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κ-to-1 DARBOUX-LIKE FUNCTIONS

Abstract

We examine the existence of κ-to-1 functions f : R → R in the class of
continuous functions, Darboux functions, functions with perfect roads,
and functions with the Cantor intermediate value property. In this set-
ting κ denotes a cardinal number (finite or infinite). We also consider
different variations on this theme.

1 Continuous and Darboux Functions

We will use the standard terminology and notation as in [4]. In particular,
ordinal numbers, will be identified with the set of their predecessors and car-
dinal numbers with the initial ordinals. Thus the first infinite cardinal ω is
identified with the set of natural numbers. We will reserve the letters k and
n for the natural numbers. The cardinality of the set R of real numbers is
denoted by c. The symbol |X| denotes the cardinality of the set X. For a
cardinal κ > 0 we say that a function f : X → Y is κ-to-1 if

∣∣f−1(y)
∣∣ = κ for

every y ∈ Y . Similarly we define ≤κ-to-1 and <κ-to-1 functions. We will use
the terms countable-to-1 and finite-to-1 for functions that are ≤ω-to-1 and

Key Words: k-to-1 functions, Darboux functions, perfect road, intermediate value
property.

Mathematical Reviews subject classification: Primary 26A15.
Received by the editors March 3, 1998

∗The work of the first and the third author was partially supported by NSF Cooperative
Research Grant INT-9600548 with its Polish part financed by Polish Academy of Science
PAN. The results were obtained during a visit of the third author at Columbus State Uni-
versity and West Virginia University.

The first author was also supported by 1996/97 West Virginia University Senate Research
Grant.

Papers authored or co-authored by a Contributing Editor are managed by a Managing
Editor or one of the other Contributing Editors.

671



672 K. Ciesielski, R. Gibson and T. Natkaniec

<ω-to-1, respectively. A function f : R→ R is Darboux if it has the interme-
diate value property; that is, if the image f [J ] of every connected subset J
of the domain (i.e., an interval) is connected in the range. The last property
serves also as a general definition of a Darboux function from a topological
space X into a topological space Y .

The notion of an n-to-1 function was introduced by O. G. Harrold, Jr. in
1939 in the paper [11] where he showed that there does not exist a continuous
2-to-1 function carrying an arc into an arc or a circle. Following this paper a
sequence of papers appeared in the early 1940’s which studied the existence
of n-to-1 continuous functions defined on various classes of continua, [6], [9],
and [17]. More recent relevant papers were published in the 1980’s and among
those are [12], [13], and [16].

In 1922 D. C. Gillespie stated in the Bulletin of the American Math. Soc.
[10] that a function having the intermediate value property will be continuous
unless the set of values it assumes an infinite number of times fills at least one
interval. This fact is well-known and follows from the following proposition.

Proposition 1.1. [3, thm 5.2] If f : R → R is Darboux and all level sets
f−1(y) of f are closed, then f is continuous.

As a consequence of those results we see that the question

For which k < ω does there exist a k-to-1 Darboux function? (1)

is equivalent to the following

For which k < ω does there exist a k-to-1 continuous function? (2)

Our first result is the following proposition, that is probably known.

Proposition 1.2. The following conditions are equivalent for n < ω.

(i) There exists a continuous function f : R→ R that is n-to-1.

(ii) There exist a set Y ⊂ R and a continuous function f : R → Y that is
n-to-1.

(iii) n is odd.

Proof. The implication (i)⇒(ii) is obvious.
(ii)⇒(iii) Suppose that f : R → Y is a continuous n-to-1 function and,

by way of contradiction, assume that n is even, say n = 2k. Clearly n > 0.
Fix a y0 ∈ Y and the points x1 < x2 < · · · < xn such that f(xi) = y0 for
i = 1, 2, . . . , n.
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For each m = 1, . . . , n − 1 let Im = [xm, xm+1]. So, we have a partition
of [x1, xn] onto 2k − 1 intervals Im such that for each m either f |Im ≥ y0 or
f |Im ≤ y0. We will suppose that the set M = {m : f |Im ≥ y0} has at least k
elements, since the case when |{m : f |Im ≤ y0}| ≥ k is essentially the same.
Put hm = max f |Im and h = min{hm : m ∈ M}. Then h > y0 and for each
y ∈ (y0, h) and m ∈M the set f−1(y) ∩ Im has at least 2 points. So

(x1, xn) ∩ f−1(y) has at least 2|M | ≥ 2k points for every y ∈ (y0, h). (3)

Since |f−1(y)| = n = 2k for every y, we conclude that M has exactly k
elements. Moreover, (3) implies that

{x : f(x) > y0} ⊂
⋃
m∈M

Im ⊂ [x1, xn].

Thus, if ym = max f |[x1, xn], then all n elements of f−1(ym) belong to (x1, xn)
and are local maxima. Therefore, for every y < ym which is close enough to
ym the set f−1(y) has at least 2n elements, a contradiction.

(iii)⇒(i) Assume that n is odd. If n = 1 we put f(x) = x. For n > 1
let f be the function defined by the formula f(x) = x + n dist(x,Z) where
dist(x,Z) denotes the distance between x and the set Z of integers. It is easy
to observe that f−1(y) has n elements for each y ∈ R.

