Vasile Ene, Ovidius University Constanța, Romania Current address: 23 August 8717, Jud. Constanța, Romania ene@s23aug.sfos.ro or ene@univ-ovidius.ro

CHARACTERIZATIONS OF VBG \cap (N)

Abstract

We show that $VBG \cap (N)$ is equivalent with Sarkhel and Kar's class (PAC)G on an arbitrary real set. Hence $VBG \cap (N)$ is an algebra on that set. In Theorem 4, we give three characterizations for $VBG \cap (N)$ on an arbitrary real set. It follows that Gordon's AK_N -integral [3] is a special case of the *PD*-integral [7] of Sarkhel and De (Remark 3). In Theorem 3 we obtain the following surprising result: a Lebesgue measurable function f is VBG on E if and only if f is VBG on any null subset of E. We also find seven characterizations of $VBG \cap (N)$ for Lebesgue measurable functions (see Theorem 5). For continuous functions on a closed set, we obtain several characterizations of the class ACG. Using a different technique, we obtain other characterizations of $VBG \cap (N)$ for a Lebesgue measurable function (see Theorem 8).

1 Introduction

The purpose of this paper is to give some characterizations of $VBG \cap (N)$ on an arbitrary real set.

In [8], Sarkhel and Kar introduced the class (PAC), showing that it is contained in $[VBG] \cap (N)$ and it is an algebra on any real set. Moreover, (PAC) is equivalent to the class $[VBG] \cap (N)$ on a closed set. It is clear now that (PAC)G (generalized (PAC)) is contained in $VBG \cap (N)$. Surprisingly, the converse is also true. We show that $VBG \cap (N)$ is equivalent to (PAC)Gon an arbitrary real set. Hence $VBG \cap (N)$ is an algebra on that set. In fact in Theorem 4, we give three characterizations for $VBG \cap (N)$ on an arbitrary real set. It follows that Gordon's AK_N -integral [3] is a special case of the PD-integral [7] of Sarkhel and De (Remark 3).

In Theorem 3 we obtain the following surprising result: a Lebesgue measurable function f is VBG on a set E if and only if f is VBG on any null subset of E.

Key Words: ACG, VBG, Lusin's condition (N), (PAC)

Mathematical Reviews subject classification: 26A45, 26A46, 26A39 Received by the editors September 8, 1997

As a consequence of Theorems 3 and 4, we find seven characterizations of $VBG \cap (N)$ for Lebesgue measurable functions (Theorem 5). One of them asserts that: a Lebesgue measurable function f is $VBG \cap (N)$ on a set E if and only if f is $VBG \cap (N)$ on any null subset of E.

For continuous functions on a compact set, we obtain several characterizations of the class ACG, such as: a continuous function f is ACG on a compact set E if and only if f is (PAC)G on any null subset of E (Corollary 4).

In the last two sections, we give five enhancements of V(f; E) (the ordinary variation of a function f on a set E): $\nu_f^1(E)$, $\nu_f^2(E)$, $\nu_f^3(E)$, $\nu_f^4(E)$ and $\nu_f^5(E)$. For each of these set-functions we obtain another characterization of $VBG \cap (N)$ for a Lebesgue measurable function (see Theorem 8): a Lebesgue measurable function $f: E \to \mathbb{R}$ is $VBG \cap (N)$ if and only if for every null subset Z of E, there is a sequence $\{Z_n\}_n$ whose union is Z, such that $\nu_f^i(Z_n) = 0$ for each n.

2 Preliminaries

We denote by $m^*(X)$ the outer measure of the set X and by m(A) the Lebesgue measure of A, whenever $A \subset \mathbb{R}$ is Lebesgue measurable. For the definitions of VB, VBG, AC and Lusin's condition (N), see [5].

Definition 1. Let *E* be a real compact set, $c = \inf(E)$, $d = \sup(E)$ and $f : E \to \mathbb{R}$. Let $\{(c_k, d_k)\}_k$ be the intervals contiguous to *E* and let

$$f_E : [c,d] \to \mathbb{R}, \quad f_E(x) = \begin{cases} f(x) & \text{if } x \in E \\ \text{linear} & \text{on each } [c_k, d_k]. \end{cases}$$

Definition 2. ([6]). A sequence $\{E_n\}$ of sets whose union is E is called an E-form with parts E_n . If, moreover, each part E_n is closed in E (i.e., $E_n = P_n \cap E$, where P_n is a closed set; so $P_n = \overline{E}_n$), then the E-form is said to be closed. An expanding E-form is called an E-chain.

Definition 3. Let *E* be a real set and $f : E \to \mathbb{R}$.

- f is said to be [VBG] (respectively [ACG]) on E if there is a closed E-form $\{E_n\}$ such that f is VB (respectively AC) on each E_n .
- f is said to be ACG on E if there is an E-form $\{E_n\}$ such that f is AC on each E_n . Note that ACG here differs from the definition given in [5], because f is not supposed to be continuous.

Lemma 1. ([8]). For every closed E-form $\{E_n\}$, there is a closed E-chain $\{Q_n\}$ such that $Q_n = \bigcup_{k \leq n} Q_{kn}$, where $Q_{kn} \subseteq Q_{km} \subseteq E_k$ for all k and for

 $m \geq n \geq k$, and $d(Q_{in}, Q_{jn}) \geq 1/n$ for $i \neq j$. (Here d denotes the usual metric distance).

3 The Conditions PAC, (PAC), [PAC]

Definition 4. Let $Q \subset \mathbb{R}$, $f : Q \to \mathbb{R}$, $E \subseteq Q$ and r > 0. Put

- (Sarkhel, Kar, [8]) $V(f; E; r) = \sup\{\sum_{i=1}^{n} |f(b_i) f(a_i)| : \{[a_i, b_i]\}_{i=1}^{m}$ is a finite set of nonoverlapping closed intervals with the endpoints in Eand $\sum_{i=1}^{m} (b_i - a_i) < r\};$
- (Sarkhel, Kar, [8]) $V(f; E; 0) = \inf_{r>0} V(f; E; r);$
- (Sarkhel, Kar, [8]) $PV(f; E) = \inf\{\sup_n V(f; E_n; 0) : \{E_n\} \text{ is an } E-chain\};$
- $[PV](f; E) = \inf\{\sum_{n} V(f; E_n; 0) : \{E_n\} \text{ is a closed } E\text{-form}\};$
- $\mu_f(E) = \inf\{\sum_n V(f; E_n; 0) : \{E_n\} \text{ is an } E\text{-form}\}.$

Remark 1. Let *E* be a real set and $f : E \to \mathbb{R}$. Then *f* is *AC* on *E* if and only if V(f; E; 0) = 0 ([8], p. 337).

Definition 5. ([8]). Let *E* be a real set and $f: E \to \mathbb{R}$.

- (Sarkhel, Kar, [8]) f is said to be (PAC) on E if PV(f; E) = 0.
- f is said to be [PAC] on E if [PV](f; E) = 0.
- f is said to be *PAC* on E if $\mu_f(E) = 0$ (our definition is different from that of [7]; see Remark 3).
- (Sarkhel, De, [7]) f is said to be (PAC)G on E if there is an E-form $\{E_n\}$ such that f is (PAC) on each E_n .
- f is said to be [PAC]G on E if there is an E-form $\{E_n\}$ such that f is [PAC] on each E_n .

Theorem 1 (Sarkhel). ([8]). Let P be a real set, $f, g : P \to \mathbb{R}$, $E \subseteq P$, $a, b \in \mathbb{R}$. We have each of the following assertions.

- (i) $PV(af + bg; E) \le |a| \cdot PV(f; E) + |b| \cdot PV(g; E).$
- (*ii*) If PV(g; E) = 0, then PV(f + g; E) = PV(f; E).
- (*iii*) If $m^*(E) = 0$, then $m^*(f(E)) \le PV(f; E)$.
- (iv) If $PV(f; E) < +\infty$, then $f \in [VBG]$ on E.

- (v) $PV(f; E) \leq \sum_{n} PV(f; E_n)$ whenever $\{E_n\}$ is a closed E-form.
- (vi) If $f, g \in (PAC)$ on E, then $f \cdot g \in (PAC)$ on E.

