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ON MONOTONIC AND ANALYTIC
FUNCTIONS IN C∞

Abstract

We generalize the theorem of Bernstein that any infinitely many
times differentiable function on an interval, I, that is regularly mono-
tonic on I must be a real analytic function on I.

Let f be a function in C∞ (that is, f has derivatives of all orders) on the
interval (−d, d). S. Bernstein in [1] proved a classic result.

Theorem B. For each n let f (n) not change sign on (−d, d). Then f is a
real analytic function on (−d, d).

For an easier proof of Theorem B consult [3]. Unfortunately many analytic
functions on (−d, d) do not satisfy the hypothesis of Theorem B. Consider, for
example, the elementary functions sinx and cosx on (−4, 4). We will provide
a variation on Theorem B whose hypothesis is satisfied by a wider class of
functions including most of the elementary functions on all the interiors of
compact intervals on which they are analytic. We offer:

Theorem I. Let (cn) be a sequence of real numbers such that the sequence(
cnd

n

n!

)
is bounded and the functions f (n)−cn do not change sign on the interval

(−d, d). Then for any x ∈ (−d, d) we have

f(x) =

∞∑
n=0

f (n)(0)

n!
xn .

It seems to be difficult to construct a convergent power series on (−1, 1)
whose sum has bounded derivatives of all orders and fails to satisfy the hy-
pothesis of Theorem I for all appropriate sequences (cn). Consult the problems
at the end of this paper.

We also offer:
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Theorem II. Let (cn) be a sequence of real numbers such that the sequence(
cnd

n

n!

)
is bounded and the functions f (n) − cn do not change sign on (−d, 0)

or on (0, d). Then for any u ∈
(
− 1

2d,
1
2d
)

and x ∈
(
u− 1

2d, u + 1
2d
)
, we have

f(x) =

∞∑
n=0

f (n)(u)

n!
(x− u)n .

Functions in C∞(a, b) satisfying the hypotheses of Theorem B on an inter-
val (a, b) are called regularly monotonic on (a, b). We modify this definition
as follows:

Definition. We say that f ∈ C∞(a, b) is a generalized regularly monotonic
function on (a, b) if at each x ∈ (a, b), there exist a positive number d and a
sequence of numbers (cn), depending on x, such that the sequence

(
cnd

n

n!

)
is

bounded and for any n the function f (n)−cn does not change sign on (x−d, x)
or on (x, x + d).

Theorem III. If f is a generalized regularly monotonic function on (a, b),
then f is a real analytic function on (a, b).

This follows from Theorem II.

Theorem IV. Let f ∈ C∞(R) and let f satisfy the hypothesis of Theorem II.
Let f(x + 2d) = f(x) for all x. Then f is a real analytic function on R, and
the interval of convergence of the Taylor series of f at any point in R has
length ≥ d.

This also follows from Theorem II.
Until further notice, let the hypothesis of Theorem I be satisfied. We

classify the indices n ≥ 0 as follows. We say that n is a glide index if f (n)− cn
and f (n+1)−cn+1 have the same sign. We say that n is a jump index if f (n)−cn
and f (n+1) − cn+1 have opposite sign. (Here we discard the possibility that
f (n) − cn is identically zero for some index n; for then f(x) would equal a
polynomial in x on (−d, d).)

The plan is to prove Theorem I under various restrictions until all cases
are covered. We begin with:

Lemma 1. Let all but finitely many indices n be glide indices. Then

f(x) =

∞∑
n=0

f (n)(0)

n!
xn for all x ∈ (−d, d).
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Proof. Let do < 0. It suffices to prove the conclusion on the interval

(−do, do) because do is arbitrary. Note that the series
∑ |cn|dn

o

n! converges

because
( |cn|dn

n!

