left|\frac{f^{(n)}(0)(-u)^{n}}{n!}\right|+2 \sum_{j=n}^{p+1} \frac{\left|(-1)^{j} c_{j}\right|(-u)^{j}}{j!} \geq\left|\frac{f^{(p)}(0)(-u)^{p}}{p!}\right| . \tag{4}
\end{equation*}
$$

We obtain from (3) and (4) that for any index $k>N$ there is an index $m<k$ such that inequality (3) holds.

We deduce from $|u|<d$ and from the hypothesis that $\sum_{j=0}^{\infty} \frac{\left|c_{j}\right| u^{j}}{j!}<\infty$. We conclude from (3) and (4) that for any index $k>N$ there is an index $q \leq N$ such that

$$
\begin{equation*}
\left|\frac{f^{(q)}(0) u^{q}}{q!}\right|+4 \sum_{j=0}^{\infty} \frac{\left|c_{j}\right| u^{j}}{j!} \geq\left|\frac{f^{(k)}(0) u^{k}}{k!}\right| . \tag{5}
\end{equation*}
$$

Consequently the sequence $\left(\left|\frac{f^{(k)}(0) u^{k}}{k!}\right|\right)_{k}$ is bounded. Now $\left(\left|\frac{f^{(k)}(0) u_{o}^{k}}{k!}\right|\right)_{k}$ is also bounded for $u<u_{o}<d$, so indeed $\sum_{k=0}^{\infty} \frac{f^{(k)}(0) u^{k}}{k!}$ converges. It suffices to prove that it converges to $f(u)$ for $u \in(-d, d)$.

If $u \in(0, d)$ and n is a jump index, then

$$
R_{n}(u)-\frac{c_{n} u^{n}}{n!}=\frac{f^{(n)}\left(t_{n}\right) u^{n}}{n!}-\frac{c_{n} u^{n}}{n!}
$$

and

$$
R_{n+1}(u)-\frac{c_{n+1} u^{n+1}}{(n+1)!}=\frac{f^{(n+1)}\left(t_{n+1}\right) u^{n+1}}{(n+1)!}-\frac{c_{n+1} u^{n+1}}{(n+1)!}
$$

have opposite sign. Because there are infinitely many jump indices, it follows that $R_{n}(u) \rightarrow 0$ and $f(u)=\sum_{j=0}^{\infty} \frac{f^{(j)}(0) u^{j}}{j!}$. On the other hand, if n is a glide index, then

$$
R_{n}(-u)-\frac{c_{n}(-u)^{n}}{n!} \quad \text { and } \quad R_{n+1}(-u)-\frac{c_{n+1}(-u)^{n+1}}{(n+1)!}
$$

have opposite sign. Because there are infinitely many glide indices, it follows that

$$
R_{n}(-u) \rightarrow 0 \quad \text { and } \quad f(-u)=\sum_{j=0}^{\infty} \frac{f^{(j)}(0)(-u)^{j}}{j!}
$$

This gives the desired result for $u \in(-d, d)$.
Before tackling Theorem II we need a nuts and bolts type lemma.

Lemma 3. Let g be a twice differentiable function on $[-r, r]$ such that g^{\prime} and $g^{\prime \prime}$ do not change sign on interval $(-r, 0)$ or on interval $(0, r)$. Let s be a number such that $0<s<1$. Then