Corollary 1. Let E be a real set and $\mathcal{A} = \{f : E \to \mathbb{R} : f \in (PAC) \text{ on } E\}$. Then \mathcal{A} is an algebra.

PROOF. See Theorem 1, (i), (vi).

Proposition 1. Let Q be a real set, $f: Q \to \mathbb{R}$ and $E \subseteq Q$. We have:

- (*i*) $\mu_f(E) \le [PV](f; E);$
- (ii) $PV(f; E) \leq [PV](f; E);$
- (iii) $[PV](f; E) \leq \sum_{n} [PV](f; E_n)$ whenever $\{E_n\}$ is a closed E-form;
- (iv) $\mu_f : \mathcal{P}(Q) \to [0, +\infty]$ is a metric outer measure.

PROOF. (i) This is obvious.

(ii) Suppose that $[PV](f; E) = M < +\infty$ (if $M = +\infty$, there is nothing to prove). Then for $\epsilon > 0$, it follows that there exist a closed *E*-form $\{E_n\}$ and a sequence of positive numbers $\{r_n\}$ such that $\sum_n V(f; E_n; r_n) < M + \epsilon$. By Lemma 1, there exists a closed *E*-chain $\{Q_n\}$ such that $Q_n = \bigcup_{k=1}^n Q_{kn}$, $Q_{kn} \subseteq Q_{km} \subseteq E_k$ for all k and $m \ge n \ge k$ and

$$d(Q_{in}, Q_{jn}) \ge \frac{1}{n} \quad \text{for } i \ne j.$$
(1)

Let $\rho_n = \min\left\{r_1, r_2, \ldots, r_n, \frac{1}{2n}\right\}$. Let $\{[a_p, b_p]\}_{p=1}^q$ be a finite set of nonoverlapping closed intervals with the endpoints in Q_n and $\sum_{p=1}^q (b_p - a_p) < \rho_n$. By (1), both endpoints of an interval $[a_p, b_p]$ belong to some Q_{in} . It follows that

$$\sum_{p=1}^{q} |f(b_p) - f(a_p)| \le \sum_{i=1}^{n} V(f; Q_{in}; \rho_n) \le \sum_{i=1}^{n} V(f; E_i; r_i) < M + \epsilon \text{ for all } n.$$

Therefore $PV(f; E) \leq M$.

(iii) We may suppose that $\sum_{n} [PV](f; E_n; 0) < +\infty$ (otherwise there is nothing to prove). Let $\epsilon > 0$. Then for every positive integer k, there exists a closed E_k -form $\{E_{kn}\}$ and a sequence of positive numbers $\{r_{kn}\}$ such that

$$\sum_{n} V(f; E_{kn}; r_{kn}) < [PV](f; E_k) + \frac{\epsilon}{2^k}.$$

Characterizations of $VBG \cap (N)$

But $\{E_{kn}\}$ is a closed *E*-form, and

$$\sum_{k} \sum_{n} V(f; E_{kn}; r_{kn}) < \epsilon + \sum_{k} [PV](f; E_k).$$

It follows that $[PV](f; E) \leq \epsilon + \sum_{k} [PV](f; E_k)$. Since ϵ is arbitrary, we obtain that $[PV](f; E) \leq \sum_{k} [PV](f; E_k)$.

(iv) Clearly $\mu_f(\emptyset) = 0$ and μ_f is an increasing set-function; i.e., $\mu_f(A) \leq \mu_f(B)$ whenever $A \subseteq B$. As in (iii) we obtain that

$$\mu_f(\cup_n E_n) \le \sum_n \mu_f(E_n) \,. \tag{2}$$

Let E_1 , E_2 be such that $d(E_1; E_2) = r > 0$. Suppose that $\mu_f(E_1 \cup E_2) < +\infty$ (if $\mu_f(E_1 \cup E_2) = +\infty$, by (2), it follows that $\mu_f(E_1 \cup E_2) = \mu_f(E_1) + \mu_f(E_2)$). For $\epsilon > 0$ there exist a $E_1 \cup E_2$ -form $\{P_n\}$ and a sequence of positive numbers $\{r_n\}$ such that

$$\sum_{n} V(f; P_n; r_n) < \mu_f(E_1 \cup E_2) + \epsilon \,.$$

Let $P_{1n} = E_1 \cap P_n$, $P_{2n} = E_2 \cap P_n$ and $\rho_n = \min\{r_n, r\}$. Then

$$\mu_f(E_1) + \mu_f(E_2) \le \sum_n V(f; P_{1n}; \frac{\rho_n}{2}) + \sum_n V(f; P_{2n}; \frac{\rho_n}{2}) \le \\ \le \sum_n V(f; P_n; \rho_n) \le \sum_n V(f; P_n; r_n) \le \mu_f(E_1 \cup E_2) + \epsilon.$$

Since ϵ is arbitrary and μ_f is an outer measure, we obtain that $\mu_f(E_1 \cup E_2) = \mu_f(E_1) + \mu_f(E_2)$.

Lemma 2. Let E be a real set and $f : E \to \mathbb{R}$. If $f \in [ACG]$ on E, then $f \in [PAC]$ on E.

PROOF. Let $\epsilon > 0$. Since $f \in [ACG]$ on E, there exists a closed E form $\{E_n\}$ such that $f \in AC$ on each E_n . For $\epsilon/2^n$, let $r_n > 0$ be given by the fact that $f \in AC$ on E_n . Then $\sum_n V(f; E_n; r_n) < \sum_n \epsilon/2^n = \epsilon$. Hence [PV](f; E) = 0. Therefore $f \in [PAC]$ on E.

4 Characterizations of $[VBG] \cap (N)$ on a Closed Set

Lemma 3. Let E be a real compact set, $f : E \to \mathbb{R}$, $x_0 \in E$ and $\epsilon > 0$. If $f \in VB$ on E, then there exists $\delta > 0$ such that

$$V(f; E \cap (x_0, x_0 + \delta)) < \epsilon$$
 and $V(f; E \cap (x_0 - \delta, x_0)) < \epsilon$.

Moreover, if $\{I_n\}_n$ is a sequence of abutting closed intervals such that $\cup_n I_n = (x_0 - \delta, x_0)$ or $\cup_n I_n = (x_0, x_0 + \delta)$, then $\sum_n V(f; E \cap I_n) < \epsilon$.

PROOF. Let $a = \inf E$, $b = \sup E$ and $F : [a, b] \to \mathbb{R}$, $F(x) = f_E(x)$ (see Definition 1). Then $F \in VB$ (see for example Corollary 2.7.2, (ii) of [1]). Let $V_F: [a, b] \to \mathbb{R},$

$$V_F(x) = \begin{cases} 0 & \text{if } x = a \\ V(F; [a, x]) & \text{if } x \in (a, b] \end{cases}$$

Since V_F is an increasing function on [a, b], $V_F(x_0 -) = \ell^-$ and $V_F(x_0 +) = \ell^+$ exist and are both finite. It follows that there exists a $\delta > 0$ such that

$$V_F((x_0 - \delta, x_0)) \subset (\ell^- - \epsilon, \ell^-)$$
 and $V_F((x_0, x_0 + \delta)) \subset (\ell^+, \ell^+ + \epsilon))$.

Let $\alpha, \beta \in E, \alpha < \beta$. Then

$$|f(\beta) - f(\alpha)| = |F(\beta) - F(\alpha)| \le V(F; [\alpha, \beta]) = V_F(\beta) - V_F(\alpha).$$

Therefore $V(f; E \cap (x_0, x_0 + \delta)) \leq \epsilon$. Clearly

$$\sum_{n} V(f; E \cap I_n) \le \sum_{n} V(F; I_n) = \sum_{n} V_F(\beta_n) - V_F(\alpha_n) < \epsilon \,,$$

where $\{I_n\}_n = \{[\alpha_n, \beta_n]\}_n$ are as in the hypotheses.

Lemma 4. Let E be a real compact set and $f: E \to \mathbb{R}$. If $f \in VB \cap (N)$, then [PV](f; E) = 0; i.e., $f \in [PAC]$ on E.

