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CHARACTERIZATIONS OF VBG ∩ (N)

Abstract

We show that V BG∩ (N) is equivalent with Sarkhel and Kar’s class
(PAC)G on an arbitrary real set. Hence V BG ∩ (N) is an algebra on
that set. In Theorem 4, we give three characterizations for V BG ∩ (N)
on an arbitrary real set. It follows that Gordon’s AKN -integral [3] is a
special case of the PD-integral [7] of Sarkhel and De (Remark 3). In
Theorem 3 we obtain the following surprising result: a Lebesgue measur-
able function f is V BG on E if and only if f is V BG on any null subset
of E. We also find seven characterizations of V BG ∩ (N) for Lebesgue
measurable functions (see Theorem 5). For continuous functions on a
closed set, we obtain several characterizations of the class ACG. Using
a different technique, we obtain other characterizations of V BG ∩ (N)
for a Lebesgue measurable function (see Theorem 8).

1 Introduction

The purpose of this paper is to give some characterizations of V BG ∩ (N) on
an arbitrary real set.

In [8], Sarkhel and Kar introduced the class (PAC), showing that it is
contained in [V BG] ∩ (N) and it is an algebra on any real set. Moreover,
(PAC) is equivalent to the class [V BG] ∩ (N) on a closed set. It is clear now
that (PAC)G (generalized (PAC)) is contained in V BG ∩ (N). Surprisingly,
the converse is also true. We show that V BG∩ (N) is equivalent to (PAC)G
on an arbitrary real set. Hence V BG ∩ (N) is an algebra on that set. In fact
in Theorem 4, we give three characterizations for V BG∩ (N) on an arbitrary
real set. It follows that Gordon’s AKN -integral [3] is a special case of the
PD-integral [7] of Sarkhel and De (Remark 3).

In Theorem 3 we obtain the following surprising result: a Lebesgue mea-
surable function f is V BG on a set E if and only if f is V BG on any null
subset of E.
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As a consequence of Theorems 3 and 4, we find seven characterizations of
V BG ∩ (N) for Lebesgue measurable functions (Theorem 5). One of them
asserts that: a Lebesgue measurable function f is V BG ∩ (N) on a set E if
and only if f is V BG ∩ (N) on any null subset of E.

For continuous functions on a compact set, we obtain several characteriza-
tions of the class ACG, such as: a continuous function f is ACG on a compact
set E if and only if f is (PAC)G on any null subset of E (Corollary 4).

In the last two sections, we give five enhancements of V (f ;E) (the ordi-
nary variation of a function f on a set E): ν1f (E), ν2f (E), ν3f (E), ν4f (E) and

ν5f (E). For each of these set-functions we obtain another characterization of
V BG ∩ (N) for a Lebesgue measurable function (see Theorem 8): a Lebesgue
measurable function f : E → R is V BG∩(N) if and only if for every null sub-
set Z of E, there is a sequence {Zn}n whose union is Z, such that νif (Zn) = 0
for each n.

2 Preliminaries

We denote bym∗(X) the outer measure of the setX and bym(A) the Lebesgue
measure of A, whenever A ⊂ R is Lebesgue measurable. For the definitions of
V B, V BG, AC and Lusin’s condition (N), see [5].

Definition 1. Let E be a real compact set, c = inf(E), d = sup(E) and
f : E → R. Let {(ck, dk)}k be the intervals contiguous to E and let

fE : [c, d]→ R, fE(x) =

f(x) if x ∈ E

linear on each [ck, dk] .

Definition 2. ([6]). A sequence {En} of sets whose union is E is called
an E-form with parts En. If, moreover, each part En is closed in E (i.e.,
En = Pn ∩ E, where Pn is a closed set; so Pn = En), then the E-form is said
to be closed. An expanding E-form is called an E-chain.

Definition 3. Let E be a real set and f : E → R.

• f is said to be [V BG] (respectively [ACG]) on E if there is a closed
E-form {En} such that f is V B (respectively AC) on each En.

• f is said to be ACG on E if there is an E-form {En} such that f is AC
on each En. Note that ACG here differs from the definition given in [5],
because f is not supposed to be continuous.

Lemma 1. ([8]). For every closed E-form {En}, there is a closed E-chain
{Qn} such that Qn = ∪k≤nQkn, where Qkn ⊆ Qkm ⊆ Ek for all k and for
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m ≥ n ≥ k, and d(Qin, Qjn) ≥ 1/n for i 6= j. (Here d denotes the usual
metric distance).

3 The Conditions PAC, (PAC), [PAC]

Definition 4. Let Q ⊂ R, f : Q→ R, E ⊆ Q and r > 0. Put

• (Sarkhel, Kar, [8]) V (f ;E; r) = sup{
∑n
i=1 |f(bi)− f(ai)| : {[ai, bi]}mi=1

is a finite set of nonoverlapping closed intervals with the endpoints in E
and

∑m
i=1(bi − ai) < r};

• (Sarkhel, Kar, [8]) V (f ;E; 0) = infr>0 V (f ;E; r);

• (Sarkhel, Kar, [8]) PV (f ;E) = inf{supn V (f ;En; 0) : {En} is an E-
chain};

• [PV ](f ;E) = inf{
∑
n V (f ;En; 0) : {En} is a closed E-form};

• µf (E) = inf{
∑
n V (f ;En; 0) : {En} is an E-form}.

Remark 1. Let E be a real set and f : E → R. Then f is AC on E if and
only if V (f ;E; 0) = 0 ([8], p. 337).

Definition 5. ([8]). Let E be a real set and f : E → R.

• (Sarkhel, Kar, [8]) f is said to be (PAC) on E if PV (f ;E) = 0.

• f is said to be [PAC] on E if [PV ](f ;E) = 0.

• f is said to be PAC on E if µf (E) = 0 (our definition is different from
that of [7]; see Remark 3).

• (Sarkhel, De, [7]) f is said to be (PAC)G on E if there is an E-form
{En} such that f is (PAC) on each En.

• f is said to be [PAC]G on E if there is an E-form {En} such that f is
[PAC] on each En.

Theorem 1 (Sarkhel). ([8]). Let P be a real set, f, g : P → R, E ⊆ P ,
a, b ∈ R. We have each of the following assertions.

(i) PV (af + bg;E) ≤ |a| · PV (f ;E) + |b| · PV (g;E).