)
is bounded. Let N be an index such that n > N implies that

n is a glide index and
|cn|dn

o

n! < 1. Without loss of generality, we assume that

f (n)− cn ≥ 0 for n > N . (The proof for the opposite inequality is analogous.)
For each N and x ∈ (0, do), put

pn(x) =

n∑
j=0

f (j)(0)

j!
xj −

n∑
j=0

cj
j!
xj .

It follows that pN+1(x) ≤ pN+2(x) ≤ pN+3(x) ≤ . . . . By Taylor’s Theorem,

Rn(x) = f(x)−
n∑

j=0

f (j)(0)

j!
xj =

f (n+1)(v)

(n + 1)!
xn+1

for some v ∈ (0, x). It follows that

Rn(x) ≥ cn+1

(n + 1)!
xn+1 and Rn(x) ≥ −|cn+1d

n+1
o |

(n + 1)!
> −1 .

Hence

pn(x) +

n∑
j=0

cj
j!
xj =

n∑
j=0

f (j)(0)

j!
xj = f(x)−Rn(x) ≤ f(x) + 1 .

From the fact that
∑∞

j=0
cj
j! x

j converges, we deduce that
(
pn(x)

)
n

is a non-

decreasing sequence bounded above. Hence
(
pn(x)

)
n

converges and likewise∑∞
j=0

f(j)(0)
j! xj converges for x ∈ (0, do). Clearly

∑∞
j=0

f(j)(0)
j! xj converges for

x ∈ (−do, do). Put g(x) =
∑∞

j=0
f(j)(0)

j! xj . Then g is a real analytic function

on (−do, do).
It remains to prove that f(x) = g(x) for x ∈ (−do, do). Select u > 0

such that 2u < do. For each n > N , let vn ∈ (u − do, do − u). Put hn(x) =
f (n)(x)− cn+1x for each n > N . Then h′n does not change sign on (−d, d). It
follows that hn(vn) lies between hn(u− do) and hn(do − u), and therefore∣∣hn(vn)

∣∣ ≤ ∣∣hn(u− do)
∣∣+
∣∣hn(do − u)

∣∣ .
Hence∣∣f (n)(vn)−cn+1vn

∣∣ ≤ ∣∣f (n)(u−do)−cn+1(u−do)
∣∣+∣∣f (n)(do−u)−cn+1(do−u)

∣∣
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and∣∣f (n)(vn)
∣∣ ≤ ∣∣f (n)(u− do)

∣∣+
∣∣f (n)(do − u)

∣∣+ 2
∣∣cn+1(u− do)

∣∣+
∣∣cn+1vn

∣∣ .
We multiply by un

n! to obtain∣∣∣f (n)(vn)un

n!

∣∣∣ ≤ |f (n)(u− do)|un

n!
+
|f (n)(do − u)|un

n!
+

3|cn+1|dun

n!
.

But
∑ f(n)(u−do)|un

n! and
∑ |f(n)(do−u)|un

n! converge by the same argument as
in the preceding paragraph. From the hypothesis and from u < d we deduce

that
∑ cn+1u

n

n! converges. Finally,

cn+1u
n

n!
→ 0 ,

f (n)(do − u)un

n!
→ 0 and

f (n)(u− do)un

n!
→ 0 .

It follows that f(n)(vn)u
n

n! → 0. But f(n)(vn)u
n

n! has the form of the remainder
Rn in Taylor’s Theorem,

f(t) =

n−1∑
j=1

f (j)(t− u)un

n!
+ Rn

for any t ∈ (2u−do, do−u). Thus f is analytic at each point in (2u−do, do−u).
But u > 0 is arbitrary, so f is analytic on (−do, do). Moreover, f equals
the analytic function g on some neighborhood of 0, so f(x) = g(x) for x ∈
(−do, do).

The conclusion follows from the fact that do < d was arbitrary.
Next we see that jump index can replace glide index in Lemma 1.

Lemma 2. Let all but finitely many indices n be jump indices. Then

f(x) =

∞∑
j=0

f (j)(0)

j!
xj for all x ∈ (−d, d).