Corollary 1.3. The following conditions are equivalent.

(i) There exists a continuous κ-to-1 function f : R→ R.

(ii) There exist a set Y ⊂ R and a continuous function f : R → Y that is
κ-to-1.

(iii) κ ∈ {c, ω} ∪ {2k + 1: k < ω}.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii) Since f−1(y) is a closed subset of R for any continuous function

f , we see that κ ∈ {c, ω} ∪ ω. But if κ ∈ ω, then κ cannot be an even number
by Proposition 1.2.

(iii)⇒(i) For an odd number κ ∈ ω the existence of f follows from Propo-
sition 1.2. For κ = ω it is enough to take f(x) = x sinx. So assume that κ =c
and let f0 : [0, 1]→ [0, 1] be such that f0(0) = 0, f0(1) = 1, and |f−10 (y)| =c for
each y ∈ [0, 1]. An example of such a function is given in Bruckner’s book [2,
pp. 148–150]. Then f : R → R defined by f(x) = E(x) + f0(x − E(x)) is
continuous and c-to-1, where E(x) denotes the integer part of x.

Corollary 1.3 gives the full answer for questions (1) and (2). However, the
following more general problem might be also of interest.



674 K. Ciesielski, R. Gibson and T. Natkaniec

Problem 1.1. For which maps j : R→ {c, ω}∪ω does there exist a continuous
function fj : R→ R such that

∣∣f−1j (y)
∣∣ = j(y) for every y ∈ R?

To investigate this problem we will use the following terminology. For a
map j : R → c ∪ {c} we say that a function f : X → R is j-to-1 provided
|f−1(y)| = |j(y)| for every y ∈ R. Corollary 1.3 answers the above question
for constant maps j. Some light on the general version of Problem 1.1 is shed
by the following fact.

Proposition 1.4. Let f : R → R be a Darboux function, y ∈ R, and κ =∣∣f−1(y)
∣∣. If κ < ω and Bκ = {z ∈ R :

∣∣f−1(z)
∣∣ ≥ κ}, then there exists an

ε > 0 such that either (y − ε, y] ⊂ Bκ or [y, y + ε) ⊂ Bκ. In particular, Bκ is
an Fσ-set for each κ < ω.

Proof. Let X = f−1(y) and choose a positive δ such that the intervals
{[x − δ, x + δ]}x∈X are pairwise disjoint. Let X∗ =

⋃
x∈X{x − δ, x + δ} and

put X+ = {x ∈ X∗ : f(x) > y} and X− = {x ∈ X∗ : f(x) < y}. Then at least
one of the sets X+ and X− has at least κ elements. Assume that |X+| ≥ κ
and let y1 = min{f(x) : x ∈ X+}. Then y1 > y and [y, y1] ⊂ Bκ. The case for
|X−| ≥ κ is similar.

Now, the set Bκ is Fσ since it is a countable union of nontrivial intervals;
the components of Bκ.

For continuous finite-to-1 functions we have a full answer to Problem 1.1.
It is a consequence of the following improvement of Proposition 1.4.

Proposition 1.5. Let f be a finite-to-1 continuous function from R onto R
and for k < ω let Bk = {z ∈ R :

∣∣f−1(z)
∣∣ ≥ k}. Then for all k, l ∈ ω with

l ≤ 2k+ 1 and y ∈ R \ intBl with k =
∣∣f−1(y)

∣∣ there exists an ε > 0 such that
either (y − ε, y) ⊂ Bt or (y, y + ε) ⊂ Bt, where t = 2k − l + 1 if l is even and
t = 2k − l + 2 if l is odd.

Proof. Suppose that j(y) =
∣∣f−1(y)

∣∣ = k and

there exists a sequence yn ↘ y with j(yn) ≤ l − 1. (4)

Note that since f is finite-to-1 and onto R, we have either

lim
x→−∞

f(x) = −∞ and lim
x→∞

f(x) =∞

or
lim

x→−∞
f(x) =∞ and lim

x→∞
f(x) = −∞.

Now f−1(y) partitions R into k + 1 open intervals J0, . . . , Jk of which
k − 1, say J1, . . . , Jk−1, are bounded. Also, for every j ∈ {0, . . . , k} we have
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either f |Jj > y or f |Jj < y. Moreover, by the above limit consideration,
either f |J0 > y or f |Jk > y. Consequently, by condition (4), the set M ⊂
{1, . . . , k − 1} of all i for which f |Ji > y has at most E((l − 2)/2) elements.
Thus N = {1, . . . , k − 1} \M has at least k − 1− E((l − 2)/2) elements. Let
ε > 0 be such that min f |Ji < y− ε for every i ∈ N . Then every value z from
(y − ε, y) is taken at least twice on each interval Ji with i ∈ N . Moreover,
such a value is in at least one of the unbounded intervals by the above limit
consideration. Thus, |f−1(z)| ≥ 2k− 2− 2E((l− 2)/2) + 1. Finally, note that
2k − 2− 2E((l − 2)/2) + 1 is equal to 2k − l + 1 if l is even and it is equal to
2k − l + 2 if l is odd.