(ii) If PV (g;E) = 0, then PV (f + g;E) = PV (f ;E).

(iii) If m∗(E) = 0, then m∗(f(E)) ≤ PV (f ;E).

(iv) If PV (f ;E) < +∞, then f ∈ [V BG] on E.
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(v) PV (f ;E) ≤
∑
n PV (f ;En) whenever {En} is a closed E-form.

(vi) If f, g ∈ (PAC) on E, then f · g ∈ (PAC) on E.

Corollary 1. Let E be a real set and A = {f : E → R : f ∈ (PAC) on E}.
Then A is an algebra.

Proof. See Theorem 1, (i), (vi).

Proposition 1. Let Q be a real set, f : Q→ R and E ⊆ Q. We have:

(i) µf (E) ≤ [PV ](f ;E);

(ii) PV (f ;E) ≤ [PV ](f ;E);

(iii) [PV ](f ;E) ≤
∑
n[PV ](f ;En) whenever {En} is a closed E-form;

(iv) µf : P(Q)→ [0,+∞] is a metric outer measure.

Proof. (i) This is obvious.
(ii) Suppose that [PV ](f ;E) = M < +∞ (if M = +∞, there is nothing

to prove). Then for ε > 0, it follows that there exist a closed E-form {En}
and a sequence of positive numbers {rn} such that

∑
n V (f ;En; rn) < M + ε.

By Lemma 1, there exists a closed E-chain {Qn} such that Qn = ∪nk=1Qkn,
Qkn ⊆ Qkm ⊆ Ek for all k and m ≥ n ≥ k and

d(Qin, Qjn) ≥ 1

n
for i 6= j . (1)

Let ρn = min
{
r1, r2, . . . , rn,

1
2n

}
. Let {[ap, bp]}qp=1 be a finite set of nonover-

lapping closed intervals with the endpoints in Qn and
∑q
p=1(bp − ap) < ρn.

By (1), both endpoints of an interval [ap, bp] belong to some Qin. It follows
that

q∑
p=1

|f(bp)− f(ap)| ≤
n∑
i=1

V (f ;Qin; ρn) ≤
n∑
i=1

V (f ;Ei; ri) < M + ε for all n .

Therefore PV (f ;E) ≤M .
(iii) We may suppose that

∑
n[PV ](f ;En; 0) < +∞ (otherwise there is

nothing to prove). Let ε > 0. Then for every positive integer k, there exists a
closed Ek-form {Ekn} and a sequence of positive numbers {rkn} such that∑

n

V (f ;Ekn; rkn) < [PV ](f ;Ek) +
ε

2k
.
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But {Ekn} is a closed E-form, and∑
k

∑
n

V (f ;Ekn; rkn) < ε+
∑
k

[PV ](f ;Ek) .

It follows that [PV ](f ;E) ≤ ε+
∑
k[PV ](f ;Ek). Since ε is arbitrary, we obtain

that [PV ](f ;E) ≤
∑
k[PV ](f ;Ek) .

(iv) Clearly µf (∅) = 0 and µf is an increasing set-function; i.e., µf (A) ≤
µf (B) whenever A ⊆ B. As in (iii) we obtain that

µf (∪nEn) ≤
∑
n

µf (En) . (2)

Let E1, E2 be such that d(E1;E2) = r > 0. Suppose that µf (E1 ∪E2) < +∞
(if µf (E1∪E2) = +∞, by (2), it follows that µf (E1∪E2) = µf (E1)+µf (E2)).
For ε > 0 there exist a E1 ∪E2-form {Pn} and a sequence of positive numbers
{rn} such that ∑

n

V (f ;Pn; rn) < µf (E1 ∪ E2) + ε .

Let P1n = E1 ∩ Pn, P2n = E2 ∩ Pn and ρn = min{rn, r}. Then

µf (E1) + µf (E2) ≤
∑
n

V
(
f ;P1n;

ρn
2

)
+
∑
n

V
(
f ;P2n;

ρn
2

)
≤

≤
∑
n

V (f ;Pn; ρn) ≤
∑
n

V (f ;Pn; rn) ≤ µf (E1 ∪ E2) + ε .

Since ε is arbitrary and µf is an outer measure, we obtain that µf (E1 ∪E2) =
µf (E1) + µf (E2).

Lemma 2. Let E be a real set and f : E → R. If f ∈ [ACG] on E, then
f ∈ [PAC] on E.

Proof. Let ε > 0. Since f ∈ [ACG] on E, there exists a closed E form {En}
such that f ∈ AC on each En. For ε/2n, let rn > 0 be given by the fact that
f ∈ AC on En. Then

∑
n V (f ;En; rn) <

∑
n ε/2

n = ε. Hence [PV ](f ;E) = 0.
Therefore f ∈ [PAC] on E.

4 Characterizations of [VBG] ∩ (N) on a Closed Set

Lemma 3. Let E be a real compact set, f : E → R, x0 ∈ E and ε > 0. If
f ∈ V B on E, then there exists δ > 0 such that

V (f ;E ∩ (x0, x0 + δ)) < ε and V (f ;E ∩ (x0 − δ, x0)) < ε .

Moreover, if {In}n is a sequence of abutting closed intervals such that ∪nIn =
(x0 − δ, x0) or ∪nIn = (x0, x0 + δ), then

∑
n V (f ;E ∩ In) < ε.



616 Vasile Ene

Proof. Let a = inf E, b = supE and F : [a, b] → R, F (x) = fE(x) (see
Definition 1). Then F ∈ V B (see for example Corollary 2.7.2, (ii) of [1]). Let
VF : [a, b]→ R,

VF (x) =

0 if x = a

V (F ; [a, x]) if x ∈ (a, b]

Since VF is an increasing function on [a, b], VF (x0−) = `− and VF (x0+) = `+

exist and are both finite. It follows that there exists a δ > 0 such that

VF ((x0 − δ, x0)) ⊂ (`− − ε, `−) and VF ((x0, x0 + δ)) ⊂ (`+, `+ + ε)) .

Let α, β ∈ E, α < β. Then

|f(β)− f(α)| = |F (β)− F (α)| ≤ V (F ; [α, β]) = VF (β)− VF (α) .

Therefore V (f ;E ∩ (x0, x0 + δ)) ≤ ε. Clearly∑
n

V (f ;E ∩ In) ≤
∑
n

V (F ; In) =
∑
n

VF (βn)− VF (αn) < ε ,

where {In}n = {[αn, βn]}n are as in the hypotheses.