PROOF. The proof is similar to that of the second part of Theorem 3.6 of [8]. Since f is VB on E, it follows that f is continuous nearly everywhere on E. Let d_1, d_2, \ldots be the discontinuity points of f. By Lemma 3, for $\epsilon > 0$ and for each d_n we can find some intervals $I_n = (p_n, d_n)$ and $J_n = (d_n, q_n)$ such that $\sum_{k} (V(f; E \cap I_{nk}) + V(f; E \cap J_{nk})) < \epsilon/2^{n+1}$, whenever $\{I_{nk}\}_k$ and $\{J_{nk}\}_k$ are two sequence of closed intervals abutting end to end, with $\cup_k I_{nk} = I_n$ and $\cup_k J_{nk} = J_n$. It follows that $Q = E \setminus \cup_n (I_n \cup J_n)$ is a compact set and $f_{|Q|}$ is $\mathcal{C} \cap VB \cap (N) = AC$. (See the Banach–Zarecki Theorem; here \mathcal{C} denotes the class of continuous functions.) Therefore $f \in AC$ on Q. For $\epsilon/2$ let $r_0 > 0$ be given by the fact that $f \in AC$ on Q. Then

$$V(f;Q;r_0) + \sum_n \sum_k \left(V(f;E \cap I_{nk}) + V(f;E \cap J_{nk}) \right) < \frac{\epsilon}{2} + \sum_n \frac{\epsilon}{2^{n+1}} = \epsilon.$$

Therefore $[PV](f;E) = 0.$

Therefore [PV](f; E) = 0.

Theorem 2. Let E be a real compact set and $f : E \to \mathbb{R}$. The following assertions are equivalent.

(i)
$$f \in [PAC]$$
 on E .

- (ii) $f \in (PAC)$ on E.
- (iii) $f \in [VBG] \cap (N)$ on E.

PROOF. (i) \Rightarrow (ii) See Proposition 1, (ii).

(ii) \Rightarrow (iii) See Theorem 1, (iii), (iv).

(iii) \Rightarrow (i) Since $f \in [VBG] \cap (N)$, there is a closed *E*-form $\{E_n\}$ (Clearly each E_n is a closed set, because *E* is closed.) such that $f \in VB \cap (N)$ on each E_n . By Lemma 4, $f \in [PAC]$ on each E_n and by Proposition 1, (iii), $f \in [PAC]$ on *E*.

Remark 2. Theorem 2, (ii), (iii) is due to Sarkhel and Kar (see Theorem 3.6 of [8]).

5 Characterizations of VBG and ACG for Lebesgue Measurable Functions

Lemma 5. Let E be a real compact set and $f : E \to \mathbb{R}$ a continuous function. The following assertions are equivalent.

- (i) $f \in VBG$ (respectively ACG) on E.
- (ii) $f \in VBG$ (respectively ACG) on Z, whenever Z is a null subset of E.

PROOF. This follows by Proposition 1.9.1, (iii) of [1], if we put P_1 = the class of continuous functions, and P = VB (respectively AC).

Theorem 3. Let E be a bounded Lebesgue measurable set, and $f : E \to \mathbb{R}$ a Lebesgue measurable function. The following assertions are equivalent.

- (i) f is VBG (respectively ACG) on E.
- (ii) f is VBG (respectively ACG) on Z, whenever Z is a null subset of E.

PROOF. (i) \Rightarrow (ii) This is obvious.

(ii) \Rightarrow (i) By Lusin's theorem (see [4], p. 106 or [5], p. 72), there exists an increasing sequence $\{E_n\}_n$ of closed subsets of E such that $m(\cup E_n) = m(E)$ and $f_{|E_n|}$ is continuous. Let $Z = E \setminus (\cup_n E_n)$. Then Z is a null subset of E. Hence f is VBG (resp. ACG) on Z. Fix some n. By Lemma 5, f is VBG (resp. ACG) on E_n . Therefore f is VBG (resp. ACG) on E.

6 Characterizations of $VBG \cap (N)$ on a Real Set

Lemma 6. Let $f : [a, b] \to \mathbb{R}$, $f \in VB$ on [a, b]. Consider the curve

 $C: X(t) = t; \quad Y(t) = f(t), \quad t \in [a, b]$

and let $Z = \{x \in [a,b] : f'(x) \text{ does not exist (finite or infinite)}\}$. Let $S : [a,b] \to \mathbb{R}$, where S(x) is the length of the curve C on the interval [a,x]. Then $m^*(S(Z)) = 0$.

PROOF. Let $C_f = \{x \in [a,b] : f \text{ is continuous at } x\}$. Then $[a,b] \setminus C_f$ is countable (see [4], p. 219). Let $N = Z \cap C_f$. Then $m^*(S(N)) = 0$ (see [5], pp. 125–126). It follows that $m^*(S(Z)) = 0$.

Lemma 7. Let $f : [a,b] \to \mathbb{R}$, $f \in VB$ on [a,b]. Let $Z = \{x \in [a,b] : f'(x)$ does not exist (finite or infinite) $\}$. Then $\mu_f(Z) = 0$, i.e. $f \in PAC$ on Z.

PROOF. By Lemma 6, $m^*(S(Z)) = 0$. For $\epsilon > 0$, there exists an open set G such that $S(Z) \subset G$ and $m(G) < \epsilon$. Let $\{(\alpha_i, \beta_i)\}_i$ be the components of G (a component is a maximal open interval contained in G). We may suppose without loss of generality that $S(Z) \cap (\alpha_i, \beta_i) \neq \emptyset$. Let $Z_i = \{x \in Z : S(x) \in (\alpha_i, \beta_i)\}$. Since we always have that $|f(\beta) - f(\alpha)| \leq S(\beta) - S(\alpha)$ and S is strictly increasing, it follows that $V(f; Z_i) < \beta_i - \alpha_i$ and

$$\mu_f(Z) < \sum_i V(f; Z_i) < \sum_i (\beta_i - \alpha_i) < \epsilon.$$

Since ϵ is arbitrary, we obtain that $\mu_f(Z) = 0$.

Lemma 8. Let $E \subset \mathbb{R}$ and $f : E \to \mathbb{R}$. If $f \in ACG$ on E, then $\mu_f(E) = 0$.

PROOF. Let $\epsilon > 0$. Since $f \in ACG$ on E, there exists an E-form $\{E_n\}$ such that f is AC on each E_n . For $\epsilon/2^n$, let $r_n > 0$ be given by the fact that f is AC on E_n . Then $\sum_n V(f; E_n; r_n) < \epsilon$. Hence $\mu_f(E) = 0$.

Lemma 9. Let $E \subset \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose that $m^*(f(E)) = 0$ and that there exists an E-form $\{E_n\}$ such that f is monotone on each E_n . Then $\mu_f(E) = 0$.

PROOF. Since $m^*(f(E)) = 0$ it follows that $m^*(f(E_n)) = 0$ for each n. Let $\epsilon > 0$ and let $G_n = \bigcup_i (\alpha_{ni}, \beta_{ni})$ be an open set such that $f(E_n) \subset G_n$ and $m^*(G_n) < \epsilon/2^n$, where $\{(\alpha_{ni}, \beta_{ni})\}_i$ is a sequence of nonoverlapping open intervals. Let $E_{ni} = \{x \in E_n : f(x) \in (\alpha_{ni}, \beta_{ni})\}$. Then

$$\sum_{n} \sum_{i} V(f; E_{ni}) < \sum_{n} \sum_{i} (\beta_{ni} - \alpha_{ni}) < \epsilon.$$

Therefore $\mu_f(E) = 0$.

Characterizations of $VBG \cap (N)$

Lemma 10. Let E be a real bounded set and $f : E \to \mathbb{R}$. If $f \in VB \cap (N)$ on E, then $\mu_f(E) = 0$.

