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DIMENSIONS OF WEAKLY CONVERGENT
DERANGED CANTOR SETS

Abstract

We calculate the Hausdorff and packing dimensions of a generalized
Cantor set which satisfies some condition on contracting ratios of its
construction stages.

1 Introduction

In [2] we investigated the Hausdorff and packing dimensions of a deranged Can-
tor set whose contracting ratios and gap ratios in its construction are random
but uniformly bounded away from 0. We used Frostman’s density theorems
in this study. In this paper, we consider a weakly convergent deranged Cantor
set, which satisfies a condition that all the sequences of the solutions of some
power equations related to the contracting ratios in its construction converge
to some number. We note that in this case we deal with a deranged Cantor set
having a weaker condition (a condition of a local uniform boundedness) than
that of uniform boundedness of contracting ratios and gap ratios. We prove
that its Hausdorff and packing dimensions are equal to the number and find
the dimensions of the product of these kinds of sets. We finish with concrete
examples of such deranged Cantor sets of positive and finite Hausdorff and
packing measure of the corresponding dimension.

2 Preliminaries

We defined deranged Cantor set [2]. Let Iφ = [0, 1]. We obtain the left
subinterval Iτ,1 and the right subinterval Iτ,2 of Iτ by deleting the middle
open subinterval of Iτ inductively for each τ ∈ {1, 2}n, where n = 0, 1, 2, · · · .
Consider En = ∪τ∈{1,2}nIτ . Then {En} is a decreasing sequence of closed
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sets. For each n, we put | Iτ,1 | / | Iτ |= cτ,1 and | Iτ,2 | / | Iτ |= cτ,2 for
all τ ∈ {1, 2}n, where | I | denotes the diameter of I. Then F =

⋂∞
n=0En is

a deranged Cantor set. We note that if cτ,1 = an+1 and cτ,2 = bn+1 for all
τ ∈ {1, 2}n for each n, then F =

⋂∞
n=0En is called a perturbed Cantor set [1].

We recall the s-dimensional Hausdorff measure of F is defined by Hs(F ) =
limδ→0H

s
δ (F ) where

Hs
δ (F ) = inf{

∞∑
n=1

| Un |s: {Un}∞n=1 is a δ − cover of F}

and the Hausdorff dimension of F is defined by

dimH(F ) = sup{s > 0 : Hs(F ) =∞}(= inf{s > 0 : Hs(F ) = 0})(see[3]).

Also we recall that the s-dimensional packing measure of F is defined by

ps(F ) = inf{
∞∑
n=1

P s(Fn) :

∞⋃
n=1

Fn = F},

where P s(E) = limδ→0 P
s
δ (E) and P sδ (E) = sup{

∑∞
n=1 | Un |s: {Un} is a

δ-packing of E }, and the packing dimension of F :

dimp(F ) = sup
{
s > 0 : ps(F ) =∞}(= inf{s > 0 : ps(F ) = 0})([3]).

We note that if {an} and {bn} are given, then a perturbed Cantor set F is
determined. If numbers cτ are given, then a deranged Cantor set is determined.
We also note that a perturbed Cantor set is a special example of a deranged
Cantor set. But in this paper we consider a specific class of deranged Cantor
sets which is essentially different from a perturbed Cantor set. We are now
ready to study the ratio geometry of the deranged Cantor set.

3 Main results

In this section, F denotes a deranged Cantor set determined by {cτ} with
τ ∈ {1, 2}n where n = 1, 2, · · · . Hereafter we only consider a deranged Cantor
set whose contracting ratios cτ and gap ratios dτ (= 1 − (cτ,1 + cτ,2)) are
locally uniformly bounded away from 0 in the sense that for each σ ∈ {1, 2}N ,
{cσ|k}∞k=1 and {dσ|k}∞k=1 are uniformly bounded away from 0 . We note that
if x ∈ F , then there is σ ∈ {1, 2}N such that

⋂∞
k=0 Iσ|k = {x}. (Here σ|k =

i1, i2, · · · , ik where σ = i1, i2, · · · , ik, ik+1, · · · .)
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Theorem 1. Let cτ ∈ (0, 1). Let sτ be the solution to the equation csττ,1+csττ,2 =
1 for each τ of finite length. Suppose that sσ|k converges to s as k → ∞ for
each σ ∈ {1, 2}N (σ corresponds to x ∈ F ). Then dimH(F ) = dimp(F ) = s.