Lemma 4. Let E be a real compact set and f : E → R. If f ∈ V B ∩ (N),
then [PV ](f ;E) = 0; i.e., f ∈ [PAC] on E.

Proof. The proof is similar to that of the second part of Theorem 3.6 of [8].
Since f is V B on E, it follows that f is continuous nearly everywhere on E.
Let d1, d2, . . . be the discontinuity points of f . By Lemma 3, for ε > 0 and for
each dn we can find some intervals In = (pn, dn) and Jn = (dn, qn) such that∑
k(V (f ;E ∩ Ink) + V (f ;E ∩ Jnk)) < ε/2n+1 , whenever {Ink}k and {Jnk}k

are two sequence of closed intervals abutting end to end, with ∪kInk = In and
∪kJnk = Jn. It follows that Q = E \ ∪n(In ∪ Jn) is a compact set and f|Q is
C ∩ V B ∩ (N) = AC. (See the Banach–Zarecki Theorem; here C denotes the
class of continuous functions.) Therefore f ∈ AC on Q. For ε/2 let r0 > 0 be
given by the fact that f ∈ AC on Q. Then

V (f ;Q; r0) +
∑
n

∑
k

(
V (f ;E ∩ Ink) + V (f ;E ∩ Jnk)

)
<
ε

2
+
∑
n

ε

2n+1
= ε .

Therefore [PV ](f ;E) = 0.

Theorem 2. Let E be a real compact set and f : E → R. The following
assertions are equivalent.

(i) f ∈ [PAC] on E.
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(ii) f ∈ (PAC) on E.

(iii) f ∈ [V BG] ∩ (N) on E.

Proof. (i) ⇒ (ii) See Proposition 1, (ii).

(ii) ⇒ (iii) See Theorem 1, (iii), (iv).

(iii) ⇒ (i) Since f ∈ [V BG]∩ (N), there is a closed E-form {En} (Clearly
each En is a closed set, because E is closed.) such that f ∈ V B ∩ (N) on
each En. By Lemma 4, f ∈ [PAC] on each En and by Proposition 1, (iii),
f ∈ [PAC] on E.

Remark 2. Theorem 2, (ii), (iii) is due to Sarkhel and Kar (see Theorem 3.6
of [8]).

5 Characterizations of VBG and ACG for Lebesgue
Measurable Functions

Lemma 5. Let E be a real compact set and f : E → R a continuous function.
The following assertions are equivalent.

(i) f ∈ V BG (respectively ACG) on E.

(ii) f ∈ V BG (respectively ACG) on Z, whenever Z is a null subset of E.

Proof. This follows by Proposition 1.9.1, (iii) of [1], if we put P1 = the class
of continuous functions, and P = V B (respectively AC).

Theorem 3. Let E be a bounded Lebesgue measurable set, and f : E → R a
Lebesgue measurable function. The following assertions are equivalent.

(i) f is V BG (respectively ACG) on E.

(ii) f is V BG (respectively ACG) on Z, whenever Z is a null subset of E.

Proof. (i) ⇒ (ii) This is obvious.

(ii) ⇒ (i) By Lusin’s theorem (see [4], p. 106 or [5], p. 72), there exists an
increasing sequence {En}n of closed subsets of E such that m(∪En) = m(E)
and f|En

is continuous. Let Z = E \ (∪nEn). Then Z is a null subset of E.
Hence f is V BG (resp. ACG) on Z. Fix some n. By Lemma 5, f is V BG
(resp. ACG) on En. Therefore f is V BG (resp. ACG) on E.
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6 Characterizations of VBG ∩ (N) on a Real Set

Lemma 6. Let f : [a, b]→ R, f ∈ V B on [a, b]. Consider the curve

C : X(t) = t; Y (t) = f(t), t ∈ [a, b]

and let Z = {x ∈ [a, b] : f
′
(x) does not exist (finite or infinite)}. Let S :

[a, b]→ R, where S(x) is the length of the curve C on the interval [a, x]. Then
m∗(S(Z)) = 0.

Proof. Let Cf = {x ∈ [a, b] : f is continuous at x}. Then [a, b] \ Cf is
countable (see [4], p. 219). Let N = Z ∩ Cf . Then m∗(S(N)) = 0 (see [5],
pp. 125–126). It follows that m∗(S(Z)) = 0.

Lemma 7. Let f : [a, b] → R, f ∈ V B on [a, b]. Let Z = {x ∈ [a, b] : f
′
(x)

does not exist (finite or infinite)}. Then µf (Z) = 0, i.e. f ∈ PAC on Z.

Proof. By Lemma 6, m∗(S(Z)) = 0. For ε > 0, there exists an open set G
such that S(Z) ⊂ G and m(G) < ε. Let {(αi, βi)}i be the components of G
(a component is a maximal open interval contained in G). We may suppose
without loss of generality that S(Z) ∩ (αi, βi) 6= ∅. Let Zi = {x ∈ Z : S(x) ∈
(αi, βi)}. Since we always have that |f(β) − f(α)| ≤ S(β) − S(α) and S is
strictly increasing, it follows that V (f ;Zi) < βi − αi and

µf (Z) <
∑
i

V (f ;Zi) <
∑
i

(βi − αi) < ε .

Since ε is arbitrary, we obtain that µf (Z) = 0.

Lemma 8. Let E ⊂ R and f : E → R. If f ∈ ACG on E, then µf (E) = 0.

Proof. Let ε > 0. Since f ∈ ACG on E, there exists an E-form {En} such
that f is AC on each En. For ε/2n, let rn > 0 be given by the fact that f is
AC on En. Then

∑
n V (f ;En; rn) < ε. Hence µf (E) = 0.

Lemma 9. Let E ⊂ R and f : E → R. Suppose that m∗(f(E)) = 0 and
that there exists an E-form {En} such that f is monotone on each En. Then
µf (E) = 0.

Proof. Since m∗(f(E)) = 0 it follows that m∗(f(En)) = 0 for each n. Let
ε > 0 and let Gn = ∪i(αni, βni) be an open set such that f(En) ⊂ Gn and
m∗(Gn) < ε/2n, where {(αni, βni)}i is a sequence of nonoverlapping open
intervals. Let Eni = {x ∈ En : f(x) ∈ (αni, βni)}. Then∑

n

∑
i

V (f ;Eni) <
∑
n

∑
i

(βni − αni) < ε .