PROOF. Let $a, b \in \mathbb{R}$ such that $E \subseteq [a, b]$. Since $f \in VB$ on E, there exists a function $G : [a, b] \to \mathbb{R}$ such that $G_{|E} = f$ and $G \in VB$ on [a, b] (see Lemma 4.1 of [5], p. 221). Let $A = \{x \in [a, b] : G'(x) \text{ does not exist (finite or$ $infinite)}\}$. By Lemma 7, we obtain that $\mu_G(A) = 0$. Hence $\mu_f(A \cap E) = 0$. Let $B = \{x \in E : G'(x) = \pm \infty\}$. Then $m^*(B) = 0$. Since $f \in (N)$ on E, we have that $m^*(f(B)) = 0$. Also there exists a B-form $\{B_n\}$ such that Gis monotone on each B_n (see for example the proof of Theorem 10.1 of [5], p. 235). By Lemma 9, it follows that $\mu_f(B) = 0$. Let $C = \{x \in [a, b] : G'(x)$ exists and is finite}. Then $G \in AC^*G \subset ACG$ on C. Hence by Lemma 8, $\mu_G(C) = 0$; so $\mu_f(E \cap C) = 0$. Thus $\mu_f(E) = 0$ (see Proposition 1, (iv)). \Box

Lemma 11. Let Q be a real compact set, $E \subseteq Q$, $f : Q \to \mathbb{R}$ and r > 0. If f is continuous on Q, then $V(f; E; r) = V(f; \overline{E}; r)$.

PROOF. We always have $V(f; E; r) \leq V(f; \overline{E}; r)$. We show the converse. Let $V(f; E; r) = M < +\infty$ (if $M = +\infty$ there is nothing to prove). Let $\{[a_i, b_i]\}_{i=1}^m$ be a finite set of nonoverlapping closed intervals with the endpoints in \overline{E} and $\sum_{i=1}^m (b_i - a_i) < r$. Since f is continuous on Q, for $\epsilon > 0$, there exists $a_i^*, b_i^* \in E$ such that $\{[a_i^*, b_i^*]\}_{i=1}^m$ are nonoverlapping closed intervals, with

$$\sum_{i=1}^{m} (b_i^* - a_i^*) < r, \quad |f(a_i) - f(a_i^*)| < \epsilon/2m \text{ and } |f(b_i) - f(b_i^*)| < \epsilon/2m.$$

It follows that

$$\sum_{i=1}^{m} |f(b_i) - f(a_i)| \le \sum_{i=1}^{m} (|f(b_i) - f(b_i^*)| + |f(b_i^*) - f(a_i^*)| + |f(a_i) - f(a_i^*)|) < M + \epsilon.$$

Since ϵ is arbitrary, it follows that $V(f; \overline{E}; r) \leq M$.

Lemma 12. Let E be a real bounded set and $f : E \to \mathbb{R}$. If $f \in VB$ and $\mu_f(E) = 0$, then [PV](f; E) = 0. Hence PV(f; E) = 0.

PROOF. Let $\epsilon > 0$. Since $\mu_f(E) = 0$, there exist an *E*-form $\{E_n\}$ and a sequence of positive numbers $\{r_n\}$ such that

$$\sum_{n} V(f; E_n; r_n) < \frac{\epsilon}{2} \,. \tag{3}$$

Let $a, b \in \mathbb{R}$ such that $E \subseteq [a, b]$. Since $f \in VB$ on E, there exists a function $F : [a, b] \to \mathbb{R}$ such that $F_{|E} = f$ and $F \in VB$ on [a, b] (see Lemma 4.1 of [5],

p. 221). Let $D = \{d_n\}$ be the set of all discontinuity points of F. For each d_n there exist $I_n = (p_n, d_n)$ and $J_n = (d_n, q_n)$ (see Lemma 3) such that

$$\sum_{k} \left(V(F; E \cap I_{nk}) + V(F; E \cap J_{nk}) \right) < \frac{\epsilon}{2^{n+1}}, \qquad (4)$$

whenever $\{I_{nk}\}_k$ and $\{J_{nk}\}_k$ are two sequences of closed intervals abutting end to end with $\bigcup_k I_{nk} = I_n$ and $\bigcup_k J_{nk} = J_n$. Let $Q = [a, b] \setminus (\bigcup_n (I_n \cup J_n))$. Then Q is a compact set and

$$F_{|Q}$$
 is continuous. (5)

Let $Q_n = \overline{Q \cap E_n}$. Clearly $\{E \cap Q_n\}_n \cup \{E \cap I_{nk}\}_{n,k} \cup \{E \cap J_{nk}\}_{n,k}$ is a closed *E*-form. By (3), (4), (5) and Lemma 11, it follows that

$$\sum_{n} V(F;Q_n;r_n) + \sum_{n} \sum_{k} V(F;E \cap I_{nk}) + \sum_{n} \sum_{k} V(F;E \cap J_{nk}) < \epsilon.$$

Thus [PV](f; E) = 0. That PV(f; E) = 0 follows by Proposition 1, (ii).

Corollary 2. Let E be a real bounded set and $f : E \to \mathbb{R}$. If $f \in VB \cap (N)$, then [PV](f; E) = 0.

PROOF. By Lemma 10, $f \in VB$ and $\mu_f(E) = 0$. Now by Lemma 12, it follows that [PV](f; E) = 0.

Lemma 13. Let $E \subset \mathbb{R}$ and $f: E \to \mathbb{R}$. If $\mu_f(E) < +\infty$, then $f \in VBG$ on E.

PROOF. Since $\mu_f(E) < +\infty$, there exist an *E*-form $\{E_n\}$ and a sequence $\{r_n\}$ of positive numbers such that $\sum_n V(f; E_n; r_n) < \mu_f(E) + 1$. Hence $V(f; E_n; r_n) < \mu_f(E) + 1$. Then $f \in VB$ on each E_{nk} , $k = 0, \pm 1, \pm 2, \pm 3, \ldots$, where

$$E_{nk} = E_n \cap \left[k\frac{r_n}{2}, (k+1)\frac{r_n}{2}\right].$$

It follows that $f \in VBG$ on E.

Theorem 4. Let E be a real bounded set and $f : E \to \mathbb{R}$. The following assertions are equivalent.

- (i) $f \in VBG \cap (N)$ on E.
- (ii) f is [PAC]G on E.
- (iii) f is PAC on E.
- (iv) f is (PAC)G on E.

PROOF. (i) \Rightarrow (ii) Since $f \in VBG \cap (N)$ on E, there exists an E-form $\{E_n\}$ such that $f \in VB \cap (N)$ on each E_n . By Corollary 2, f is [PAC] on each E_n . Therefore f is [PAC]G on E.

(ii) \Rightarrow (iii) See Proposition 1, (i), (iv).

(iii) \Rightarrow (ii) By Lemma 13, $f \in VBG$ on E. Then there is an E-form $\{E_n\}$ such that $f \in VB$ on each E_n . Clearly $\mu_f(E_n) = 0$. By Lemma 12, we obtain that $[PV](f; E_n) = 0$. Hence $f \in [PAC]G$ on E.

(ii) \Rightarrow (iv) See Proposition 1, (ii).

(iv) \Rightarrow (i) Since f is (PAC)G on E, there exists an E-form $\{E_n\}$ such that $PV(f; E_n) = 0$ for each n. By Theorem 1, (iii), (iv), it follows that $f \in [VBG] \cap (N)$ on each E_n . Hence $f \in VBG \cap (N)$ on E.

Remark 3. Sarkhel and De introduced the following condition (Definition 5.1 of [7] or the remark on p. 337 of [8]).

• A function $f: E \to \mathbb{R}, E \subset \mathbb{R}$, is said to be **PAC** on E, if there is a countable subset E_1 of E such that f is (PAC) on $E \setminus E_1$.

Clearly **PAC** differs from PAC defined in the present paper. Also in [7] the following is proved.

• f is said to be **PACG** on E if there exists an E-form $\{E_n\}$ such that f is **PAC** on each E_n .

Clearly $(PAC)G \subset \mathbf{PACG}$ (see Definition 5). In [7] (see Theorem 5.2 and the proof of Theorem 5.3), Sarkhel and De showed that $\mathbf{PACG} \subseteq VBG \cap (N)$. By Theorem 4, (i), (iv), it follows that $\mathbf{PACG} = [PAC]G = (PAC)G = PAC = VBG \cap (N)$ on a real bounded set E.

In [3], Gordon introduced the AK_N integral.

• A function $f : [a, b] \to \mathbb{R}$ is said to be AK_N integrable, if there is a function $F : [a, b] \to \mathbb{R}$ such that $F \in VBG \cap (N) \cap (\text{approximately continuous})$ and $F'_{ap} = f \ a.e.$ on [a, b].

However, in his proof of the uniqueness of this integral he neglected to show that the difference of two functions belonging to $F \in VBG \cap (N) \cap$ (approximately continuous) is still (N). In [2] we show that $VBG \cap (N)$ is a linear space for Borel measurable functions and give a complete proof that the AK_N integral is well defined.