Proof. We may assume that for each σ ∈ {1, 2}N , cσ|k, dσ|k(= 1− (cσ|k,1 +
cσ|k,2)) > ασ for all integers k for some small ασ > 0. (In fact, it is redundant
to assume that cσ|k > ασ for all integers k for some small ασ > 0 since {sσ|k}
converges to s and dσ|k > ασ > 0 for all k. For, if not, {sσ|k} doesn’t converge
to s.) Let x ∈ F . Then there is σ ∈ {1, 2}N such that

⋂∞
k=0 Iσ|k = {x}. Let

En(m) =
⋂
k≥n

{x ∈ F :

∞⋂
k=0

Iσ|k = {x}, sσ|k > s− 1

m
}.

Now we only need to show that dimH(En(m)) ≥ s − 2
m for each m to have

dimH(F ) ≥ s. Fix m and let σ ∈ {1, 2}N . Then c
sσ|k
σ|k,1 + c

sσ|k
σ|k,2 = 1 for each k.

If sσ|k > s− 1
m , then c

s− 2
m

σ|k,1 + c
s− 2

m

σ|k,2 > a > 1 for some a > 1. Then

lim inf
k→∞

(c
s− 2

m
1 + c

s− 2
m

2 )(c
s− 2

m

σ|1,1 + c
s− 2

m

σ|1,2 ) · · · (cs−
2
m

σ|k,1 + c
s− 2

m

σ|k,2) =∞

for each x ∈ En(m) with
⋂∞
k=0 Iσ|k = {x}.

We define a set function µ by

µ(Iτ ) =
|Iτ |s−

2
m

(c
s− 2

m
1 + c

s− 2
m

2 )(c
s− 2

m
i1,1

+ c
s− 2

m
i1,2

) · · · (cs−
2
m

i1,i2,··· ,ik−1,1
+ c

s− 2
m

i1,i2,··· ,ik−1,2
)

for each τ = i1, i2, · · · , ik−1, ik, where ij ∈ {1, 2}. Clearly µ(Iτ ) = µ(Iτ,1) +
µ(Iτ,2) for all τ of finite length. Then µ can be extended to a mass distribution
on F . (See [3,Proposition 1.7].) Given a small positive number r, there exists k
such that |Iσ|k+1| ≤ r < |Iσ|k|. Since dσ|j |Iσ|j | ≥ ασ|Iσ|k| > ασr for 0 ≤ j ≤ k,
Bασr(x) ⊂ [

⋃
τ(6=σ|k)∈{1,2}k Iτ ]c, where Bασr(x) is the ball of radius ασr with

center x. Thus µ(Bασr(x)) ≤ µ(Iσ|k). Now,

µ
(
Bασr(x)

)
(ασr)s−

2
m

≤
µ(Iσ|k)

α
s− 2

m
σ |Iσ|k+1|s−

2
m

≤
µ(Iσ|k)

α
s− 2

m
σ (α

s− 2
m

σ |Iσ|k|s−
2
m )

=
|Iσ|k|s−

2
m

α
2(s− 2

m )
σ |Iσ|k|s−

2
m (c

s− 2
m

1 + c
s− 2

m
2 ) · · · (cs−

2
m

σ|k−1,1 + c
s− 2

m

σ|k−1,2)
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=
1

α
2(s− 2

m )
σ (c

s− 2
m

1 + c
s− 2

m
2 )(c

s− 2
m

σ|1,1 + c
s− 2

m

σ|1,2 ) · · · (cs−
2
m

σ|k−1,1 + c
s− 2

m

σ|k−1,2)

Then for x ∈ En(m),

lim sup
r→0

µ(Br(x))

rs−
2
m

≤ lim sup
k→∞

1

α
2(s− 2

m )
σ (c

s− 2
m

1 + c
s− 2

m
2 ) · · · (cs−

2
m

σ|k,1 + c
s− 2

m

σ|k,2)
= 0.

There exists a large number n such that µ(En(m)) > 0 since En(m) is a Borel

set in [0, 1] and En(m) ↑ F as n ↑ ∞ with µ(F ) = 1. Thus Hs− 2
m (F ) =∞ by

Proposition 4.9 [3]. Hence dimH(F ) ≥ s− 2
m .