Therefore µf (E) = 0.
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Lemma 10. Let E be a real bounded set and f : E → R. If f ∈ V B ∩ (N)
on E, then µf (E) = 0.

Proof. Let a, b ∈ R such that E ⊆ [a, b]. Since f ∈ V B on E, there exists
a function G : [a, b] → R such that G|E = f and G ∈ V B on [a, b] (see

Lemma 4.1 of [5], p. 221). Let A = {x ∈ [a, b] : G
′
(x) does not exist (finite or

infinite)}. By Lemma 7, we obtain that µG(A) = 0. Hence µf (A ∩ E) = 0.

Let B = {x ∈ E : G
′
(x) = ±∞}. Then m∗(B) = 0. Since f ∈ (N) on E,

we have that m∗(f(B)) = 0. Also there exists a B-form {Bn} such that G
is monotone on each Bn (see for example the proof of Theorem 10.1 of [5],
p. 235). By Lemma 9, it follows that µf (B) = 0. Let C = {x ∈ [a, b] : G

′
(x)

exists and is finite}. Then G ∈ AC∗G ⊂ ACG on C. Hence by Lemma 8,
µG(C) = 0; so µf (E ∩ C) = 0. Thus µf (E) = 0 (see Proposition 1, (iv)).

Lemma 11. Let Q be a real compact set, E ⊆ Q, f : Q→ R and r > 0. If f
is continuous on Q, then V (f ;E; r) = V (f ;E; r).

Proof. We always have V (f ;E; r) ≤ V (f ;E; r). We show the converse.
Let V (f ;E; r) = M < +∞ (if M = +∞ there is nothing to prove). Let
{[ai, bi]}mi=1 be a finite set of nonoverlapping closed intervals with the endpoints
in E and

∑m
i=1(bi−ai) < r. Since f is continuous on Q, for ε > 0, there exists

a∗i , b
∗
i ∈ E such that {[a∗i , b∗i ]}mi=1 are nonoverlapping closed intervals, with

m∑
i=1

(b∗i − a∗i ) < r, |f(ai)− f(a∗i )| < ε/2m and |f(bi)− f(b∗i )| < ε/2m.

It follows that

m∑
i=1

|f(bi)−f(ai)| ≤
m∑
i=1

(
|f(bi)−f(b∗i )|+|f(b∗i )−f(a∗i )|+|f(ai)−f(a∗i )|

)
< M+ε .

Since ε is arbitrary, it follows that V (f ;E; r) ≤M .

Lemma 12. Let E be a real bounded set and f : E → R. If f ∈ V B and
µf (E) = 0, then [PV ](f ;E) = 0. Hence PV (f ;E) = 0.

Proof. Let ε > 0. Since µf (E) = 0, there exist an E-form {En} and a
sequence of positive numbers {rn} such that∑

n

V (f ;En; rn) <
ε

2
. (3)

Let a, b ∈ R such that E ⊆ [a, b]. Since f ∈ V B on E, there exists a function
F : [a, b]→ R such that F|E = f and F ∈ V B on [a, b] (see Lemma 4.1 of [5],
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p. 221). Let D = {dn} be the set of all discontinuity points of F . For each dn
there exist In = (pn, dn) and Jn = (dn, qn) (see Lemma 3) such that∑

k

(
V (F ;E ∩ Ink) + V (F ;E ∩ Jnk)

)
<

ε

2n+1
, (4)

whenever {Ink}k and {Jnk}k are two sequences of closed intervals abutting
end to end with ∪kInk = In and ∪kJnk = Jn. Let Q = [a, b] \ (∪n(In ∪ Jn)).
Then Q is a compact set and

F|Q is continuous. (5)

Let Qn = Q ∩ En. Clearly {E∩Qn}n∪{E∩ Ink}n,k ∪{E∩Jnk}n,k is a closed
E-form. By (3), (4), (5) and Lemma 11, it follows that∑

n

V (F ;Qn; rn) +
∑
n

∑
k

V (F ;E ∩ Ink) +
∑
n

∑
k

V (F ;E ∩ Jnk) < ε .

Thus [PV ](f ;E) = 0. That PV (f ;E) = 0 follows by Proposition 1, (ii).

Corollary 2. Let E be a real bounded set and f : E → R. If f ∈ V B ∩ (N),
then [PV ](f ;E) = 0.

Proof. By Lemma 10, f ∈ V B and µf (E) = 0. Now by Lemma 12, it follows
that [PV ](f ;E) = 0 .

Lemma 13. Let E⊂R and f :E→R. If µf (E)<+∞, then f ∈V BG on E.

Proof. Since µf (E) < +∞, there exist an E-form {En} and a sequence
{rn} of positive numbers such that

∑
n V (f ;En; rn) < µf (E) + 1. Hence

V (f ;En; rn) < µf (E) + 1. Then f ∈ V B on each Enk, k = 0,±1,±2,±3, . . .,
where

Enk = En ∩
[
k
rn
2
, (k + 1)

rn
2

]
.

It follows that f ∈ V BG on E.

Theorem 4. Let E be a real bounded set and f : E → R. The following
assertions are equivalent.

(i) f ∈ V BG ∩ (N) on E.

(ii) f is [PAC]G on E.

(iii) f is PAC on E.

(iv) f is (PAC)G on E.
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Proof. (i) ⇒ (ii) Since f ∈ V BG ∩ (N) on E, there exists an E-form {En}
such that f ∈ V B ∩ (N) on each En. By Corollary 2, f is [PAC] on each En.
Therefore f is [PAC]G on E.

(ii) ⇒ (iii) See Proposition 1, (i), (iv).
(iii) ⇒ (ii) By Lemma 13, f ∈ V BG on E. Then there is an E-form {En}

such that f ∈ V B on each En. Clearly µf (En) = 0. By Lemma 12, we obtain
that [PV ](f ;En) = 0. Hence f ∈ [PAC]G on E.

(ii) ⇒ (iv) See Proposition 1, (ii).
(iv) ⇒ (i) Since f is (PAC)G on E, there exists an E-form {En} such

that PV (f ;En) = 0 for each n. By Theorem 1, (iii), (iv), it follows that
f ∈ [V BG] ∩ (N) on each En. Hence f ∈ V BG ∩ (N) on E.