Corollary 1.6. Let f be a finite-to-1 continuous function from R onto R.
Then for every even k ∈ ω and y ∈ R with k =

∣∣f−1(y)
∣∣ (that is y ∈ Bk\Bk+1)

there exists an ε > 0 such that either (y − ε, y) ⊂ Bk+1 or (y, y + ε) ⊂ Bk+1.
In particular, for every n ∈ ω the set B2n \B2n+1 has an empty interior.

Proof. This is a consequence of Proposition 1.5 with l = k + 1. Indeed,
suppose that k is even. For every y ∈ Bk \Bk+1, either y ∈ int(Bk+1) or y is
an end-point of some interval contained in Bk+1.

Corollary 1.7. Let f be a finite-to-1 continuous function from R onto R. If
|f−1(y)| = 2k + 1 and y /∈ intB2k+1, then there exists an ε > 0 such that
either (y − ε, y) ⊂ B2k+3 or (y, y + ε) ⊂ B2k+3.

Proof. Consider Proposition 1.5 with l = 2k + 1.

Theorem 1.8. Let j : R → {1, 2, 3, . . .}. The following conditions are equiv-
alent.

(a) There exists a continuous j-to-1 function f : R→ R.

(b) For every k ∈ ω

(i) Ck = j−1({k, k+ 1, k+ 2, . . .}) is a (possibly empty) union of pair-
wise disjoint non-trivial intervals,

(ii) j−1(2k) has an empty interior, and

(iii) if y ∈ j−1(2k+1)\ intC2k+1 then y is an end-point of a component
of intC2k+3.

Proof. (a)⇒(b) Clearly j−1({k, k + 1, . . .}) = {z ∈ R :
∣∣f−1(z)

∣∣ ≥ k} = Bk
and, by Proposition 1.4, the component intervals of Bk are the non-trivial
intervals, proving (i). Conditions (ii) and (iii) follow immediately from Corol-
laries 1.6 and 1.7, respectively.

(b)⇒(a) Let
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• Jk be the family of all components of C2k+1 Jk = {Jk,1, Jk,2, . . .},

• Dk = intC2k+1 =
⋃
{int J : J ∈ Jk},

• E be the set of all endpoints of intervals belonging to some Jk and

• Ek =
⋃
{bd(J) : J ∈ Jk}.

Note that E is countable, E =
⋃
k Ek, and C2k ⊂ Dk∪Ek for each positive

integer k. The desired function f will be defined as a limit of functions fk
from R onto R. We start with f0 being the identity function. Assume that fk
is defined. To construct fk+1 we take an arbitrary interval Jk+1,i from Jk+1

and represent Ĵ = Jk+1,i ∪ (bdJk+1,i ∩ C2k−1) as a union of closed intervals
J1
k+1,i, J

2
k+1,i, J

3
k+1,i, . . . with disjoint interiors. We will assume also that

(α) the length of Jmk+1,i is less than 2−k−1,

(β) the endpoints of the intervals Jmk+1,i are disjoint from E, with the excep-

tion of the endpoints of Ĵ , if they belong to Jmk+1,i,

(γ) if Jnk+1,i ∩ Jmk,j 6= ∅ then Jnk+1,i ⊂ Jmk,j and

(δ) for every m there is an interval Imk+1,i ⊂ f
−1
k (Jmk+1,i) such that fk|Imk+1,i

is linear, fk[Imk+1,i] = Jmk+1,i, and Imk+1,i ⊂ Ink,j whenever Imk+1,i∩Ink,j 6= ∅.

Also, we can order the family of all Jmk+1,i in the type of Z, if Ĵ is open, in

the type of ω (or ω∗) if Ĵ contains only left (right) endpoints, and in a finite
type, when Ĵ contains both endpoints.

The function fk+1 is obtained by modifying fk on every interval Imk+1,i The
modification is obtained by replacing a fk|Imk+1,i by a function with graph of
shape of letter N. (Or its mirror image.)

By (α), the sequence (fk)k is uniformly convergent to a continuous function
f : R→ R.

Observe that for each k ∈ ω and y ∈ R we have

|f−1k (y)| =


|f−1k−1(y)|+ 2 if y ∈ Dk

|f−1k−1(y)|+ 1 if y ∈ Ek ∩ C2k−1

|f−1k−1(y)| otherwise.

(5)

Thus, we easily obtain (by induction) the equations

|f−1k (y)| =


2k + 1 if y ∈ Dk

2k if y ∈ Ek ∩ C2k

2k − 1 if y ∈ Ek ∩ (C2k−1 \ C2k)
|f−1k−1(y)| otherwise.

(6)
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Note also the following properties of the sequence (fk)k.