Proof. Put g(x) = f(−x) for x ∈ (−d, d). Then g(n)(x) = (−1)nf (n)(−x)
for all n and all x ∈ (−d, d). It follows that each jump index for g is a glide
index for f , and each glide index for g is a jump index for f . Thus all but
finitely many indices are glide indices for g. By Lemma 1,

g(x) =

∞∑
j=1

g(j)

j!
xj for x ∈ (−d, d).
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Finally, for x ∈ (−d, d),

f(x) = g(−x) =

∞∑
j=0

g(j)(0)

j!
(−x)j =

∞∑
j=0

(−1)jg(j)(0)

j!
xj =

∞∑
j=0

f (j)(0)

j!
xj .

Proof. [Proof of Theorem I] In view of Lemmas 1 and 2 we can assume,
without loss of generality, that there are infinitely many jump indices and
infinitely many glide indices. Fix an index N that exceeds at least one jump
index and exceeds at least one glide index. Fix u ∈ (0, d). We write

f(u) =

n∑
j=0

f (j)(0)uj

j!
+

f (n+1)(tn)un+1

(n + 1)!
,

f(−u) =

n∑
j=0

f (j)(0)(−u)j

j!
+

f (n+1)(sn)(−u)n+1

(n + 1)!
,

for each index n, where tn is some point in (0, u) and sn is some point in
(−u, 0). Put

En(u) =

n∑
j=0

f (j)(0)uj

j!
, En(−u) =

n∑
j=0

f (j)(0)(−u)j

j!
,

Rn(u) =
f (n+1)(tn)un+1

(n + 1)!
, Rn(−u) =

f (n+1)(sn)(−u)n+1

(n + 1)!
.

Thus f(u)=En(u) + Rn(u) and f(−u)=En(−u) + Rn(−u) for each index n.
Suppose that m is a jump index and m + 1,m + 2, . . . ,m + v are glide

indices. Then

Em−1(u)− f(u) +
cmum

m!
= −f (m)(tm)um

m!
+

cmum

m!

has the same sign as

Em+1(u)− Em(u)− cm+1u
m+1

(m + 1)!
=

f (m+1)(0)um+1

(m + 1)!
− cm+1u

m+1

(m + 1)!
,

and likewise the same sign as

Em+2(u)− Em+1(u)− cm+2u
m+2

(m + 2)!
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Em+v(u)− Em+v−1(u)− cm+vu
m+v

(m + v)!
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and

f(u)− Em+v(u)− cm+v+1u
m+v+1

(m + v + 1)!
=

=
f (m+v+1)(tm+v+1)um+v+1

(m + v + 1)!
− cm+v+1u

m+v+1

(m + v + 1)!
.

The sum of these terms is

Em−1(u)− Em(u) +
cmum

m!
−

m+v+1∑
j=m+1

cju
j

j!
.

The absolute value of the sum of terms of the same sign is at least as large as
the absolute value of any one of the summands, so

∣∣∣Em−1(u)− Em(u) +
cmum

m!
−

m+v+1∑
j=m+1

cju
j

j!

∣∣∣ ≥
≥
∣∣∣Em+v(u)− Em+v−1(u)− cm+vu

m+v

(m + v)!

∣∣∣ .
(1)

Now

Em+1(u)− Em(u) = −f (m)(0)um

m!

and

Em+v(u)− Em+v−1(u) =
f (m+v)(0)um+v

(m + v)!
.

From (1) we obtain

∣∣∣f (m)(0)um

m!

∣∣∣+ 2

m+v+1∑
j=m

|cj |uj

j!
≥
∣∣∣f (m+v)(0)um+v

(m + v)!

∣∣∣ . (2)

It follows that for any glide index k > N , there is a jump index m < k such
that ∣∣∣f (m)(0)um

m!

∣∣∣+ 2

k+1∑
j=m

|cj |uj

j!
≥
∣∣∣f (k)(0)uk

k!