Remark 3. Sarkhel and De introduced the following condition (Definition 5.1
of [7] or the remark on p. 337 of [8]).

• A function f : E → R, E ⊂ R, is said to be PAC on E, if there is a
countable subset E1 of E such that f is (PAC) on E \ E1.

Clearly PAC differs from PAC defined in the present paper. Also in [7] the
following is proved.

• f is said to be PACG on E if there exists an E-form {En} such that f
is PAC on each En.

Clearly (PAC)G ⊂ PACG (see Definition 5). In [7] (see Theorem 5.2 and the
proof of Theorem 5.3), Sarkhel and De showed that PACG ⊆ V BG∩(N). By
Theorem 4, (i), (iv), it follows that PACG = [PAC]G = (PAC)G = PAC =
V BG ∩ (N) on a real bounded set E.

In [3], Gordon introduced the AKN integral.

• A function f : [a, b]→ R is said to be AKN integrable, if there is a func-
tion F : [a, b]→ R such that F ∈V BG∩(N)∩(approximately continuous)
and F

′

ap = f a.e. on [a, b].

However, in his proof of the uniqueness of this integral he neglected to show
that the difference of two functions belonging to F ∈ V BG ∩ (N)∩ (approx-
imately continuous) is still (N). In [2] we show that V BG ∩ (N) is a linear
space for Borel measurable functions and give a complete proof that the AKN

integral is well defined.
In [7] (Definition 7.1), Sarkhel and De introduced the PD-integral:

• A function f : [a, b] → R is said to be PD integrable, if there is a
function F : [a, b]→ R such that F ∈ PACG ∩ (proximally continuous)
and F

′

ap = f a.e. on [a, b].
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Since the class of approximately continuous functions (see [7]) contains strictly
the class of approximately continuous functions and PACG = V BG∩ (N), it
follows that the AKN -integral is a special case of the PD-integral.

Corollary 3. Let E be a real bounded set and A = {f : E → R : f ∈
V BG ∩ (N) on E}. Then A is an algebra.

Proof. Let f, g ∈ A, α, β ∈ R. By Theorem 4, (i), (iv), we obtain that f, g ∈
(PAC)G on E. Then there exists an E-form {En}, such that f, g ∈ (PAC)
on each En. Hence PV (f ;En) = PV (g;En) = 0 for each n. By Theorem 1,
(i), PV (αf+βg;En) = 0. Hence αf+βg ∈ (PAC)G = V BG∩ (N) on E (see
Theorem 4, (i), (iv)). It follows that A is a real linear space. But f ·g ∈ (PAC)
on each En (see Theorem 1, (vi)); so f · g ∈ (PAC)G = V BG∩ (N) on E (see
Theorem 4, (i), (iv)). Therefore A is an algebra.

Theorem 5. Let E be a bounded Lebesgue measurable set, and let f : E → R.
If f is a Lebesgue measurable function the following assertions are equivalent.

(i) f ∈ V BG ∩ (N) on E

(ii) f ∈ [PAC]G on E.

(iii) f ∈ PAC on E.

(iv) f ∈ (PAC)G on E.

(v) f ∈ V BG ∩ (N) on Z, whenever Z is a null subset of E.

(vi) f ∈ [PAC]G on Z, whenever Z is a null subset of E.

(vii) f ∈ PAC on Z, whenever Z is a null subset of E.

(viii) f ∈ (PAC)G on Z, whenever Z is a null subset of E.

Proof. (i) ⇔ (v) follows by Theorem 3; (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) and (v) ⇔
(vi) ⇔ (vii) ⇔ (viii) follow by Theorem 4.

Corollary 4. Let E be a real compact set and f : E → R. If f is continuous
on E, then the following assertions are equivalent.

(i) f ∈ ACG on E.

(ii) f ∈ V BG ∩ (N) on E.

(iii) f ∈ [PAC] on E.

(iv) f ∈ (PAC) on E.
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(v) f ∈ PAC on E;

(vi) f ∈ ACG on Z, whenever Z is a null subset of E.

(vii) f ∈ [PAC] on Z, whenever Z is a null subset of E.

(viii) f ∈ (PAC) on Z, whenever Z is a null subset of E.

(ix) f ∈ PAC on Z, whenever Z is a null subset of E.

Proof. (i) ⇔ (ii) See Theorem 6.8 of [5], p. 228.
(ii) ⇔ (iii) ⇔ (iv) Since f is continuous, it follows that V BG = [V BG].

Now the assertions follow by Theorem 2.
(ii) ⇔ (v) See Theorem 5, (i), (iii).
(i) ⇔ (vi) See Lemma 5.
(vi) ⇒ (vii) Let Z be a null subset of E such that f ∈ ACG on Z. Since f

is continuous on E, it follows that f ∈ [ACG] on Z. By Lemma 2, f ∈ [PAC]
on Z.

(vii) ⇒ (viii) See Proposition 1, (ii).
(viii) ⇒ (ii) See Theorem 5, (viii), (i).
(ix) ⇔ (ii) See Theorem 5, (vii), (i).

7 Enhancements of the Ordinary Variation

Definition 6. Let E be a real bounded set, f : E → R and δ : E → (0,+∞).
Put

• V 1
δ (f ;E) = sup{

∑n
i=1 |f(bi) − f(ai)| : {[ai, bi]}ni=1 is a finite set of

nonoverlapping closed intervals with the endpoints in E, such that 0 <
bi − ai < min{δ(ai), δ(bi)};

• V 2
δ (f ;E) = sup{

∑n
i=1O(f ; [ai, bi] ∩ E) : {[ai, bi]}ni=1 is a finite set of

nonoverlapping closed intervals with the endpoints in E, such that 0 <
bi − ai < min{δ(ai), δ(bi)};

• V 3
δ (f ;E) = sup{

∑n
i=1O(f ; [ai, bi] ∩ E) : {[ai, bi]}ni=1 is a finite set of

nonoverlapping closed intervals; there exists xi ∈ [ai, bi] ∩ E such that
[ai, bi] ⊂ (xi − δ(xi), xi + δ(xi))};

• V 4
δ (f ;E) = sup{

∑n
i=1O(f ; [ai, bi] ∩ E) : {[ai, bi]}ni=1 is a finite set of

nonoverlapping closed intervals; there exists xi ∈ {ai, bi} ∩ E such that
[ai, bi] ⊂ (xi − δ(xi), xi + δ(xi))};

• V 5
δ (f ;E) = sup{

∑n
i=1O(f ; [ai, bi] ∩ E) : {[ai, bi]}ni=1 is a finite set of

nonoverlapping closed intervals with the endpoints in E, such that 0 <
bi − ai < δ(ai) + δ(bi);
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• νif (E) = infδ{V iδ (f ;E)}, i = 1, 2, 3, 4, 5.