If k < n and y ∈ R then |f−1k (y)| ≤ |f−1n (y)|. (7)

If x 6∈
⋃
m

⋃
i

Imk,i then fk(x) = fk−1(x). (8)

Statement (7) and condition (δ) imply that for each x ∈ R there is a k0
with x ∈

⋃
m

⋃
i I
m
k0,i
\
⋃
k>k0

⋃
m

⋃
i I
m
k,i. Thus, by (8),

for each x ∈ R there is k0 ∈ ω such that fk(x) = fk0(x) for k > k0. (9)

Moreover,

if y ∈
⋃
m

⋃
i

Jmk0,i \
⋃
k>k0

⋃
m

⋃
i

Jmk,i then f−1(y) = f−1k0 (y); (10)

so f is finite-to-1. We will verify that f is j-to-1. Assume that y ∈ Ck and
consider two cases. If k is odd, say k = 2k0+1 then, by (6), |f−1k0+1(y)| ≥ 2k0+1,

and, by (7), |f−1k (y)| ≥ 2k0 + 1 for all k > k0 so, by (10), |f−1(y)| ≥ 2k0 + 1.
Similarly, if k is even, say k = 2k0, then |f−1k0 (y)| ≥ 2k0; so |f−1(y)| ≥ 2k0.
Therefore,

(∀k ∈ ω) Ck ⊂ {y ∈ R : |f−1(y)| ≥ k}. (11)

Now suppose that y 6∈ Ck. Then for k0 = E(k2 ) we have |f−1k0 (y)| < 2k0 ≤ k

and y 6∈
⋃
m

⋃
i J

m
k0,i

. Thus (10) implies |f−1(y)| = |f−1k0 (y)| < k. Hence

(∀k ∈ ω) {y ∈ R : |f−1(y)| ≥ k} ⊂ Ck. (12)

Finally, by (11) and (12) we obtain the statement

(∀k ∈ ω) Ck = {y ∈ R : |f−1(y)| ≥ k}.

Thus f is j-to-1.

Proposition 1.4 also yields the following result on Darboux countable-to-1
functions.

Corollary 1.9. If a Darboux function f : R→ R is countable-to-1 and j : R→
ω ∪ {ω} is defined by j(y) = |f−1(y)| then j is Borel measurable.

Note that in Corollary 1.9 the assumption that f is countable-to-1 is es-
sential. This is even the case when f is continuous, since there is a continuous
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function f : R → R for which the set Ac = {y : |f−1(y)| = c} is analytic non-
Borel. This follows from the fact that the set

A =
{
x ∈ 2ω :

∣∣pr−11 (x)
∣∣ =c

}
= ϕ−1({C ∈ K(2ω) : |C| > ω})

is analytic non-Borel, where ϕ is a homeomorphism between 2ω and the space
K(2ω) of all non-empty compact subsets of 2ω (with the Hausdorff metric)
and pr1 is the projection of the graph of ϕ onto the first coordinate. This is
a consequence of a theorem of Hurewicz that the set {C ∈ K(2ω) : |C| > ω}
is analytic non-Borel. (See [14, thm 27.5, p. 210]. This fact was pointed out
to the authors by S. Solecki.) On the other hand for continuous f the sets
Aκ = {z ∈ R :

∣∣f−1(z)
∣∣ = κ} are not too bad; they all are Borel for κ ∈ ω

(This follows from Proposition 1.4.) and analytic for κ = c. Indeed, from
the Mazurkiewicz-Sierpiński theorem it follows that Ac is analytic. (See e.g.
[15, thm 3, p. 496], or [14, thm 29.19, p. 231].) Consequently, the set Aω
must be co-analytic. Moreover, if Ac is non-Borel, then Aω is non-Borel (so
non-analytic), too.

Note that the results above follow also for Borel functions with the Dar-
boux property. Nothing good, though, can be said of the set Bc for a general
Darboux function f : R→ R, as follows for the next proposition.

Proposition 1.10. For every set Z ⊂ R there exists a Darboux function
f : R→ R with Z = {y : |f−1(y)| =c}.

Proof. Let {Aξ : ξ <c} be a partition of R into countable dense sets. Take
an h : c → R such that |h−1(z)| = c for z ∈ Z and |h−1(z)| = 1 for z /∈ Z.
Define f by putting f(x) = h(ξ) for every x ∈ Aξ and ξ < c. Then f satisfies
the conclusion.

Note also that the main part of Proposition 1.4 is false for an infinite κ.

Remark 1.1. For κ ∈ {ω,c} there exists a continuous ≤κ-to-1 function f
from R onto R for which Bκ = {0}. Moreover, for every countable set B ⊂ R
there exists a continuous function f from R onto R with the property that
B = {z ∈ R :

∣∣f−1(z)
∣∣ =c}.

Proof. First assume that κ = ω and define f by putting f(0) = 0 and
f(x) = x2 sin(x−1) for x 6= 0. Then f has the desired properties.

For κ =c first fix a perfect set P and a < b such that P ⊂ [a, b] ⊂ (0, 1) and
let g : [a, b]→ R be such that g(x) = dist(x, P ) is the distance between x and
P . Now it is easy to find an extension f from R onto R for which Bc = {0}.

To see the additional part let B = {bn : n < ω} and define f0 on a set
K =

⋃
n<ω(n+ [a, b]) by putting

f0(n+ x) = bn + g(x) for every n < ω and x ∈ [a, b].
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Extend f0 to f from R onto R such that f is linear on each of the intervals
[n+ b, (n+ 1) + a] and f |(−∞, a] is ω-to-1 and onto R. It is easy to see that
B = {z ∈ R :

∣∣f−1(z)
∣∣ =c}.