$$
(1-s)|g(0)| \leq|g(r)|+|g(-r)|+|g(s r)|
$$

Proof. The argument is divided into several cases.
CASE 1. $g^{\prime} \geq 0$ on $(-r, 0)$ and $g^{\prime} \geq 0$ on $(0, r)$. Here g is nondecreasing on $(-r, r)$ and hence $(1-s)|g(0)| \leq|g(0)| \leq|g(-r)|+|g(r)|$.
Case 2. $g^{\prime} \leq 0$ on $(-r, 0), g^{\prime} \leq 0$ on $(0, r)$. Apply Case 1 to $-g$.
CASE 3. $g^{\prime} \geq 0$ on $(-r, 0), g^{\prime} \leq 0$ on $(0, r), g^{\prime \prime} \leq 0$ on $(-r, 0)$ and on $(0, r)$, and $g(0)<0$. Here $g<0$ on $(-r, r)$ and $g(0)$ is the maximum value of g. Hence $(1-s)|g(0)| \leq|g(0)| \leq|g(r)|$.
CASE 4. $g^{\prime} \leq 0$ on $(-r, 0), g^{\prime} \geq 0$ on $(0, r), g^{\prime \prime} \geq 0$ on $(-r, 0)$ and on $(0, r)$, and $g(0)>0$. Apply Case 3 to $-g$.
CASE 5. $g^{\prime} \geq 0$ on $(-r, 0), g^{\prime} \leq 0$ on $(0, r), g^{\prime \prime} \leq 0$ on $(-r, 0)$ and on $(r, 0)$, and $g(0)>0$. Here $g(0)$ is the maximum value of g on $(-r, r)$. Moreover, g is concave down, so $(1-s) g(0)+s g(r) \leq g(s r)$ and $(1-s)|g(0)| \leq|g(s r)|+$ $s|g(r)| \leq|g(s r)|+|g(r)|$.
CASE 6. $g^{\prime} \leq 0$ on $(-r, 0), g^{\prime} \geq 0$ on $(0, r), g^{\prime \prime} \geq 0$ on $(-r, 0)$ and on $(0, r)$, and $g(0)<0$. Apply Case 5 to $-g$.

If $g(0)=0$, there is nothing to prove. We have covered all possibilities.
Proof. [Proof of Theorem II] Let s be a number such that $0<s<1$. We divide our argument into cases and find an inequality in each case. Fix an index n.
Case 1. $f^{(n+1)}-c_{n+1}$ does not change sign on $(-d, d)$. Here the function $f^{(n)}(x)-c_{n+1} x$ is monotonic on $(-d, d)$, and hence

$$
\left|f^{(n)}(0)\right| \leq\left|f^{(n)}\left(-\frac{1}{2} d\right)+\frac{1}{2} c_{n+1} d\right|+\left|f^{(n)}\left(\frac{1}{2} d\right)-\frac{1}{2} c_{n+1} d\right|
$$

and

$$
\left|f^{(n)}(0)\right| \leq\left|f^{(n)}\left(-\frac{1}{2} d\right)\right|+\left|f^{(n)}\left(\frac{1}{2} d\right)\right|+\left|c_{n+1}\right| d
$$

CASE 2. $f^{(n+1)}-c_{n+1}$ has opposite sign on $(-d, 0)$ and $(0, d)$, and $f^{(n+2)}-c_{n+2}$ has opposite sign on $(-d, 0)$ and $(0, d)$. Here $f^{(n+1)}(0)-c_{n+1}=0$. Put

$$
g(x)=f^{(n)}(x)-c_{n+1} x-\frac{1}{2} c_{n+2} x^{2}
$$

Then $g^{\prime}(0)=0$ and $g^{\prime \prime}$ has opposite sign on $(-d, 0)$ and $(0, d)$. It follows that g is monotonic on $(-d, d)$, and

$$
|g(0)| \leq\left|g\left(-\frac{1}{2} d\right)\right|+\left|g\left(\frac{1}{2} d\right)\right|
$$

and hence

$$
\left|f^{(n)}(0)\right|=\left|f^{(n)}\left(-\frac{1}{2} d\right)+\frac{c_{n+1} d}{2}-\frac{c_{n+2} d^{2}}{8}\right|+\left|f^{(n)}\left(\frac{1}{2} d\right)-\frac{c_{n+1} d}{2}-\frac{c_{n+2} d^{2}}{8}\right|
$$

We obtain

$$
\left|f^{(n)}(0)\right| \leq\left|f^{(n)}\left(-\frac{1}{2} d\right)\right|+\left|f^{(n)}\left(\frac{1}{2} d\right)\right|+\left|c_{n+1}\right| d+\left|c_{n+2}\right| d^{2}
$$