∣∣∣ . (3)

Note that (−u)juj is positive for j even and negative for j odd. It follows that
the roles of glide and jump index reverse in the preceding paragraph when −u
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replaces u, (−1)ncn replaces cn and sn replaces tn. Thus for any jump index
p > N , there is a glide index n < p with

∣∣∣f (n)(0)(−u)n

n!

∣∣∣+ 2

p+1∑
j=n

|(−1)jcj |(−u)j

j!
≥
∣∣∣f (p)(0)(−u)p

p!

∣∣∣ . (4)

We obtain from (3) and (4) that for any index k > N there is an index m < k
such that inequality (3) holds.

We deduce from |u| < d and from the hypothesis that
∑∞

j=0
|cj |uj

j! < ∞.

We conclude from (3) and (4) that for any index k > N there is an index
q ≤ N such that ∣∣∣f (q)(0)uq

q!

∣∣∣+ 4
∞∑
j=0

|cj |uj

j!
≥
∣∣∣f (k)(0)uk

k!

∣∣∣ . (5)

Consequently the sequence
(∣∣ f(k)(0)uk

k!

∣∣)
k

is bounded. Now
(∣∣ f(k)(0)uk

o

k!

∣∣)
k

is

also bounded for u < uo < d, so indeed
∑∞

k=0
f(k)(0)uk

k! converges. It suffices
to prove that it converges to f(u) for u ∈ (−d, d).

If u ∈ (0, d) and n is a jump index, then

Rn(u)− cnu
n

n!
=

f (n)(tn)un

n!
− cnu

n

n!

and

Rn+1(u)− cn+1u
n+1

(n + 1)!
=

f (n+1)(tn+1)un+1

(n + 1)!
− cn+1u

n+1

(n + 1)!

have opposite sign. Because there are infinitely many jump indices, it follows

that Rn(u)→ 0 and f(u) =
∑∞

j=0
f(j)(0)uj

j! . On the other hand, if n is a glide
index, then

Rn(−u)− cn(−u)n

n!
and Rn+1(−u)− cn+1(−u)n+1

(n + 1)!

have opposite sign. Because there are infinitely many glide indices, it follows
that

Rn(−u)→ 0 and f(−u) =

∞∑
j=0

f (j)(0)(−u)j

j!
.

This gives the desired result for u ∈ (−d, d).
Before tackling Theorem II we need a nuts and bolts type lemma.
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Lemma 3. Let g be a twice differentiable function on [−r, r] such that g′ and
g′′ do not change sign on interval (−r, 0) or on interval (0, r). Let s be a
number such that 0 < s < 1. Then

(1− s)
∣∣g(0)

∣∣ ≤ ∣∣g(r)
∣∣+
∣∣g(−r)

∣∣+
∣∣g(sr)

∣∣ .
Proof. The argument is divided into several cases.
Case 1. g′ ≥ 0 on (−r, 0) and g′ ≥ 0 on (0, r). Here g is nondecreasing on
(−r, r) and hence (1− s)|g(0)| ≤ |g(0)| ≤ |g(−r)|+ |g(r)|.
Case 2. g′ ≤ 0 on (−r, 0), g′ ≤ 0 on (0, r). Apply Case 1 to −g.
Case 3. g′ ≥ 0 on (−r, 0), g′ ≤ 0 on (0, r), g′′ ≤ 0 on (−r, 0) and on (0, r),
and g(0) < 0. Here g < 0 on (−r, r) and g(0) is the maximum value of g.
Hence (1− s)|g(0)| ≤ |g(0)| ≤ |g(r)|.
Case 4. g′ ≤ 0 on (−r, 0), g′ ≥ 0 on (0, r), g′′ ≥ 0 on (−r, 0) and on (0, r),
and g(0) > 0. Apply Case 3 to −g.
Case 5. g′ ≥ 0 on (−r, 0), g′ ≤ 0 on (0, r), g′′ ≤ 0 on (−r, 0) and on (r, 0),
and g(0) > 0. Here g(0) is the maximum value of g on (−r, r). Moreover, g
is concave down, so (1 − s)g(0) + sg(r) ≤ g(sr) and (1 − s)|g(0)| ≤ |g(sr)| +
s|g(r)| ≤ |g(sr)|+ |g(r)|.
Case 6. g′ ≤ 0 on (−r, 0), g′ ≥ 0 on (0, r), g′′ ≥ 0 on (−r, 0) and on (0, r),
and g(0) < 0. Apply Case 5 to −g.