In the remainder of this section we consider the analogous problems for
continuous functions from Rn or [0, 1]n into R and from [0, 1] into R. See [6],
[11], [12], [13], [16] and [17]. J. H. Roberts in [17], proved that there does
not exist a continuous 2-to-1 function defined on a closed 2-cell but left open
the case for arbitrary n-cells. Paul Civin in [6], proved that there does not
exist a continuous 2-to-1 function defined on a closed 3-cell and stated that
it can easily be demonstrated that a continuous function defined on R is not
2-to-1. However, Civin noted that for Rn with n equal to 2 or 3 this question
is unknown.

We will start with the following easy remark.

Proposition 1.11. Let n > 1 and X = Rn or X = [0, 1]n. If f : X → R is
Darboux then f [X] is an interval and for every interior point y of f [X] the
set f−1(y) has cardinality c.

Proof. f [X] is an interval since X it is connected. To see the other part
take an interior point y of f [X]. Then the set X \ f−1(y) disconnects X since
f [X \ f−1(y)] ⊂ f [X] \ {y}. Thus f−1(y) has cardinality c.

Remark 1.2. Proposition 1.11 remains true for an arbitrary Darboux func-
tion f : X → R provided X cannot be disconnected by any set of cardinality
less than c.

Corollary 1.12. Let n > 1 and j : R→ c ∪ {c}. The following conditions are
equivalent.

(i) There exists a continuous nonconstant j-to-1 function f : [0, 1]n → R.

(ii) There are −∞ < a < b < ∞ such that j|(a, b) = c, j|R \ [a, b] = 0 and
|j(a)|, |j(b)| ∈ {ω,c} ∪ ω \ {0}.

Proof. (i)⇒(ii) The range of f is a closed interval [a, b] by Proposition 1.11
and compactness of [0, 1]n. Then, again by Proposition 1.11, we have also
j|(a, b) = c, while for d ∈ {a, b} we have |j(d)| ∈ {ω,c} ∪ ω \ {0} since f−1(d)
is a non-empty closed subset of Rn and |j(d)| = |f−1(d)|.

(ii)⇒(i) Let A and B be closed subsets of [0, 1]n with distance d > 1 and
such that |j(a)| = |A| and |j(b)| = |B|. For C ∈ {A,B} define FC = {x ∈
[0, 1]n : dist(x,C) ≤ .5}, where dist(x,C) is the distance of x to C. Then
dist(FA, FB) = d− 1 > 0. For x ∈ FA define g(x) = dist(x,A) ∈ [0, .5] and for
x ∈ FB put g(x) = d− dist(x,B) ∈ [d− .5, d]. Then, by the Tietze Extension
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Theorem, we can extend g continuously onto [0, 1]n such that it assumes on
[0, 1]n\(FB∪FB) only the values from [.5, d−.5]. Now if h is a homeomorphism
between [0, d] and [a, b] then f = h ◦ g has the desired properties.

A slight modification of the above argument gives also the following char-
acterization.

Corollary 1.13. Let n > 1 and j : R→ c ∪ {c}. The following conditions are
equivalent.

(i) There exists a continuous nonconstant j-to-1 function f : Rn → R.

(ii) There are −∞ ≤ a < b ≤ ∞ such that j|(a, b) ≡ c, j|R \ [a, b] ≡ 0, and
|j(c)| ∈ {ω,c} ∪ ω for c ∈ {a, b} ∩ R.

The corresponding characterization of Darboux functions is slightly differ-
ent.

Corollary 1.14. Let n > 1 and j : R→ c ∪ {c}. The following conditions are
equivalent.

(i) There exists a Darboux nonconstant j-to-1 function f : Rn → R.

(ii) There are −∞ ≤ a < b ≤ ∞ such that j|(a, b) =c and j|R \ [a, b] = 0.

Proof. (i)⇒(ii) This follows immediately from Proposition 1.11.
(ii)⇒(i) Let a and b be as in (ii). Recall that every connectivity function

f : Rn → R, with n > 1, is Darboux. (See [8].) In [5] there has been con-
structed a connectivity function g : Rn → R such that for some dense Gδ set
G ⊂ Rn any modification of g on G results still a connectivity function. Now,
if h is a homeomorphism from R onto (a, b) then f0 = h ◦ g has a property
that a function f : Rn → [a, b] is connectivity provided f which agrees with f0
outside of G. (Compare also [18, thm. 1].) Now, take disjoint sets A,B ⊂ G
such that |j(a)| = |A| and |j(b)| = |B|. Define f(x) = a for x ∈ A, f(x) = b
for x ∈ B, and f(x) = f0(x) for x ∈ Rn \ (A ∪B). Then f is connectivity; so
Darboux, and it has all other required properties.

In the remainder of this section we will consider functions f : [0, 1]→ R.

Proposition 1.15. Assume that n > 1. There is no continuous function
f : [0, 1]→ R which is n-to-1.