In [7] (Definition 7.1), Sarkhel and De introduced the PD-integral:

• A function $f : [a, b] \to \mathbb{R}$ is said to be *PD* integrable, if there is a function $F : [a, b] \to \mathbb{R}$ such that $F \in \mathbf{PACG} \cap (\text{proximally continuous})$ and $F'_{ap} = f \ a.e.$ on [a, b].

Since the class of approximately continuous functions (see [7]) contains strictly the class of approximately continuous functions and $\mathbf{PACG} = VBG \cap (N)$, it follows that the AK_N -integral is a special case of the PD-integral.

Corollary 3. Let E be a real bounded set and $\mathcal{A} = \{f : E \to \mathbb{R} : f \in VBG \cap (N) \text{ on } E\}$. Then \mathcal{A} is an algebra.

PROOF. Let $f, g \in \mathcal{A}, \alpha, \beta \in \mathbb{R}$. By Theorem 4, (i), (iv), we obtain that $f, g \in (PAC)G$ on E. Then there exists an E-form $\{E_n\}$, such that $f, g \in (PAC)$ on each E_n . Hence $PV(f; E_n) = PV(g; E_n) = 0$ for each n. By Theorem 1, (i), $PV(\alpha f + \beta g; E_n) = 0$. Hence $\alpha f + \beta g \in (PAC)G = VBG \cap (N)$ on E (see Theorem 4, (i), (iv)). It follows that \mathcal{A} is a real linear space. But $f \cdot g \in (PAC)$ on each E_n (see Theorem 1, (vi)); so $f \cdot g \in (PAC)G = VBG \cap (N)$ on E (see Theorem 4, (i), (iv)). Therefore \mathcal{A} is an algebra.

Theorem 5. Let E be a bounded Lebesgue measurable set, and let $f : E \to \mathbb{R}$. If f is a Lebesgue measurable function the following assertions are equivalent.

- (i) $f \in VBG \cap (N)$ on E
- (ii) $f \in [PAC]G$ on E.
- (iii) $f \in PAC$ on E.
- (iv) $f \in (PAC)G$ on E.
- (v) $f \in VBG \cap (N)$ on Z, whenever Z is a null subset of E.
- (vi) $f \in [PAC]G$ on Z, whenever Z is a null subset of E.
- (vii) $f \in PAC$ on Z, whenever Z is a null subset of E.

(viii) $f \in (PAC)G$ on Z, whenever Z is a null subset of E.

PROOF. (i) \Leftrightarrow (v) follows by Theorem 3; (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) and (v) \Leftrightarrow (vi) \Leftrightarrow (viii) \Leftrightarrow (viii) follow by Theorem 4.

Corollary 4. Let E be a real compact set and $f : E \to \mathbb{R}$. If f is continuous on E, then the following assertions are equivalent.

- (i) $f \in ACG$ on E.
- (ii) $f \in VBG \cap (N)$ on E.
- (iii) $f \in [PAC]$ on E.
- (iv) $f \in (PAC)$ on E.

(v) $f \in PAC$ on E;

(vi) $f \in ACG$ on Z, whenever Z is a null subset of E.

(vii) $f \in [PAC]$ on Z, whenever Z is a null subset of E.

(viii) $f \in (PAC)$ on Z, whenever Z is a null subset of E.

(ix) $f \in PAC$ on Z, whenever Z is a null subset of E.

PROOF. (i) \Leftrightarrow (ii) See Theorem 6.8 of [5], p. 228.

(ii) \Leftrightarrow (iii) \Leftrightarrow (iv) Since f is continuous, it follows that VBG = [VBG]. Now the assertions follow by Theorem 2.

(ii) \Leftrightarrow (v) See Theorem 5, (i), (iii).

(i) \Leftrightarrow (vi) See Lemma 5.

(vi) \Rightarrow (vii) Let Z be a null subset of E such that $f \in ACG$ on Z. Since f is continuous on E, it follows that $f \in [ACG]$ on Z. By Lemma 2, $f \in [PAC]$ on Z.

 $(\text{vii}) \Rightarrow (\text{viii})$ See Proposition 1, (ii). $(\text{viii}) \Rightarrow (\text{ii})$ See Theorem 5, (viii), (i). $(\text{ix}) \Leftrightarrow (\text{ii})$ See Theorem 5, (vii), (i).

7 Enhancements of the Ordinary Variation

Definition 6. Let *E* be a real bounded set, $f : E \to \mathbb{R}$ and $\delta : E \to (0, +\infty)$. Put

- $V_{\delta}^{1}(f; E) = \sup\{\sum_{i=1}^{n} |f(b_{i}) f(a_{i})| : \{[a_{i}, b_{i}]\}_{i=1}^{n} \text{ is a finite set of nonoverlapping closed intervals with the endpoints in } E, \text{ such that } 0 < b_{i} a_{i} < \min\{\delta(a_{i}), \delta(b_{i})\};$
- $V_{\delta}^2(f; E) = \sup\{\sum_{i=1}^n \mathcal{O}(f; [a_i, b_i] \cap E) : \{[a_i, b_i]\}_{i=1}^n \text{ is a finite set of nonoverlapping closed intervals with the endpoints in <math>E$, such that $0 < b_i a_i < \min\{\delta(a_i), \delta(b_i)\};$
- $V_{\delta}^{3}(f; E) = \sup\{\sum_{i=1}^{n} \mathcal{O}(f; [a_{i}, b_{i}] \cap E) : \{[a_{i}, b_{i}]\}_{i=1}^{n} \text{ is a finite set of nonoverlapping closed intervals; there exists } x_{i} \in [a_{i}, b_{i}] \cap E \text{ such that } [a_{i}, b_{i}] \subset (x_{i} \delta(x_{i}), x_{i} + \delta(x_{i}))\};$
- $V_{\delta}^4(f; E) = \sup\{\sum_{i=1}^n \mathcal{O}(f; [a_i, b_i] \cap E) : \{[a_i, b_i]\}_{i=1}^n \text{ is a finite set of nonoverlapping closed intervals; there exists } x_i \in \{a_i, b_i\} \cap E \text{ such that } [a_i, b_i] \subset (x_i \delta(x_i), x_i + \delta(x_i))\};$
- $V_{\delta}^{5}(f; E) = \sup\{\sum_{i=1}^{n} \mathcal{O}(f; [a_i, b_i] \cap E) : \{[a_i, b_i]\}_{i=1}^{n}$ is a finite set of nonoverlapping closed intervals with the endpoints in E, such that $0 < b_i a_i < \delta(a_i) + \delta(b_i);$

• $\nu_f^i(E) = \inf_{\delta} \{ V_{\delta}^i(f; E) \}, i = 1, 2, 3, 4, 5.$

Theorem 6. Let E be a real bounded set, $f, g : [a, b] \to \mathbb{R}$ and $\alpha, \beta \in \mathbb{R}$.

(i)
$$\nu_{\alpha f+\beta g}^{i}(E) \leq |\alpha| \cdot \nu_{f}^{i}(E) + |\beta| \cdot \nu_{g}^{i}(E), i = 1, 2, 3, 4, 5.$$

- (ii) If $\nu_g^i(E) = 0$, then $\nu_{f+g}^i(E) = \nu_f^i(E)$, i = 1, 2, 3, 4, 5.
- (iii) If $\max_{x \in E} \{ |f(x)|, |g(x)| \} = M < +\infty$, then

$$\nu_{f \cdot g}^{i}(E) \le M \cdot \left(\nu_{f}^{i}(E) + \nu_{g}^{i}(E)\right).$$

(iv) $PV(f; E) \leq \nu_f^1(E) \leq \nu_f^2(E) \leq \nu_f^3(E) = \nu_f^4(E) \leq \nu_f^5(E).$ PROOF. Let $\delta_1, \delta_2 : E \to (0, +\infty)$ and let $\delta(x) = \min\{\delta_1(x), \delta_2(x)\}.$

(i) We have

$$\begin{split} \nu^{i}_{\alpha f+\beta g}(E) &\leq V^{i}_{\delta}(\alpha f+\beta g; E) \leq |\alpha| \cdot V^{i}_{\delta}(f; E) + |\beta| \cdot V^{i}_{\delta}(g; E) \leq \\ &\leq |\alpha| \cdot V^{i}_{\delta_{1}}(f; E) + |\beta| V^{i}_{\delta_{2}}(g; E). \end{split}$$

Hence $\nu^i_{\alpha f + \beta g}(E) \le |\alpha| \cdot \nu^i_f(E) + |\beta| \cdot \nu^i_g(E).$

(ii) Clearly $\nu_g^i(E) = 0$ implies that $\nu_{-g}^i(E) = 0$. By (i) we have

$$\begin{split} \nu_f^i(E) &= \nu_{f+g-g}^i(E) \leq \nu_{f+g}^i(E) + \nu_{-g}^i(E) \\ &= \nu_{f+g}^i(E) \leq \nu_f^i(E) + \nu_g^i(E) = \nu_f^i(E) \,. \end{split}$$

Therefore $\nu_{f+g}^i(E) = \nu_f^i(E)$.