CASE 3. $f^{(n+1)}-c_{n+1}$ has opposite sign on $(-d, 0)$ and on $(0, d)$, and $f^{(n+2)}-$ c_{n+2} does not change sign on $(-d, d)$. It follows that $f^{(n+1)}(0)-c_{n+1}=0$, and if

$$
g(x)=f^{(n)}(x)-c_{n+1} x-\frac{1}{2} c_{n+2} x^{2}
$$

then $g^{\prime \prime}$ does not change sign on $(-d, d), g^{\prime}(0)=0$, and g^{\prime} has one sign on $(-d, 0)$ and the opposite sign on $(0, d)$. By Lemma 3,

$$
(1-s)|g(0)| \leq\left|g\left(-\frac{1}{2} d\right)\right|+\left|g\left(\frac{1}{2} d\right)\right|+\left|g\left(\frac{1}{2} s d\right)\right|
$$

and hence

$$
\begin{align*}
(1-s)\left|f^{(n)}(0)\right| & \leq\left|f^{(n)}\left(-\frac{1}{2} d\right)\right|+\left|f^{(n)}\left(\frac{1}{2} d\right)\right|+\left|f^{(n)}\left(\frac{1}{2} s d\right)\right|+ \tag{1}\\
& +2\left|c_{n+1}\right| d+2\left|c_{n+2}\right| d^{2}
\end{align*}
$$

In any of these cases (1) holds. For $0<u<\frac{1}{2} s d$,

$$
\begin{align*}
(1-s) & \frac{\left|f^{(n)}(0)\right| u^{n}}{n!} \leq \frac{\left|f^{(n)}\left(-\frac{1}{2} d\right)\right| u^{n}}{n!}+\frac{\left|f^{(n)}\left(\frac{1}{2} d\right)\right| u^{n}}{n!}+ \tag{2}\\
& +\frac{\left|f^{(n)}\left(\frac{1}{2} s d\right)\right| u^{n}}{n!}++\frac{2 c_{n+1} d u^{n}}{n!}+\frac{2\left|c_{n+2}\right| d^{2} u^{n}}{n!}
\end{align*}
$$

and we deduce from Theorem I and the hypothesis on c_{n} that $\lim \frac{\left|f^{(n)}(0)\right| u^{n}}{n!}=0$. But s is an arbitrary number in the interval $(0,1)$, so $\lim \frac{\left|f^{(n)}(0)\right| u^{n}}{n!}=0$ for $0<u<\frac{1}{2} d$.

Now $f^{(n)}(x)-c_{n+1} x$ is monotonic on $(0, d)$, so if $v_{n} \in\left(0, \frac{1}{2} d\right)$, then

$$
\begin{gathered}
\left|f^{(n)}\left(v_{n}\right)-c_{n+1} v_{n}\right| \leq\left|f^{(n)}(0)\right|+\left|f^{(n)}\left(\frac{1}{2} d\right)-\frac{1}{2} c_{n+1} d\right| \\
\left|f^{(n)}\left(v_{n}\right)\right| \leq\left|f^{(n)}(0)\right|+\left|f^{(n)}\left(\frac{1}{2} d\right)\right|+2\left|c_{n+1}\right| d
\end{gathered}
$$

and

$$
\frac{\left|f^{(n)}\left(v_{n}\right)\right| u^{n}}{n!} \leq \frac{\left|f^{(n)}(0)\right| u^{n}}{n!}+\frac{\left|f^{(n)}\left(\frac{1}{2} d\right)\right| u^{n}}{n!}+\frac{2\left|c_{n+1}\right| d u^{n}}{n!}
$$

But $\lim \frac{f^{(n)}\left(\frac{1}{2} d\right) u^{n}}{n!}=0$ can be deduced from Theorem I, and $\lim \frac{c_{n+1} d u^{n}}{n!}=0$ can be deduced from the hypothesis. Thus

$$
\lim \frac{\left|f^{(n)}\left(v_{n}\right)\right| u^{n}}{n!}=0 \quad \text { for } 0<u<\frac{1}{2} d
$$