Proof. For n = 2 it is easy and well-known. (See [11] and [16].) Suppose
that n > 2. Let y1 = maxx∈[0,1] f(x) and let f−1(y1) = {x1, . . . , xn} where
x1 < · · · < xn. Now, if y0 = max{min f |[xi, xi+1] : i = 1, . . . , n − 1} then for
each y ∈ (y0, y1), f−1(y) has at least 2(n− 1) > n points, a contradiction.
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Following Theorem 5.2 in [3], Bruckner and Ceder stated that there exists
a continuous function defined on [0, 1] such that each value between 0 and 1
is taken on infinitely often. Such a function can be constructed by suitably
modifying the well-known Cantor function on its intervals of constancy. For
completeness we will include such a construction in the following proposition.

Proposition 1.16. If κ ∈ {ω,c} then there is a continuous function f : [0, 1]→
[0, 1] such that |f−1(y)| = κ for each y ∈ [0, 1].

Proof. An example of a continuous function f : [0, 1] → [0, 1] such that
|f−1(y)| = c for each y ∈ [0, 1] can be found in Bruckner’s book [2, pp. 148–
150].

Thus assume that κ = ω and define function g : R → R by a formula
g(x) = (x2 + 1)−1 sinx Notice that limx→−∞ g(x) = limx→∞ g(x) = 0. In
particular, g takes value 0 infinitely many times and all other values only
finitely many times. Let C ⊂ I be the Cantor ternary set, i.e.,

C =

{ ∞∑
i=1

ki
3i

: ki ∈ {0, 2} for every i = 1, 2, . . .

}

and let f0 be the Cantor function from C onto [0, 1]; that is, given by a formula
f0(
∑∞
i=1

ki
3i ) =

∑∞
i=1

ki
2i+1 . Thus f0 is continuous, increasing and if I = (a, b)

is a component of [0, 1] \ C then f0(a) = f0(b). Extend f0 to f by putting on
any such interval f(x) = f0(a) + (b − a)g(hI(x)), where hI is an increasing
homeomorphism from I = (a, b) onto R. It is easy to see that f is continuous
and ω-to-1.

Corollary 1.17. Let κ ≤ c be a cardinal number. The following conditions
are equivalent.

(i) There exists a continuous nonconstant κ-to-1 function f : [0, 1]→ [0, 1].

(ii) κ ∈ {ω,c}.

2 Perfect Road Functions

Recall that a function f : R → R has a perfect road at x ∈ R if there exists a
perfect set P ⊂ R having x as a bilateral limit point for which the restriction
f |P of f to P is continuous at x. The function f : R→ R has the perfect road
property if it has a perfect road at each point x ∈ R. (See, e.g., [8].)

Theorem 2.1. For every function j : R → c ∪ {c} \ {0} there exists a j-to-1
function fj : R→ R with the perfect road property.
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Proof. Let {〈In, Jn〉 : n < ω} be a one-to-one enumeration of all sets of the
form (p, q)× (r, s), where p, q, r, s are rationals, p < q, and r < s. Inductively
choose the sequences {Pn : n < ω} and {Qn : n < ω} of pairwise disjoint
perfect nowhere dense sets such that Pn ⊂ In and Qn ⊂ Jn for every n < ω.

Let g :
⋃
n<ω Pn →

⋃
n<ω Qn be a function such that g|Pn is a homeomor-

phism between Pn and Qn for every n < ω. Notice that

every extension f : R→ R of g has the perfect road property. (13)

Indeed, to show that f has a perfect road from the left at a point x ∈ R find a
sequence {nj}j<ω such that Inj < Ink

and Jnj < Jnk
for every j < k < ω and

that limj→∞ Inj
= x and limj→∞ Jnj

= f(x). Then f
∣∣∣({x} ∪⋃j<ω Pnj

)
is

continuous at x. The right hand side perfect road at x can be found similarly,
proving (13).

To find an appropriate extension fj of g note that G = R \
⋃
n<ω Pn

has cardinality c. Thus there exists a partition {Xy : y ∈ R} of G such that
|Xy| = |j(y)| if y /∈

⋃
n<ω Qn and |Xy| = |j(y)| − 1 for y ∈

⋃
n<ω Qn. Finally

put

fj(x) =

{
g(x) for x ∈

⋃
n<ω Pn

y for x ∈ Xy and y ∈ R.

It is easy to observe that fj has the desired properties.

Next we will consider a question for which functions j : R → c ∪ {c} a
function fj as in Theorem 2.1 can be Borel measurable. Clearly, if f : R→ R
is a Borel onto function then the function jf : R → c ∪ {c} defined by jf (y) =
|f−1(y)| must be “nice.” In particular, jf : R → K0 = (ω \ {0}) ∪ {ω,c}. In
the following theorems we shall consider K0 as the topological space with the
discrete topology.

Theorem 2.2. If j : R → K0 is a Borel function then there exists a Borel
j-to-1 function fj : R→ R with the perfect road property.