Similarly we need only show that dimp(En(m)) ≤ s+ 2
m for each m to have

dimp(F ) ≤ s. Fix m and let σ ∈ {1, 2}N . Then c
sσ|k
σ|k,1 + c

sσ|k
σ|k,2 = 1 for each k.

If sσ|k < s+ 1
m , then c

s+ 2
m

σ|k,1 + c
s+ 2

m

σ|k,2 < b < 1 for some 0 < b < 1. Then

lim sup
k→∞

(c
s+ 2

m
1 + c

s+ 2
m

2 )(c
s+ 2

m

σ|1,1 + c
s+ 2

m

σ|1,2 ) · · · (cs+
2
m

σ|k,1 + c
s+ 2

m

σ|k,2) = 0

for each x ∈ Gn(m) with
⋂∞
k=0 Iσ|k = {x}, where

Gn(m) =
⋂
k≥n

{x ∈ F :

∞⋂
k=0

Iσ|k = {x}, sσ|k < s+
1

m
}.

We define a set function ν by

ν(Iτ ) =
|Iτ |s+

2
m

(c
s+ 2

m
1 + c

s+ 2
m

2 )(c
s+ 2

m
i1,1

+ c
s+ 2

m
i1,2

) · · · (cs+
2
m

i1,i2,··· ,ik−1,1
+ c

s+ 2
m

i1,i2,··· ,ik−1,2
)

for each τ = i1, i2, · · · , ik−1, ik, where ij ∈ {1, 2}. Clearly ν(Iτ ) = ν(Iτ,1) +
ν(Iτ,2) for all τ of finite length. Then ν can be extended to a mass distribu-
tion on F . (See [3,Proposition 1.7].) Given a small positive number r, there

exists k such that |Iσ|k+1| ≤ r < |Iσ|k|. Then
ν(Br(x))

rs+
2
m

≥ ν(Iσ|k+1)

|Iσ|k|s+
2
m
. Since
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|Iσ|k+1|/|Iσ|k| = cσ|k+1 > ασ for all k,

ν(Br(x))

rs+
2
m

≥
ν(Iσ|k+1)

( 1
ασ

)s+
2
m |Iσ|k+1|s+

2
m

≥
α
s+ 2

m
σ ν(Iσ|k+1)

|Iσ|k+1|s+
2
m

=
α
s+ 2

m
σ |Iσ|k+1|s+

2
m

|Iσ|k+1|s+
2
m (c

s+ 2
m

1 + c
s+ 2

m
2 )(c

s+ 2
m

σ|1,1 + c
s+ 2

m

σ|1,2 ) · · · (cs+
2
m

σ|k,1 + c
s+ 2

m

σ|k,2)

=
α
s+ 2

m
σ

(c
s+ 2

m
1 + c

s+ 2
m

2 )(c
s+ 2

m

σ|1,1 + c
s+ 2

m

σ|1,2 ) · · · (cs+
2
m

σ|k,1+ c
s+ 2

m

σ|k,2)

Then for x ∈ Gn(m),

lim inf
r→0

ν(Br(x))

rs+
2
m

≥ lim inf
k→∞

α
s+ 2

m
σ

(c
s+ 2

m
1 + c

s+ 2
m

2 ) · · · (cs+
2
m

σ|k,1 + c
s+ 2

m

σ|k,2)
=∞.

Thus ps+
2
m (Gn(m)) = 0 by Proposition 2.2 [4]. Since ps+

2
m (Gn(m)) = 0 for

each n andGn(m) is a Borel set in [0,1] andGn(m) ↑ F as n ↑ ∞,ps+
2
m (F ) = 0.

Hence dimp(F ) ≤ s+ 2
m .