We deduce from this and Taylor's Theorem that for any $u \in\left(0, \frac{1}{2} d\right)$,

$$
\begin{equation*}
f(u)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0) u^{n}}{n!} \tag{3}
\end{equation*}
$$

Analogous arguments prove (3) for $u \in\left(-\frac{1}{2} d, 0\right)$. (Or consider $f(-x)$.) Thus f is analytic at 0 . It follows from Theorem I that f is a real analytic function on $(-d, d)$.

But $f^{(n)}(x)-c_{n+1} x$ is monotonic on $(0, d)$. Fix $v \in\left(0, \frac{1}{2} d\right)$. Then

$$
\left|f^{(n)}(v)-c_{n+1} v\right| \leq\left|f^{(n)}(0)\right|+\left|f^{(n)}\left(\frac{1}{2} d\right)-\frac{1}{2} c_{n+1} d\right|
$$

and

$$
\left|f^{(n)}(v)\right| \leq\left|f^{(n)}(0)\right|+\left|f^{(n)}\left(\frac{1}{2} d\right)\right|+\left|c_{n+1}(v+d)\right|
$$

Thus for $|u|<\frac{1}{2} d$,

$$
\sum_{n=0}^{\infty} \frac{\left|f^{(n)}(v)\right| u^{n}}{n!} \leq \sum_{n=0}^{\infty} \frac{\left|f^{(n)}(0)\right| u^{n}}{n!}+\sum_{n=0}^{\infty} \frac{\left|f^{(n)}\left(\frac{1}{2} d\right)\right| u^{n}}{n!}+\sum_{n=0}^{\infty} \frac{\left|c_{n+1}\right|(v+d) u^{n}}{n!}
$$

We have that all the series on the right side converge, so $\sum_{n=0}^{\infty} \frac{f^{(n)}(v) u^{n}}{n!}$ must converge also. But f is analytic on $(-d, d)$, and it follows that

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(v)}{n!}(x-v)^{n}
$$

for $v \in\left(0, \frac{1}{2} d\right)$ and $x \in\left(v-\frac{1}{2} d, v+\frac{1}{2} d\right)$. The argument for $v \in\left(-\frac{1}{2} d, 0\right)$ is analogous.

To prove Theorem IV, apply Theorem II to f on each interval $((n-1) d, n d)$ where n is an integer, positive, negative or 0 . To prove Theorem III, apply Theorem II locally to f. We leave the details.

We conclude with some problems that might be topics for further study.

1) Does there exist a power series on $(-1,1)$ whose sum F has bounded derivatives of all orders such that for any sequence of real numbers $\left(c_{n}\right)$ for which $\left(\frac{c_{n}}{n!}\right)$ is bounded, $F^{(n)}-c_{n}$ must change sign on $(-1,1)$ for infinitely many n ?
2) Does there exist a real analytic function on (a, b) that is not a generalized regularly monotonic function on (a, b) ?
3) If the answer to 2) is yes, can monotonicity be used to give a necessary and sufficient condition for a real function in C^{∞} to be analytic?

I conjecture that the answers are 1) yes, 2) yes, and 3) no.

References

[1] S. Bernstein, Leçons sur les propriétés extremales et la meilleure approximation des fonctions analytiques d'une variable réele, Gauthier-Villars, Paris, 1926.
[2] R. P. Boas, Signs of derivatives and analytic functions, Amer. Math. Monthly, 78 (1971), 1085-1093.
[3] J. A. M. McHugh, A proof of Bernstein's theorem on regularly monotonic functions, Proc. Amer. Math. Soc., 47 (1975), 358-360.

[^0]: Key Words: regularly monotonic, analytic, power series, Taylor's Theorem, change sign Mathematical Reviews subject classification: 26A48, 30B10
 Received by the editors January 9, 1995