Proof. Let g :
⋃
n<ω Pn →

⋃
n<ω Qn satisfy the condition (13). Note that

̂ : R → ω ∪ {ω,c} given by ̂(y) = j(y) if y /∈
⋃
n<ω Qn and ̂(y) = j(y) − 1

if y ∈
⋃
n<ω Qn is Borel as well. Partition G = R \

⋃
n<ω Pn into Borel sets

{Bκ : κ ∈ K0} such that |Bκ| = κ⊗ |̂−1(κ)| for every κ ∈ K0. We claim that

for every κ ∈ K0 there is a κ-to-1 Borel function fκ : Bκ → ̂−1(κ). (14)

First note that (14) immediately implies the theorem, since then fj : R→ R
defined by

fj(x) =

{
g(x) for x ∈

⋃
n<ω Pn

fκ(x) for x ∈ Bκ and κ ∈ K0
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clearly has the desired properties.
To prove (14) we will consider three cases.
If κ < c, then partition Bκ into Borel sets {Biκ : i < κ} each of cardinality

|̂−1(κ)| and for every i < κ define fκ on Biκ as a Borel isomorphism between
Biκ and ̂−1(κ). (Recall that any two Borel sets of the same size are Borel
isomorphic. See, e.g., [15, p. 451] or [14, thm 15.6, p. 90].)

If κ = c and λ = |̂−1(c)| < c then λ ≤ ω. Partition Bc onto λ Borel sets
{Byc : y ∈ ̂−1(c)} each of cardinality c and define fc(x) = y for x ∈ Byc .

If κ = ̂−1(c) = c then define fc as a c-to-1 Borel function from Bc onto
̂−1(c). Such an fc can be constructed as follows. Let N denote the space
of all irrationals. Let ϕ be a Borel isomorphism between Bc and N × N ,
ϕ = (ϕ1, ϕ2), and let ψ be a Borel isomorphism between N and ̂−1(c). Define
fc = ψ ◦ ϕ1. Then fc is c-to-1 and Borel measurable.

We finish this section with the following remark.

Proposition 2.3. Assume that f : R→ R is Borel measurable. Then

(i) the set j−1f (c) is analytic and

(ii) the set j−1f (1) can be co-analytic and non-Borel.

Proof. The statement (i) is a consequence of the Mazurkiewicz-Sierpiński
theorem (see [14, thm 29.19, p. 231]), because the graph of a Borel measurable
function from R into R is a Borel subset of R2. (See [14, thm. 14.12, p. 88].)

To prove (ii) fix an analytic non-Borel set A ⊂ R. (Such sets exist by
the Suslin theorem [14, thm. 14.2, p. 85].) There exists a continuous function
h : N → R with h[N ] = A. (See [14, p. 85].) Let ϕ : N → N × 2 be a
homeomorphism, ϕ = 〈ϕ0, ϕ1〉, and let Ni = ϕ−11 (i) for i = 0, 1. Observe
that f0 : N0 → R defined by f0(x) = h(ϕ0(x)) is continuous and f0[N0] = A.
Let f1 : R \ N0 → R be a Borel isomorphism. (See the isomorphism theorem
[14, thm 15.6, p. 90].) Put f = f0 ∪ f1. Then f is Borel measurable and
j−1f (1) = R\A. Thus j−1f is co-analytic and, by the Lusin Separation Theorem
[14, thm 14.7, p. 87], it is non-Borel.

3 CIVP Functions

Recall the following definitions that are introduced in [7] and [19], respectively.
(See also [8].)

• f : R → R has the Cantor intermediate value property (CIVP), if for
every x, y ∈ R and for each Cantor set K between f(x) and f(y) there
is a Cantor set C between x and y such that f [C] ⊂ K.
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• f : R → R has the strong Cantor intermediate value property (SCIVP),
if for every x, y ∈ R and for each Cantor set K between f(x) and f(y)
there is a Cantor set C between x and y such that f [C] ⊂ K and f |C is
continuous.

The notion Cantor set means a perfect nowhere dense set. Note that in the
definitions above the Cantor sets can be replaced by perfect sets.

Theorem 3.1. For every function j : R → c ∪ {c} \ {0} there exists a j-to-1
function fj : R→ R with CIVP.1

Proof. Let P be a family of pairwise disjoint perfect subsets of R such
that |R \

⋃
P| = c and |{P ∈ P : P ⊂ (a, b)}| = c for any a < b. Take an

enumeration {〈Uξ, Qξ〉 : ξ <c} of {(a, b) : a < b} × {Q ⊂ R : Q is perfect}.
For every ξ < c choose Pξ ∈ P such that Pξ ⊂ Uξ and Pξ 6= Pη for ξ 6= η.

Finally, partition R into Bernstein sets {Bξ : ξ ≤ c} and define a function
f0 :

⋃
ξ<c Pξ → R such that for every ξ < c the restriction f0|Pξ is a bijection

between Pξ and Bξ ∩ Qξ. Then f0 is one-to-one, since sets Bξ are pairwise
disjoint. Notice that

any extension f : R→ R of f0 has the CIVP. (15)

Indeed, fix a < b such that f(a) 6= f(b) and a perfect set K between f(a) and
f(b). There exists ξ < c such that (a, b) = Uξ and K = Qξ. Then Pξ is a
perfect set between a and b and f [Pξ] ⊂ K.