Theorem 6. Let E be a real bounded set, f, g : [a, b]→ R and α, β ∈ R.

(i) νiαf+βg(E) ≤ |α| · νif (E) + |β| · νig(E), i = 1, 2, 3, 4, 5.

(ii) If νig(E) = 0, then νif+g(E) = νif (E), i = 1, 2, 3, 4, 5.

(iii) If maxx∈E{|f(x)|, |g(x)|} = M < +∞, then

νif ·g(E) ≤M ·
(
νif (E) + νig(E)

)
.

(iv) PV (f ;E) ≤ ν1f (E) ≤ ν2f (E) ≤ ν3f (E) = ν4f (E) ≤ ν5f (E).

Proof. Let δ1, δ2 : E → (0,+∞) and let δ(x) = min{δ1(x), δ2(x)}.
(i) We have

νiαf+βg(E) ≤ V iδ (αf + βg;E) ≤ |α| · V iδ (f ;E) + |β| · V iδ (g;E) ≤

≤ |α| · V iδ1(f ;E) + |β|V iδ2(g;E).

Hence νiαf+βg(E) ≤ |α| · νif (E) + |β| · νig(E).

(ii) Clearly νig(E) = 0 implies that νi−g(E) = 0. By (i) we have

νif (E) = νif+g−g(E) ≤ νif+g(E) + νi−g(E)

= νif+g(E) ≤ νif (E) + νig(E) = νif (E) .

Therefore νif+g(E) = νif (E).
(iii) Let x, y ∈ E, x < y. Then∣∣f(y) · g(y)− f(x) · g(x)

∣∣ =
∣∣g(y) · (f(y)− f(x)) + f(x) · (g(y)− g(x))

∣∣
≤M ·

(
|f(y)− f(x)

∣∣+ |g(y)− g(x)|
)
.

It follows that

νif ·g(E) ≤ V iδ (f · g;E) ≤M ·
(
V iδ (f ;E) + V iδ (g;E)

)
≤M ·

(
V iδ1(f ;E) + V iδ2(g;E)

)
.

Therefore νif ·g(E) ≤M · (νif (E) + νig(E)).

(iv) We may suppose that ν1f (E) = M < +∞. (If M = +∞, there is

nothing to prove.) For ε > 0 there is a δ : E → (0,+∞) such that V 1
δ (f ;E) <

M + ε. Let Ek = {x ∈ E : δ(x) > 1/k}, k = 1, 2, . . .. Then {Ek} is an E-
chain. Fix some k and let {[ai, bi]}mi=1 be a finite set of nonoverlapping closed
intervals with the endpoints in Ek,

∑m
i=1(bi − ai) < 1/k. Clearly

y − x < min{δ(x), δ(y)}, whenever x, y ∈ Ek and 0 < y − x < 1

k
.
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It follows that
∑m
i=1O(f ; [ai, bi] ∩ Ek) < M + ε . Then V (f ;Ek; 1

k ) ≤ M + ε.
Hence V (f ;Ek; 0) ≤ M + ε, for each k. Since ε is arbitrary, we obtain that
PV (f ;E) ≤M .

For δ : E → (0,+∞) we have V 1
δ (f ;E) ≤ V 2

δ (f ;E) ≤ V 3
δ (f ;E). It follows

that ν1f (E) ≤ ν2f (E) ≤ ν3f (E).

We show that ν3f (E) = ν4f (E). Clearly ν3f (E) ≥ ν4f (E). Let {[ai, bi]}ni=1

be a finite set of nonoverlapping closed intervals such that there exists xi ∈
[ai, bi] ∩ E, with [ai, bi] ⊂ (xi − δ(xi), xi + δ(xi)). We may suppose without
loss of generality that each xi ∈ (ai, bi). Then

n∑
i=1

O(f ; [ai, bi]∩E) ≤
n∑
i=1

O(f ; [ai, xi]∩E)+

n∑
i=1

O(f ; [xi, bi]∩E) ≤ V 4
δ (f ;E).

Hence V 3
δ (f ;E) ≤ V 4

δ (f ;E). Thus ν3f (E) ≤ ν4f (E); so ν3f (E) = ν4f (E).

We show that ν4f (E) ≤ ν5f (E). Let {[ai, bi]}ni=1 be a finite set of nonoverlapping
closed intervals such that there exists xi ∈ {ai, bi} ∩ E, with [ai, bi] ⊂ (xi −
δ(xi), xi+δ(xi)). We may suppose without loss of generality that each xi = ai.
For ε > 0 there exists yi ∈ [ai, bi] ∩ E such that

O(f ; [ai, bi] ∩ E) ≤ O(f ; [ai, yi] ∩ E) +
ε

2i
.

Then yi − ai < δ(ai) + δ(yi). Hence

n∑
i=1

O(f ; [ai, bi] ∩ E) < ε+

n∑
i=1

O(f ; [ai, yi] ∩ E) < ε+ V 5
δ (f ;E) .

It follows that V 4
δ (f ;E) ≤ V 5

δ (f ;E). Therefore ν4f (E) ≤ ν5f (E).

Lemma 14. Let E be real bounded set and f : E → R. Then m∗(f(E)) ≤
νif (E), i = 1, 2, 3, 4, 5.

Proof. By Theorem 6, (iv), it is sufficient to prove the assertion for i = 1.
Let ν1f (E) = M < +∞. (If M = +∞, there is nothing to prove.) For

ε > 0, there exists a δ : E → (0,+∞) such that V 1
δ (f ;E) < M + ε/2. Let

En = {x ∈ E : δ(x) > (b− a)/n}. Then {En} is an E-chain. Fix some n and
let

Enm = En ∩
[
m− 1

n
(b− a),

m

n
(b− a)

]
, m = 1, 2, . . . , n .