(iii) Let $x, y \in E, x < y$. Then

$$\begin{aligned} \left| f(y) \cdot g(y) - f(x) \cdot g(x) \right| &= \left| g(y) \cdot (f(y) - f(x)) + f(x) \cdot (g(y) - g(x)) \right| \\ &\leq M \cdot \left(\left| f(y) - f(x) \right| + \left| g(y) - g(x) \right| \right). \end{aligned}$$

It follows that

$$\begin{split} \nu_{f \cdot g}^{i}(E) &\leq V_{\delta}^{i}(f \cdot g; E) \leq M \cdot \left(V_{\delta}^{i}(f; E) + V_{\delta}^{i}(g; E)\right) \\ &\leq M \cdot \left(V_{\delta_{1}}^{i}(f; E) + V_{\delta_{2}}^{i}(g; E)\right). \end{split}$$

Therefore $\nu_{f \cdot q}^i(E) \leq M \cdot (\nu_f^i(E) + \nu_g^i(E)).$

(iv) We may suppose that $\nu_f^1(E) = M < +\infty$. (If $M = +\infty$, there is nothing to prove.) For $\epsilon > 0$ there is a $\delta : E \to (0, +\infty)$ such that $V_{\delta}^1(f; E) < M + \epsilon$. Let $E_k = \{x \in E : \delta(x) > 1/k\}, k = 1, 2, \ldots$ Then $\{E_k\}$ is an *E*-chain. Fix some k and let $\{[a_i, b_i]\}_{i=1}^m$ be a finite set of nonoverlapping closed intervals with the endpoints in $E_k, \sum_{i=1}^m (b_i - a_i) < 1/k$. Clearly

$$y - x < \min\{\delta(x), \delta(y)\}, \text{ whenever } x, y \in E_k \text{ and } 0 < y - x < \frac{1}{k}.$$

It follows that $\sum_{i=1}^{m} \mathcal{O}(f; [a_i, b_i] \cap E_k) < M + \epsilon$. Then $V(f; E_k; \frac{1}{k}) \leq M + \epsilon$. Hence $V(f; E_k; 0) \leq M + \epsilon$, for each k. Since ϵ is arbitrary, we obtain that $PV(f; E) \leq M$.

For $\delta: E \to (0, +\infty)$ we have $V_{\delta}^1(f; E) \leq V_{\delta}^2(f; E) \leq V_{\delta}^3(f; E)$. It follows that $\nu_f^1(E) \leq \nu_f^2(E) \leq \nu_f^3(E)$.

We show that $\nu_f^3(E) = \nu_f^4(E)$. Clearly $\nu_f^3(E) \ge \nu_f^4(E)$. Let $\{[a_i, b_i]\}_{i=1}^n$ be a finite set of nonoverlapping closed intervals such that there exists $x_i \in [a_i, b_i] \cap E$, with $[a_i, b_i] \subset (x_i - \delta(x_i), x_i + \delta(x_i))$. We may suppose without loss of generality that each $x_i \in (a_i, b_i)$. Then

$$\sum_{i=1}^{n} \mathcal{O}(f; [a_i, b_i] \cap E) \le \sum_{i=1}^{n} \mathcal{O}(f; [a_i, x_i] \cap E) + \sum_{i=1}^{n} \mathcal{O}(f; [x_i, b_i] \cap E) \le V_{\delta}^4(f; E).$$

Hence $V_{\delta}^{3}(f; E) \leq V_{\delta}^{4}(f; E)$. Thus $\nu_{f}^{3}(E) \leq \nu_{f}^{4}(E)$; so $\nu_{f}^{3}(E) = \nu_{f}^{4}(E)$. We show that $\nu_{f}^{4}(E) \leq \nu_{f}^{5}(E)$. Let $\{[a_{i}, b_{i}]\}_{i=1}^{n}$ be a finite set of nonoverlapping closed intervals such that there exists $x_{i} \in \{a_{i}, b_{i}\} \cap E$, with $[a_{i}, b_{i}] \subset (x_{i} - \delta(x_{i}), x_{i} + \delta(x_{i}))$. We may suppose without loss of generality that each $x_{i} = a_{i}$. For $\epsilon > 0$ there exists $y_{i} \in [a_{i}, b_{i}] \cap E$ such that

$$\mathcal{O}(f; [a_i, b_i] \cap E) \le \mathcal{O}(f; [a_i, y_i] \cap E) + \frac{\epsilon}{2^i}.$$

Then $y_i - a_i < \delta(a_i) + \delta(y_i)$. Hence

$$\sum_{i=1}^n \mathcal{O}(f; [a_i, b_i] \cap E) < \epsilon + \sum_{i=1}^n \mathcal{O}(f; [a_i, y_i] \cap E) < \epsilon + V_{\delta}^5(f; E) \,.$$

It follows that $V_{\delta}^4(f; E) \leq V_{\delta}^5(f; E)$. Therefore $\nu_f^4(E) \leq \nu_f^5(E)$.

Lemma 14. Let E be real bounded set and $f: E \to \mathbb{R}$. Then $m^*(f(E)) \le \nu^i_f(E), i = 1, 2, 3, 4, 5$.

PROOF. By Theorem 6, (iv), it is sufficient to prove the assertion for i = 1. Let $\nu_f^1(E) = M < +\infty$. (If $M = +\infty$, there is nothing to prove.) For $\epsilon > 0$, there exists a $\delta : E \to (0, +\infty)$ such that $V_{\delta}^1(f; E) < M + \epsilon/2$. Let $E_n = \{x \in E : \delta(x) > (b-a)/n\}$. Then $\{E_n\}$ is an *E*-chain. Fix some *n* and let

$$E_{nm} = E_n \cap \left[\frac{m-1}{n}(b-a), \frac{m}{n}(b-a)\right], \quad m = 1, 2, \dots, n$$

Clearly $m^*(f(E_n)) \leq \sum_{m=1}^n m^*(f(E_{nm}))$. For each m let $x_m, y_m \in E_{nm}$, $x_m < y_m$, such that

$$\mathcal{O}(f; E_{nm}) \le |f(y_m) - f(x_m)| + \frac{\epsilon}{2^{m+1}}.$$

Clearly $y_m - x_m < \min\{\delta(x_m), \delta(y_m)\}$. Then

$$\sum_{m=1}^{n} m^*(f(E_{nm})) \le \sum_{m=1}^{n} \mathcal{O}(f; E_{nm}) \le \sum_{m=1}^{n} |f(y_m) - f(x_m)| + \sum_{m=1}^{n} \frac{\epsilon}{2^{m+1}} < V_{\delta}^1(f; E) + \frac{\epsilon}{2} \le M + \epsilon.$$

Therefore $m^*(f(E_n)) \leq \sum_{m=1}^n m^*(f(E_{nm})) \leq M + \epsilon$. Since $\{E_n\}$ is increasing and $\cup E_n = E$, it follows that $m^*(f(E)) \leq M + \epsilon$. Since ϵ is arbitrary, we obtain that $m^*(f(E)) \leq M$.

Lemma 15. Let E be a real bounded set and $f : E \to \mathbb{R}$. Then $\nu_f^1(E) \leq \sum_n \nu_f^1(E_n)$, whenever $\{E_n\}$ is a closed E-form.