To finish the proof let G = R \
⋃
ξ<c Pξ and Z = R \ f0[

⋃
ξ<c Pξ]. Observe

that |G| = |Z| = c because R \
⋃
P ⊂ G and Bc ⊂ Z. Partition G into sets

{Xy : y ∈ R} such that |Xy| = |j(y)| for y ∈ Z and |Xy| = |j(y)| − 1 for
y ∈ R \Z. Finally, it is easy to verify that the function fj : R→ R defined by

fj(x) =

{
f0(x) for x ∈

⋃
ξ<c Pξ

y for x ∈ Xy and y ∈ R

satisfies all assertions of the theorem.

It seems to be reasonable to ask whether fj in Theorem 3.1 can be Borel
if j : R → K0 is Borel. However it is easy to see that if a Borel function
f : R → R has the CIVP, then it has also the SCIVP. (See e.g., [8, p. 500].)
The case of SCIVP functions will be covered in the next section.

1Although Theorem 3.1 implies Theorem 2.1, their proofs are different and we used the
proof of Theorem 2.1 in Theorem 2.2.
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4 SCIVP Functions

The analog of Theorem 3.1 does not hold. This follows from the following
analog of Proposition 1.1.

Theorem 4.1. Let f : R→ R be a countable-to-1 SCIVP function. If f−1(y)
is closed for every y ∈ R then f is continuous.

Proof. Suppose that f is discontinuous at some x ∈ R from the right. We
can assume that lim suph→0+f(x + h) = L > f(x). Choose M ∈ (f(x), L),
m ∈ (f(x),M), and x0 ∈ (x, x+ 1) such that f(x0) > M . Let Q0 ⊂ (m,M) ⊂
(f(x), f(x0)) be perfect. By SCIVP there exists a perfect set P0 ⊂ (x, x0) such
that f |P0 is continuous and f [P0] ⊂ Q0. Observe that |f [P0]| = c; so we can
choose a perfect subset Q1 of f [P0] ⊂ Q0. Next find x1 ∈ (x, x+1/2) such that
(x, x1) ∩ P0 = ∅ and f(x1) > M . Then Q1 ⊂ Q0 ⊂ (m,M) ⊂ (f(x), f(x1)).
Thus, by SCIVP we can find perfect sets P1 ⊂ (x, x1) and Q2 ⊂ f [P1] ⊂ Q1.
In this way for every n < ω, n > 0, we define by induction

• xn ∈ (x, x+ 1/(n+ 1)) such that (x, xn) ∩ Pn−1 = ∅ and f(xn) > M ,

• perfect sets Pn ⊂ (x, xn) and Qn ⊂ f [Pn] ⊂ Qn−1 ⊂ (m,M).

Let y ∈
⋂
n<ω Qn. Then f−1(y) ∩ Pn 6= ∅ for every n; so x belongs to the

closure of f−1(y). But x /∈ f−1(y), since f(x) < m < y, a contradiction.

Corollary 4.2. If f : R→ R is SCIVP and finite-to-1 then it is continuous.

Clearly there exist discontinuous SCIVP functions which are ω-to-1. For
example, the function

f(x) =

{
sin(1/x) for x 6= 0
0 for x = 0

has this property.

Proposition 4.3. There exists an ω-to-1 SCIVP function f : R → R that is
nowhere continuous.

Proof. Let 〈Pn〉n be a sequence of pairwise disjoint nowhere dense perfect
sets such that every non-degenerate interval contains some Pn. For every n
let P̂n = Pn \ {min(Pn),max(Pn)} and let fn be a continuous non-decreasing
Cantor-like function from P̂n onto R that is ≤ 2-to-1. Moreover, let g be an
injection from R \

⋃
n P̂n onto R. Put f = g ∪

⋃
n fn. Then

• f maps intervals onto the whole real line; so it is nowhere continuous,
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• f is ω-to-one, and

• f has SCIVP. Indeed, let a < b, K ⊂ (f(a), f(b)) be a perfect set, and
Pn ⊂ (a, b). Then there exists a perfect set C ⊂ Pn with f [C] ⊂ K.

Also, it is well-known that there exist SCIVP functions that are c-to-1.
(Actually there are continuous functions with this property.) Moreover there
exist nowhere continuous SCIVP functions f : R → R that are c-to-1. An
example of such a function can be found in [1]. For the sake of completeness
we will repeat here an easy construction of such a function.

Proposition 4.4. There exists a c-to-1 SCIVP function f : R → R that is
nowhere continuous.

Proof. Let P be a family of pairwise disjoint perfect sets with the property
that |R \

⋃
P| = c and |{P ∈ P : P ⊂ (a, b)}| = c for every a < b. Let

{〈Jξ, rξ〉 : ξ < c} be an enumeration of {(a, b) : a < b} × R. Choose pairwise
disjoint sets Pξ ∈ P such that Pξ ⊂ Jξ for every ξ <c and define f0 on

⋃
ξ<c Pξ

by making f0|Pξ ≡ rξ. It is easy to see that any extension f : R→ R of f0 has
the SCIVP and is nowhere continuous.
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