Clearly m∗(f(En)) ≤
∑n
m=1m

∗(f(Enm)). For each m let xm, ym ∈ Enm,
xm < ym, such that

O(f ;Enm) ≤ |f(ym)− f(xm)|+ ε

2m+1
.
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Clearly ym − xm < min{δ(xm), δ(ym)}. Then

n∑
m=1

m∗(f(Enm)) ≤
n∑

m=1

O(f ;Enm) ≤
n∑

m=1

|f(ym)− f(xm)|

+

n∑
m=1

ε

2m+1
< V 1

δ (f ;E) +
ε

2
≤M + ε .

Therefore m∗(f(En)) ≤
∑n
m=1m

∗(f(Enm)) ≤M+ε. Since {En} is increasing
and ∪En = E, it follows that m∗(f(E)) ≤ M + ε. Since ε is arbitrary, we
obtain that m∗(f(E)) ≤M .

Lemma 15. Let E be a real bounded set and f : E → R. Then ν1f (E) ≤∑
n ν

1
f (En), whenever {En} is a closed E-form.

Proof. Suppose that
∑
n ν

1
f (En) = M < +∞. (If M = +∞ there is nothing

to prove.) For ε > 0, let δn : En → (0,+∞) such that V 1
δn

(f ;En) < ν1f (En) +
ε/2n. By Lemma 1, there is a closed E-chain {Qn} such that Qn = ∪k≤nQkn,
where Qkn ⊂ Qkm ⊂ Ek for all k and m ≥ n ≥ k, and d(Qin, Qjn) ≥ 1/n for
i 6= j. Let δ : E → (0,+∞),

δ(x)=

δ1(x) if x ∈ Q1

min
{

1
2n , δ1(x), . . . , δn(x), d(x,Qn−1)

}
if x∈Qn\Qn−1, n≥2.

(Since Qn−1 is closed in E we have that d(x,Qn−1) > 0 for x ∈ Qn \ Qn−1.)
Let {[ap, bp]}qp=1 be a finite set of nonoverlapping closed intervals with the
endpoints in E, such that bp − ap < min{δ(ap), δ(bp)}, p = 1, 2, . . . , n. Fix
some p and let s be the first positive integer such that ap, bp ∈ Qs. Suppose
for example that ap ∈ Qs \ Qs−1. From the definition of δ it follows that
bp ∈ Qs \Qs−1. Then

δ(ap) ≤ min

{
1

2s
, δ1(ap), . . . , δs(ap)

}
and

δ(bp) ≤ min

{
1

2s
, δ1(bp), . . . , δs(bp)

}
.

Let k ≤ s be such that ap ∈ Qks. Since bp − ap < δ(ap) < 1/s, it follows that
bp belongs to the same Qks ⊂ Ek. Clearly bp − ap < min{δk(ap), δk(bp)}. It
follows that ∑

p

|f(bp)− f(ap)| ≤
∑
k

(
ν1f (Ek) +

ε

2k

)
< M + ε .



Characterizations of V BG ∩ (N) 627

Hence V 1
δ (f ;E) ≤M + ε. Thus ν1f (E) ≤M + ε. Since ε is arbitrary, we obtain

that ν1f (E) ≤M .

8 A Characterization of a Lebesgue Measurable Function
f, Satisfying VBG ∩ (N), Using µi

f

Lemma 16. Let f : [a, b]→ R and let Z = {x ∈ [a, b] : f is continuous at x;
f

′
(x) does not exist (finite or infinite)}. If f ∈ V B on [a, b], then νif (Z) = 0,

i = 1, 2, 3, 4, 5.

Proof. By Theorem 6, (iv), it is sufficient to prove the assertion for i = 5.
By Lemma 6, m∗(S(Z)) = 0. For ε > 0, there exists an open set G such that
S(Z) ⊂ G = ∪i(αi, βi) and m(G) < ε, where {(αi, βi)}i are nonoverlapping
open intervals and S(Z) ∩ (αi, βi) 6= ∅. Since f is continuous at each point of
Z, using Theorem 8.4 of [5] (p. 123), it follows that S is continuous at each
point of Z. Let Zi = {x ∈ Z : S(x) ∈ (αi, βi)}. Clearly Z = ∪Zi. Then
there exists a δ : Z → (0,+∞) such that S((x − δ(x), x + δ(x))) ⊂ (αi, βi)
whenever x ∈ Zi. Let {[aj , bj ]}mj=1 be a finite set of nonoverlapping closed
intervals with the endpoints in Z and 0 < bj − aj < δ(aj) + δ(bj). Fix some
[aj , bj ] and let cj ∈ (aj , aj + δ(aj)) ∩ (bj − δ(bj), bj). Suppose that aj ∈ Zi
and bj ∈ Zk. Then S(cj) ∈ (αi, βi) ∩ (αk, βk); so i = k and bj ∈ Zi too.
Consequently S(bj) ∈ (αi, βi). Hence αi < S(aj) < S(bj) < βi (because S is
strictly increasing). But |f(y)− f(x)| ≤ S(y)−S(x) whenever a ≤ x < y ≤ b.
It follows that

∑m
j=1O(f ; [aj , bj ]∩Z) ≤

∑m
j=1 S(bj)−S(aj) ≤

∑
i(βi−αi) < ε .

Then V 5
δ (f ;Z)≤ε. Hence ν5δ (Z)≤ε. Since ε is arbitrary, ν5f (Z)=0.

Lemma 17. Let E be a bounded null set and f : E → R. If f ∈ AC on E,
then νif (E) = 0, i = 1, 2, 3, 4, 5.

Proof. By Theorem 6, (iv), it is sufficient to prove the assertion for i = 5.
For ε > 0 let δ > 0 be given by the fact that f ∈ AC on E. Since E is a
null set, there exists an open set G such that E ⊂ G and m(G) < δ. Let
η : E → (0,+∞) be such that (x − η(x), x + η(x)) ⊂ G. Let {[ai, bi]}mi=1

be a finite set of nonoverlapping closed intervals with the endpoints in E,
such that 0 < bi − ai < η(ai) + η(bi). Clearly [ai, bi] ⊂ G. It follows that∑m
i=1(bi − ai) < m(G). Since

∑m
i=1O(f ; [ai, bi] ∩ E) < ε , it follows that

V 5
η (f ;E) ≤ ε, and consequently ν5f (E) ≤ ε. Since ε is arbitrary, we obtain

that ν5f (E) = 0.