If g(0) = 0, there is nothing to prove. We have covered all possibilities.
Proof. [Proof of Theorem II] Let s be a number such that 0 < s < 1. We
divide our argument into cases and find an inequality in each case. Fix an
index n.
Case 1. f (n+1) − cn+1 does not change sign on (−d, d). Here the function
f (n)(x)− cn+1x is monotonic on (−d, d), and hence∣∣f (n)(0)

∣∣ ≤ ∣∣f (n)
(
− 1

2d
)

+ 1
2cn+1d

∣∣+
∣∣f (n)

(
1
2d
)
− 1

2cn+1d
∣∣ ,

and ∣∣f (n)(0)
∣∣ ≤ ∣∣f (n)

(
− 1

2d
)∣∣+

∣∣f (n)
(
1
2d
)∣∣+

∣∣cn+1

∣∣d .
Case 2. f (n+1)−cn+1 has opposite sign on (−d, 0) and (0, d), and f (n+2)−cn+2

has opposite sign on (−d, 0) and (0, d). Here f (n+1)(0)− cn+1 = 0. Put

g(x) = f (n)(x)− cn+1x− 1
2cn+2x

2 .

Then g′(0) = 0 and g′′ has opposite sign on (−d, 0) and (0, d). It follows that
g is monotonic on (−d, d), and∣∣g(0)

∣∣ ≤ ∣∣g(− 1
2d
)∣∣+

∣∣g( 12d)∣∣ ,
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and hence∣∣f (n)(0)
∣∣ =

∣∣∣f (n)
(
− 1

2d
)

+
cn+1d

2
− cn+2d

2

8

∣∣∣+
∣∣∣f (n)

(
1
2d
)
− cn+1d

2
− cn+2d

2

8

∣∣∣ .
We obtain∣∣f (n)(0)

∣∣ ≤ ∣∣f (n)
(
− 1

2d
)∣∣+

∣∣f (n)
(
1
2d
)∣∣+

∣∣cn+1

∣∣d +
∣∣cn+2

∣∣d2 .
Case 3. f (n+1)−cn+1 has opposite sign on (−d, 0) and on (0, d), and f (n+2)−
cn+2 does not change sign on (−d, d). It follows that f (n+1)(0) − cn+1 = 0,
and if

g(x) = f (n)(x)− cn+1x− 1
2cn+2x

2 ,

then g′′ does not change sign on (−d, d), g′(0) = 0, and g′ has one sign on
(−d, 0) and the opposite sign on (0, d). By Lemma 3,

(1− s)|g(0)| ≤ |g(− 1
2d)|+ |g( 1

2d)|+ |g( 1
2sd)| ,

and hence

(1− s)
∣∣f (n)(0)

∣∣ ≤ ∣∣∣f (n)
(
− 1

2d
)∣∣∣+

∣∣∣f (n)
(
1
2d
)∣∣∣+

∣∣∣f (n)
(
1
2sd
)∣∣∣+

+ 2
∣∣cn+1

∣∣d + 2
∣∣cn+2

∣∣d2 . (1)

In any of these cases (1) holds. For 0 < u < 1
2sd,

(1− s)
|f (n)(0)|un

n!
≤
|f (n)(− 1

2d)|un

n!
+
|f (n)( 1

2d)|un

n!
+

+
|f (n)( 1

2sd)|un

n!
+ +

2cn+1du
n

n!
+

2|cn+2|d2un

n!
,

(2)

and we deduce from Theorem I and the hypothesis on cn that lim |f(n)(0)|un

n! =0.