PROOF. Suppose that $\sum_{n} \nu_f^1(E_n) = M < +\infty$. (If $M = +\infty$ there is nothing to prove.) For $\epsilon > 0$, let $\delta_n : E_n \to (0, +\infty)$ such that $V_{\delta_n}^1(f; E_n) < \nu_f^1(E_n) + \epsilon/2^n$. By Lemma 1, there is a closed *E*-chain $\{Q_n\}$ such that $Q_n = \bigcup_{k \le n} Q_{kn}$, where $Q_{kn} \subset Q_{km} \subset E_k$ for all k and $m \ge n \ge k$, and $d(Q_{in}, Q_{jn}) \ge 1/n$ for $i \ne j$. Let $\delta : E \to (0, +\infty)$,

$$\delta(x) = \begin{cases} \delta_1(x) & \text{if } x \in Q_1\\ \min\{\frac{1}{2n}, \delta_1(x), \dots, \delta_n(x), d(x, Q_{n-1})\} & \text{if } x \in Q_n \setminus Q_{n-1}, n \ge 2. \end{cases}$$

(Since Q_{n-1} is closed in E we have that $d(x, Q_{n-1}) > 0$ for $x \in Q_n \setminus Q_{n-1}$.) Let $\{[a_p, b_p]\}_{p=1}^q$ be a finite set of nonoverlapping closed intervals with the endpoints in E, such that $b_p - a_p < \min\{\delta(a_p), \delta(b_p)\}, p = 1, 2, ..., n$. Fix some p and let s be the first positive integer such that $a_p, b_p \in Q_s$. Suppose for example that $a_p \in Q_s \setminus Q_{s-1}$. From the definition of δ it follows that $b_p \in Q_s \setminus Q_{s-1}$. Then

$$\delta(a_p) \le \min\left\{\frac{1}{2s}, \delta_1(a_p), \dots, \delta_s(a_p)\right\}$$

and

$$\delta(b_p) \le \min\left\{\frac{1}{2s}, \delta_1(b_p), \dots, \delta_s(b_p)\right\}.$$

Let $k \leq s$ be such that $a_p \in Q_{ks}$. Since $b_p - a_p < \delta(a_p) < 1/s$, it follows that b_p belongs to the same $Q_{ks} \subset E_k$. Clearly $b_p - a_p < \min\{\delta_k(a_p), \delta_k(b_p)\}$. It follows that

$$\sum_{p} |f(b_p) - f(a_p)| \le \sum_{k} \left(\nu_f^1(E_k) + \frac{\epsilon}{2^k} \right) < M + \epsilon.$$

Hence $V_{\delta}^{1}(f; E) \leq M + \epsilon$. Thus $\nu_{f}^{1}(E) \leq M + \epsilon$. Since ϵ is arbitrary, we obtain that $\nu_{f}^{1}(E) \leq M$.

8 A Characterization of a Lebesgue Measurable Function f, Satisfying VBG \cap (N), Using μ_{f}^{i}

Lemma 16. Let $f : [a,b] \to \mathbb{R}$ and let $Z = \{x \in [a,b] : f \text{ is continuous at } x; f'(x) \text{ does not exist (finite or infinite)}\}$. If $f \in VB$ on [a,b], then $\nu_f^i(Z) = 0$, i = 1, 2, 3, 4, 5.

PROOF. By Theorem 6, (iv), it is sufficient to prove the assertion for i = 5. By Lemma 6, $m^*(S(Z)) = 0$. For $\epsilon > 0$, there exists an open set G such that $S(Z) \subset G = \bigcup_i (\alpha_i, \beta_i)$ and $m(G) < \epsilon$, where $\{(\alpha_i, \beta_i)\}_i$ are nonoverlapping open intervals and $S(Z) \cap (\alpha_i, \beta_i) \neq \emptyset$. Since f is continuous at each point of Z, using Theorem 8.4 of [5] (p. 123), it follows that S is continuous at each point of Z. Let $Z_i = \{x \in Z : S(x) \in (\alpha_i, \beta_i)\}$. Clearly $Z = \bigcup Z_i$. Then there exists a $\delta: Z \to (0, +\infty)$ such that $S((x - \delta(x), x + \delta(x))) \subset (\alpha_i, \beta_i)$ whenever $x \in Z_i$. Let $\{[a_j, b_j]\}_{j=1}^m$ be a finite set of nonoverlapping closed intervals with the endpoints in Z and $0 < b_j - a_j < \delta(a_j) + \delta(b_j)$. Fix some $[a_j, b_j]$ and let $c_j \in (a_j, a_j + \delta(a_j)) \cap (b_j - \delta(b_j), b_j)$. Suppose that $a_j \in Z_i$ and $b_j \in Z_k$. Then $S(c_j) \in (\alpha_i, \beta_i) \cap (\alpha_k, \beta_k)$; so i = k and $b_j \in Z_i$ too. Consequently $S(b_j) \in (\alpha_i, \beta_i)$. Hence $\alpha_i < S(a_j) < S(b_j) < \beta_i$ (because S is strictly increasing). But $|f(y) - f(x)| \le S(y) - S(x)$ whenever $a \le x < y \le b$. It follows that $\sum_{j=1}^{m} \mathcal{O}(f; [a_j, b_j] \cap Z) \leq \sum_{j=1}^{m} S(b_j) - S(a_j) \leq \sum_i (\beta_i - \alpha_i) < \epsilon$. Then $V_{\delta}^{5}(f;Z) \leq \epsilon$. Hence $\nu_{\delta}^{5}(Z) \leq \epsilon$. Since ϵ is arbitrary, $\nu_{f}^{5}(Z) = 0$. \square

Lemma 17. Let E be a bounded null set and $f: E \to \mathbb{R}$. If $f \in AC$ on E, then $\nu_f^i(E) = 0, i = 1, 2, 3, 4, 5$.

PROOF. By Theorem 6, (iv), it is sufficient to prove the assertion for i = 5. For $\epsilon > 0$ let $\delta > 0$ be given by the fact that $f \in AC$ on E. Since E is a null set, there exists an open set G such that $E \subset G$ and $m(G) < \delta$. Let $\eta : E \to (0, +\infty)$ be such that $(x - \eta(x), x + \eta(x)) \subset G$. Let $\{[a_i, b_i]\}_{i=1}^m$ be a finite set of nonoverlapping closed intervals with the endpoints in E, such that $0 < b_i - a_i < \eta(a_i) + \eta(b_i)$. Clearly $[a_i, b_i] \subset G$. It follows that $\sum_{i=1}^m (b_i - a_i) < m(G)$. Since $\sum_{i=1}^m \mathcal{O}(f; [a_i, b_i] \cap E) < \epsilon$, it follows that $V_\eta^{\tau}(f; E) \leq \epsilon$, and consequently $\nu_f^{\tau}(E) \leq \epsilon$. Since ϵ is arbitrary, we obtain that $\nu_f^{\tau}(E) = 0$.

Lemma 18. Let $f : [a,b] \to \mathbb{R}$ and $A \subseteq \{x \in [a,b] : f \text{ is continuous at } x\}$. If f is increasing on A, then $m^*(f(A)) = \nu_f^i(A)$, i = 1, 2, 3, 4, 5.