Lemma 18. Let f : [a, b]→ R and A ⊆ {x ∈ [a, b] : f is continuous at x}. If
f is increasing on A, then m∗(f(A)) = νif (A), i = 1, 2, 3, 4, 5.
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Proof. We always have m∗(f(A)) ≤ νif (A) (see Lemma 14). We show the
converse. Suppose that m∗(f(A)) < +∞. (If m∗(f(A)) = +∞, there is
nothing to prove.) By Theorem 6, (iv), it is sufficient to prove the assertion for
i = 5. For ε > 0 let G be an open set such that f(A) ⊂ G and m∗(f(A)) + ε >
m(G). Let G = ∪i(αi, βi), where {(αi, βi)}i is a sequence of nonoverlapping
open intervals. Then A = ∪iAi, where Ai = {x ∈ A : f(x) ∈ (αi, βi)}. Since f
is continuous at each point of A, there is a δ : A→ (0,+∞) such that f((x−
δ(x), x+ δ(x))) ⊂ (αi, βi) if x ∈ Ai. (This is possible because f is continuous
at each point of A.) Let {[aj , bj ]}mj=1 be a finite set of nonoverlapping closed
intervals with the endpoints in A, with 0 < bj − aj < δ(aj) + δ(bj). Let
cj ∈ (aj , aj +δ(aj))∩ (bj−δ(bj), bj). Suppose that aj ∈ Ai and bj ∈ Ak. Then
f(cj) ∈ (αi, βi) ∩ (αk, βk); so i = k and bj ∈ Ai too. Consequently f(bj) ∈
(αi, βi). Since f is increasing on A, we have αi < f(aj) ≤ f(bj) < βi and∑m
j=1O(f ; [aj , bj ]∩A) =

∑m
j=1 |f(bj)−f(aj)| ≤

∑
i(βi−αi) < m∗(f(E)) + ε.

Thus V 5
δ (f ;A) ≤ m∗(f(A))+ε, and since ε is arbitrary, ν5f (A) ≤ m∗(f(A)).

Lemma 19. Let E be a real bounded set and f : E → R. If f ∈ V B on E,
then the following assertions are equivalent for i = 1, 2, 3, 4, 5:

(i) f ∈ (N) on E;

(ii) for every null set Z ⊆ E there exists a Z-form {Zn} such that νif (Zn) =
0, for each n.

Proof. (i) ⇒ (ii) Since f ∈ V B on E, there exists a function F : [a, b] → R
such that F|E = f and F ∈ V B on [a, b] (see Lemma 4.1 of [5], p. 221). Let
D = {x ∈ [a, b] : F is not continuous at x}. Then D is countable (see [4],
p. 219). Let A = {x ∈ [a, b] \D : F

′
(x) does not exist (finite or infinite)}. By

Lemma 16, νiF (A) = 0; so νif (A∩E) = 0. Let B = {x ∈ E \D : F
′
(x) = ±∞}.

Then m∗(B) = 0. Since F ∈ (N) on E, we obtain that m∗(F (B)) = 0. Also,
there exists a B-form {Bn} such that F is monotone on each Bn. Then
νif (Bn) = 0 (see Lemma 18). Let C = {x ∈ [a, b] : F

′
(x) exists and is finite}.

Then F ∈ AC∗G ⊂ ACG on C. It follows that there exists a C-form {Cn}
such that F ∈ AC on each Cn. Let Z be a null subset of E and Zo = A ∩ Z.
Then νf (Zo) = 0. Let D1 = Z ∩D = {d1, d2, . . .}. Clearly νif ({dk}) = 0 and

νif (Z ∩Bn) = 0. By Lemma 17, νif (Z ∩ Cn) = 0. Therefore we have (ii).

(ii) ⇒ (i) This implication is always true. Let Z be a null subset of E.
Then there exists a Z-form {Zn} such that νif (Zn) = 0. By Lemma 14,
m∗(f(Zn)) = 0. It follows that m∗(f(Z)) = 0. Hence f ∈ (N) on E.

Theorem 7. Let E be a real bounded set and A = {f : E → R : f ∈
V B ∩ (N)}. Then A is an algebra.
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Proof. Let f, g ∈ A, α, β ∈ R. Clearly αf+βg ∈ V B. Let Z be a null subset
of E. By Lemma 19, there exists a Z-form {Zn} such that νif (Zn) = νig(Zn) =

0, i ∈ {1, 2, 3, 4, 5}. By Theorem 6, (i) we have that νiαf+βg(Zn) = 0. Hence
αf + βg ∈ (N) on E (see Lemma 19). Therefore A is a real linear space.
Clearly f · g ∈ V B on E, and f and g are bounded on E. By Theorem 6, (iii),
νif ·g(Zn) = 0, i ∈ {1, 2, 3, 4, 5}, and by Lemma 19, we obtain that f · g ∈ (N)
on the set E.

Remark 4. As a consequence of Theorem 7, we obtain again Corollary 3.

Lemma 20. Let E be a real bounded set and f : E → R. If νif (E) < +∞,
i ∈ {1, 2, 3, 4, 5}, then f ∈ [V BG] on E.

Proof. See Theorem 6, (iv) and Theorem 1, (iv).

Theorem 8. Let E be a bounded Lebesgue measurable set and f : E → R a
Lebesgue measurable function. For i ∈ {1, 2, 3, 4, 5}. The following assertions
are equivalent.

(i) f ∈ V BG ∩ (N) on E.

(ii) for every null set Z ⊆ E there is a Z-form {Zn} such that νif (Zn) = 0.

Proof. (i) ⇒ (ii) See Lemma 19,

(ii) ⇒ (i) Let Z be a null subset of E. By hypothesis and Lemma 20,
f ∈ V BG on Z. It follows that f ∈ V BG on E (see Theorem 3). By
hypothesis and Lemma 14, we obtain that m∗(f(Z)) = 0. Hence f ∈ (N) on
the set E.

Remark 5. Consider the following definition.

Let E be a real set. A function ν : P(E)→ [0,+∞] is said to be σ−AC
on E, if for every null set Z ⊆ E there is a Z-form {Zn} such that
ν(Zn) = 0.

In this terms Theorem 8 can be written as follows.

Let E be a bounded Lebesgue measurable set, f : E → R a Lebesgue
measurable function and i ∈ {1, 2, 3, 4, 5}. Then f ∈ V BG ∩ (N) on E
if and only if νif is σ −AC on E.
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