But s is an arbitrary number in the interval (0, 1), so lim |f(n)(0)|un

n! = 0 for
0 < u < 1

2d.

Now f (n)(x)− cn+1x is monotonic on (0, d), so if vn ∈
(
0, 1

2d
)
, then∣∣f (n)(vn)− cn+1vn

∣∣ ≤ ∣∣f (n)(0)
∣∣+
∣∣f (n)

(
1
2d
)
− 1

2cn+1d
∣∣ ,

∣∣f (n)(vn)
∣∣ ≤ ∣∣f (n)(0)

∣∣+
∣∣f (n)

(
1
2d
)∣∣+ 2

∣∣cn+1

∣∣d ,
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and
|f (n)(vn)|un

n!
≤ |f

(n)(0)|un

n!
+
|f (n)( 1

2d)|un

n!
+

2|cn+1|dun

n!
.

But lim
f(n)( 1

2d)u
n

n! = 0 can be deduced from Theorem I, and lim cn+1du
n

n! = 0
can be deduced from the hypothesis. Thus

lim
|f (n)(vn)|un

n!
= 0 for 0 < u < 1

2d.

We deduce from this and Taylor’s Theorem that for any u ∈
(
0, 1

2d
)
,

f(u) =

∞∑
n=0

f (n)(0)un

n!
. (3)

Analogous arguments prove (3) for u ∈
(
− 1

2d, 0
)
. (Or consider f(−x).) Thus

f is analytic at 0. It follows from Theorem I that f is a real analytic function
on (−d, d).

But f (n)(x)− cn+1x is monotonic on (0, d). Fix v ∈
(
0, 1

2d
)
. Then∣∣f (n)(v)− cn+1v

∣∣ ≤ ∣∣f (n)(0)
∣∣+
∣∣f (n)

(
1
2d
)
− 1

2cn+1d
∣∣

and ∣∣f (n)(v)
∣∣ ≤ ∣∣f (n)(0)

∣∣+
∣∣f (n)

(
1
2d
)∣∣+

∣∣cn+1(v + d)
∣∣ .

Thus for |u| < 1
2d,

∞∑
n=0

|f (n)(v)|un

n!
≤
∞∑

n=0

|f (n)(0)|un

n!
+

∞∑
n=0

|f (n)( 1
2d)|un

n!
+

∞∑
n=0

|cn+1|(v + d)un

n!
.

We have that all the series on the right side converge, so
∑∞

n=0
f(n)(v)un

n! must
converge also. But f is analytic on (−d, d), and it follows that

f(x) =

∞∑
n=0

f (n)(v)

n!
(x− v)n

for v ∈
(
0, 1

2d
)

and x ∈
(
v − 1

2d, v + 1
2d
)
. The argument for v ∈

(
− 1

2d, 0
)

is
analogous.

To prove Theorem IV, apply Theorem II to f on each interval
(
(n−1)d, nd

)
where n is an integer, positive, negative or 0. To prove Theorem III, apply
Theorem II locally to f . We leave the details.

We conclude with some problems that might be topics for further study.
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1) Does there exist a power series on (−1, 1) whose sum F has bounded deriva-
tives of all orders such that for any sequence of real numbers (cn) for which(
cn
n!

)
is bounded, F (n)− cn must change sign on (−1, 1) for infinitely many

n?

2) Does there exist a real analytic function on (a, b) that is not a generalized
regularly monotonic function on (a, b)?

3) If the answer to 2) is yes, can monotonicity be used to give a necessary and
sufficient condition for a real function in C∞ to be analytic?

I conjecture that the answers are 1) yes, 2) yes, and 3) no.
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