PROOF. We always have $m^*(f(A)) \leq \nu_f^i(A)$ (see Lemma 14). We show the converse. Suppose that $m^*(f(A)) < +\infty$. (If $m^*(f(A)) = +\infty$, there is nothing to prove.) By Theorem 6, (iv), it is sufficient to prove the assertion for i = 5. For $\epsilon > 0$ let G be an open set such that $f(A) \subset G$ and $m^*(f(A)) + \epsilon > m(G)$. Let $G = \bigcup_i (\alpha_i, \beta_i)$, where $\{(\alpha_i, \beta_i)\}_i$ is a sequence of nonoverlapping open intervals. Then $A = \bigcup_i A_i$, where $A_i = \{x \in A : f(x) \in (\alpha_i, \beta_i)\}$. Since f is continuous at each point of A, there is a $\delta : A \to (0, +\infty)$ such that $f((x - \delta(x), x + \delta(x))) \subset (\alpha_i, \beta_i)$ if $x \in A_i$. (This is possible because f is continuous at each point of A, there is a $\delta : A \to (0, +\infty)$ such that $f((x - \delta(x), x + \delta(x))) \subset (\alpha_i, \beta_i)$ if $x \in A_i$. (This is possible because f is continuous at each point of A, there is a $\delta : A \to (0, +\infty)$ such that $f((x - \delta(x), x + \delta(x))) \subset (\alpha_i, \beta_i)$ if $x \in A_i$. This is possible because f is continuous at each point of A, there is a $\delta : A \to (0, +\infty)$ such that $f((x - \delta(x), x + \delta(x))) \subset (\alpha_i, \beta_i)$ if $x \in A_i$. This is possible because f is continuous at each point of A, there is a $\delta : A \to (0, +\infty)$ such that $f((x - \delta(x), x + \delta(x))) \subset (\alpha_i, \beta_i)$ if $x \in A_i$. This is possible because f is continuous at each point of A.) Let $\{[a_j, b_j]\}_{j=1}^m$ be a finite set of nonoverlapping closed intervals with the endpoints in A, with $0 < b_j - a_j < \delta(a_j) + \delta(b_j)$. Let $c_j \in (\alpha_j, a_j + \delta(a_j)) \cap (b_j - \delta(b_j), b_j)$. Suppose that $a_j \in A_i$ and $b_j \in A_k$. Then $f(c_j) \in (\alpha_i, \beta_i) \cap (\alpha_k, \beta_k)$; so i = k and $b_j \in A_i$ too. Consequently $f(b_j) \in (\alpha_i, \beta_i)$. Since f is increasing on A, we have $\alpha_i < f(a_j) \leq f(b_j) < \beta_i$ and $\sum_{j=1}^m \mathcal{O}(f; [a_j, b_j] \cap A) = \sum_{j=1}^m |f(b_j) - f(a_j)| \leq \sum_i (\beta_i - \alpha_i) < m^*(f(A)) + \epsilon$. Thus $V_{\delta}^{\delta}(f; A) \leq m^*(f(A)) + \epsilon$, and since ϵ is arbitrary, $\nu_j^{\delta}(A) \leq m^*(f(A))$.

Lemma 19. Let E be a real bounded set and $f : E \to \mathbb{R}$. If $f \in VB$ on E, then the following assertions are equivalent for i = 1, 2, 3, 4, 5:

- (i) $f \in (N)$ on E;
- (ii) for every null set $Z \subseteq E$ there exists a Z-form $\{Z_n\}$ such that $\nu_f^i(Z_n) = 0$, for each n.

PROOF. (i) \Rightarrow (ii) Since $f \in VB$ on E, there exists a function $F : [a, b] \to \mathbb{R}$ such that $F|_E = f$ and $F \in VB$ on [a, b] (see Lemma 4.1 of [5], p. 221). Let $D = \{x \in [a, b] : F$ is not continuous at $x\}$. Then D is countable (see [4], p. 219). Let $A = \{x \in [a, b] \setminus D : F'(x) \text{ does not exist (finite or infinite)}\}$. By Lemma 16, $\nu_F^i(A) = 0$; so $\nu_f^i(A \cap E) = 0$. Let $B = \{x \in E \setminus D : F'(x) = \pm \infty\}$. Then $m^*(B) = 0$. Since $F \in (N)$ on E, we obtain that $m^*(F(B)) = 0$. Also, there exists a B-form $\{B_n\}$ such that F is monotone on each B_n . Then $\nu_f^i(B_n) = 0$ (see Lemma 18). Let $C = \{x \in [a, b] : F'(x) \text{ exists and is finite}\}$. Then $F \in AC^*G \subset ACG$ on C. It follows that there exists a C-form $\{C_n\}$ such that $F \in AC$ on each C_n . Let Z be a null subset of E and $Z_o = A \cap Z$. Then $\nu_f(Z_o) = 0$. Let $D_1 = Z \cap D = \{d_1, d_2, \ldots\}$. Clearly $\nu_f^i(\{d_k\}) = 0$ and $\nu_f^i(Z \cap B_n) = 0$. By Lemma 17, $\nu_f^i(Z \cap C_n) = 0$. Therefore we have (ii).

(ii) \Rightarrow (i) This implication is always true. Let Z be a null subset of E. Then there exists a Z-form $\{Z_n\}$ such that $\nu_f^i(Z_n) = 0$. By Lemma 14, $m^*(f(Z_n)) = 0$. It follows that $m^*(f(Z)) = 0$. Hence $f \in (N)$ on E.

Theorem 7. Let E be a real bounded set and $\mathcal{A} = \{f : E \to \mathbb{R} : f \in VB \cap (N)\}$. Then \mathcal{A} is an algebra.

Characterizations of $VBG \cap (N)$

PROOF. Let $f, g \in \mathcal{A}, \alpha, \beta \in \mathbb{R}$. Clearly $\alpha f + \beta g \in VB$. Let Z be a null subset of E. By Lemma 19, there exists a Z-form $\{Z_n\}$ such that $\nu_f^i(Z_n) = \nu_g^i(Z_n) =$ $0, i \in \{1, 2, 3, 4, 5\}$. By Theorem 6, (i) we have that $\nu_{\alpha f + \beta g}^i(Z_n) = 0$. Hence $\alpha f + \beta g \in (N)$ on E (see Lemma 19). Therefore \mathcal{A} is a real linear space. Clearly $f \cdot g \in VB$ on E, and f and g are bounded on E. By Theorem 6, (iii), $\nu_{f \cdot g}^i(Z_n) = 0, i \in \{1, 2, 3, 4, 5\}$, and by Lemma 19, we obtain that $f \cdot g \in (N)$ on the set E.

Remark 4. As a consequence of Theorem 7, we obtain again Corollary 3.

Lemma 20. Let E be a real bounded set and $f: E \to \mathbb{R}$. If $\nu_f^i(E) < +\infty$, $i \in \{1, 2, 3, 4, 5\}$, then $f \in [VBG]$ on E.

PROOF. See Theorem 6, (iv) and Theorem 1, (iv).

Theorem 8. Let E be a bounded Lebesgue measurable set and $f : E \to \mathbb{R}$ a Lebesgue measurable function. For $i \in \{1, 2, 3, 4, 5\}$. The following assertions are equivalent.

(i) $f \in VBG \cap (N)$ on E.

(ii) for every null set $Z \subseteq E$ there is a Z-form $\{Z_n\}$ such that $\nu_f^i(Z_n) = 0$.

PROOF. (i) \Rightarrow (ii) See Lemma 19,

(ii) \Rightarrow (i) Let Z be a null subset of E. By hypothesis and Lemma 20, $f \in VBG$ on Z. It follows that $f \in VBG$ on E (see Theorem 3). By hypothesis and Lemma 14, we obtain that $m^*(f(Z)) = 0$. Hence $f \in (N)$ on the set E.

Remark 5. Consider the following definition.

Let *E* be a real set. A function $\nu : \mathcal{P}(E) \to [0, +\infty]$ is said to be $\sigma - AC$ on *E*, if for every null set $Z \subseteq E$ there is a *Z*-form $\{Z_n\}$ such that $\nu(Z_n) = 0$.

In this terms Theorem 8 can be written as follows.

Let E be a bounded Lebesgue measurable set, $f : E \to \mathbb{R}$ a Lebesgue measurable function and $i \in \{1, 2, 3, 4, 5\}$. Then $f \in VBG \cap (N)$ on E if and only if ν_f^i is $\sigma - AC$ on E.

References

- V. Ene, *Real functions current topics*, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
- [2] V. Ene, On Borel measurable functions that are VBG and (N), Real Analysis Exchange, 22 (1996–97), 688–695.
- [3] R. Gordon, Some comments on an approximately continuous Khintchine integral, Real Analysis Exchange, 20 (1994–95), 831–841.
- [4] I. P. Natanson, Theory of functions of a real variable, 2nd. rev. ed., Ungar, New York, 1961.
- [5] S. Saks, *Theory of the integral*, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.
- [6] D. N. Sarkhel, A wide Perron integral, Bull. Austral. Math. Soc. 34 (1986), 233–251.
- [7] D. N. Sarkhel and A. K. De, *The proximally continuous integrals*, J. Austral. Math. Soc. (Series A) **31** (1981), 26–45.
- [8] D. N. Sarkhel and B. Kar, (PVB) functions and integration, J. Austral. Math. Soc. (Series A) 36 (1984), 335–353.