Remark. If we consider two covering functions

hs(F ) = lim inf
k→∞

min
σ∈{1,2}k

(cs1+cs2)(csσ|1,1+csσ|1,2)(csσ|2,1+csσ|2,2) · · · (csσ|k,1+csσ|k,2)

and

Qs(F ) = lim sup
k→∞

max
σ∈{1,2}k

(cs1+cs2)(csσ|1,1+csσ|1,2)(csσ|2,1+csσ|2,2) · · · (csσ|k,1+csσ|k,2),

we can get some information [2] concerning the Hausdorff and packing dimen-
sions of a deranged Cantor set using the covering dimensions generated by the
above two covering functions respectively. First, if we define the lower Cantor
dimension and the upper Cantor dimension of a deranged Cantor set F by
dimC(F ) = sup{s > 0 : hs(F ) = ∞} and dimC(F ) = sup{s > 0 : Qs(F ) =
∞}, we see that

0 < lim inf
n→∞

sn ≤ dimC(F ) ≤ dimC(F ) ≤ lim sup
n→∞

Sn < 1,

where sn = minσ∈{1,2}n sσ, Sn = maxσ∈{1,2}n sσ and sσ is the solution of
the equation csσσ,1 + csσσ,2 = 1. We note that there are many examples which
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satisfy the assumption of Theorem 1 essentially but still have gaps between
lim infn→∞ sn and lim supn→∞ Sn. However we observe that in a perturbed
Cantor set [1] for each n sσ = sn = Sn for all σ ∈ {1, 2}n.

Second, we see that dimC(F ) ≤ dimH(F ) ≤ dimp(F ) ≤ dimC(F ) using
arguments similar to those used in the proof of Theorem 1. Similarly we have
the result that if 0 < hs(F ) ≤ Qs(F ) <∞,then 0 < Hs(F ) ≤ ps(F ) <∞.

Corollary 2. In a deranged Cantor set A, let sτ be the solution of the equation
csττ,1 + csττ,2 = 1 for each τ of finite length. Suppose that sσ|k converges to s

as k → ∞ for each σ ∈ {1, 2}N . In a deranged Cantor set B, let tτ be the
solution of the equation ctττ,1 + ctττ,2 = 1 for each τ of finite length. Suppose that

tσ|k converges to t as k → ∞ for each σ ∈ {1, 2}N . Then dimH(A × B) =
dimp(A×B) = s+ t.

Proof. It follows immediately from the fact [5] that if dimH(A) = dimp(A)
and dimH(B) = dimp(B), then dimH(A × B) = dimp(A × B) = dimH(A) +
dimH(B).

Example 3. There is an alternating, strongly convergent deranged Cantor
set having positive and finite s-dimensional Hausdorff and packing measure
where s is the limit of the sequence of solutions of the power equations. (To
be precise, for each σ ∈ {1, 2}N , {sσ|k − s}∞k alternates and |sσ|k − s| ↓ 0.)

Proof. It is easy to show that there exist 0 < B1 < B2 <∞ such that

B1 < (cs1 + cs2)(csσ|1,1 + csσ|1,2)(csσ|2,1 + csσ|2,2) · · · (csσ|k,1 + csσ|k,2) < B2

for all σ and k. In the proof of Theorem 1, using the above facts, for all x ∈ F
we get

0 <
αsσ
B2
≤ lim inf

r→0

λ(Br(x))

rs
≤ lim sup

r→0

λ(Br(x))

rs
≤ 1

α2s
σ B1

<∞

where λ is the Borel measure on F generated from the set function

λ(Iτ ) =
|Iτ |s

(cs1+ cs2)(csi1,1 + csi1,2) · · · (csi1,i2,··· ,ik−1,1
+ csi1,i2,··· ,ik−1,2

)

for each τ = i1, i2, · · · , ik−1, ik, where ij ∈ {1, 2}.

Example 4. If {sσ|k} converges so fast to s for each σ (To be precise, assume∑∞
k=0 | log(csσ|k,1 + csσ|k,2)| converges for each σ and their limits are bounded.),

the deranged Cantor set has positive and finite s-dimensional Hausdorff and
packing measure.
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Proof. The example can be produced by using arguments similar to those
used in Example 3.

Remark. In this paper, we only considered a construction of left subinterval
Iτ,1 and the right subinterval Iτ,2 of Iτ deleting a middle open subinterval of
Iτ inductively for each τ ∈ {1, 2}n, where n = 0, 1, 2, · · · . However we could
obtain the same result in a deranged Cantor set from the construction that
the left and right subintervals are just contained in the fundamental interval
with its contracting ratios uniformly bounded away from 0 and separated by
the gap ratios also uniformly bounded away from 0. In this case we need the
same arguments of this paper to show it.
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