Zbigniew Grande and Stanislaw P. Ponomarev, Institute of Mathematics, Pedagogical University, plac Weyssenhoffa 11, 85-072, Bydgoszcz, Poland e-mail: grande@wsp.bydgoszcz.pl

ON DIFFERENTIABILITY OF FUNCTIONS OF TWO VARIABLES

Abstract

Some special conditions (equidifferentiability or absolute equicontinuity) implying (or not) the differentiability of functions of two variables are considered.

1 Equidifferentiability

Let \mathbb{R} be the set of all reals. We denote by |x| the absolute value of $x \in \mathbb{R}$, by |(y, z)| the Euclidean norm of $(y, z) \in \mathbb{R}^2$, and by |I| the length of the interval $I \subset \mathbb{R}$. Let

$$\mathcal{A} = \{ f_s : \mathbb{R} \to \mathbb{R}; s \in S \},\$$

where S denotes a set of indexes. We say that the functions of the family \mathcal{A} are equidifferentiable at a point $x \in \mathbb{R}$ if they are differentiable at x and for every positive real η there is a positive real δ such that for each function $f \in \mathcal{A}$ and for all points t such that $0 < |t - x| < \delta$ the inequality

$$\left|\frac{f(t) - f(x)}{x - t} - f'(x)\right| < \eta.$$

holds. Now, let $F : \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables. It is well known that the differentiability of all sections $F_x(t) = F(x, t)$ and all sections $F^y(t) = F(t, y), x, y, t \in \mathbb{R}$, need not imply the differentiability of F.

Theorem 1. Let a function $F : \mathbb{R}^2 \to \mathbb{R}$ be given and let $(x, y) \in \mathbb{R}^2$ be a point such that the section F_x is differentiable at y and there is a positive real r such that the sections F^v , $v \in (y - r, y + r)$, are equidifferentiable at x. If

(1),
$$\lim_{v \to y} \frac{\partial F}{\partial x}(x,v) = \frac{\partial F}{\partial x}(x,y)$$

then the function F is differentiable at the point (x, y).

Key Words: differentiability, sections, polynomial, equidifferentiability, absolute equicontinuity. Mathematical Reviews subject classification: 26B05, 26B30, 26A46 Received by the editors September 22, 1997

tived by the cultors september 22, 13

PROOF. Let $a(v) = \frac{\partial F}{\partial x}(x, v), v \in (y-r, y+r)$ and $b = \frac{\partial F}{\partial y}(x, y)$. Fix a positive real η . Since the sections F^v , $v \in (y-r, y+r)$, are equidifferentiable at the point x, there is a positive real δ_1 such that for each point $u \in (x - \delta_1, x + \delta_1)$ and for each $v \in (y - r, y + r)$ we have

(2).
$$\left|\frac{F(u,v) - F(x,v)}{u-x} - a(v)\right| < \frac{\eta}{2}$$

By (1) and by the differentiability of the section F_x at y there is a positive real $\delta_2 < r$ such that for each point $v \in (y - \delta_2, y + \delta_2)$ the inequalities

(3)
$$\left|\frac{F(x,v) - F(x,y)}{v - y} - b\right| < \frac{\eta}{4}$$

and

$$(4) \qquad \qquad |a(v) - a(y)| < \frac{\eta}{4}$$

are valid. Let

$$\delta = \min(\delta_1, \delta_2), \quad I = (x - \delta, x + \delta) \times (y - \delta, y + \delta).$$

Fix a point $(u, v) \in I$. Then, by (2), (3) and (4) we obtain

$$\begin{aligned} \left| \frac{F(u,v) - F(x,y) - a(y)(u-x) - b(v-y)}{|(u,v) - (x,y)|} \right| &\leq \\ \left| \frac{F(u,v) - F(x,v)}{u-x} - a(v) \right| + |a(v) - a(y)| + \\ \left| \frac{F(x,v) - F(x,y)}{v-y} - b \right| &< \frac{\eta}{2} + \frac{\eta}{4} + \frac{\eta}{4} = \eta. \end{aligned}$$

So,

$$\lim_{(u,v)\to(x,y)}\frac{F(u,v)-F(x,y)-a(x)(u-x)-b(v-y)}{|(u,v)-(x,y)|}=0.$$

and F is differentiable at (x, y).

Observe that the function

$$F(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{for} \quad (x,y) \neq (0,0) \\ 0 & \text{for} \quad (x,y) = 0,0) \end{cases}$$

satisfies the condition (1) for (x, y) = (0, 0), but it is not differentiable at the point (0, 0). So, for each r > 0 the sections F^v , $v \in (-r, r)$, are not equidifferentiable at 0. The next example shows that the condition (1) in Theorem 1 is essential.

Example 1. For n = 1, 2, ... let $I_n = [\frac{1}{n} - \frac{1}{4n^2}, \frac{1}{n} + \frac{1}{4n^2}] = [a_n, b_n]$, and

$$f_n(y) = \begin{cases} 0 & \text{if} \quad y = a_n \text{ or } y = b_n \\ 1 & \text{if} \quad y = \frac{a_n + b_n}{2} = c_n \\ \text{linear} & \text{on} & [a_n, c_n], \ [c_n, b_n]. \end{cases}$$

We let

$$f(y) = \begin{cases} f_n(y) & \text{for} \quad y \in I_n, n = 1, 2, \dots \\ 0 & \text{on} \quad \mathbb{R} \setminus \bigcup_n I_n \end{cases}$$

and F(x,y) = xf(y) for $(x,y) \in \mathbb{R}^2$. Then F is continuous on $\mathbb{R}^2 \setminus \{(x,0); x \neq 0\}$, the section F_0 is everywhere differentiable and the sections $F^y, y \in \mathbb{R}$, are equidifferentiable at 0. Now we will show that F is not differentiable at the point (0,0). Observe that F(0,0) = 0, $F(\frac{1}{n},\frac{1}{n}) = \frac{1}{n}$ for $n \ge 1$, $|(\frac{1}{n},\frac{1}{n})| = \frac{\sqrt{2}}{n}$ for $n \ge 1$ and $\frac{\partial F}{\partial x}(0,0) = \frac{\partial F}{\partial y}(0,0) = 0$. So, for $n \ge 1$ we obtain

$$\frac{F(\frac{1}{n},\frac{1}{n}) - F(0,0)}{|(\frac{1}{n},\frac{1}{n})|} = \frac{1}{\sqrt{2}},$$

and consequently the function F is not differentiable at the point (0, 0).

Theorem 2. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a function such that all sections F^v , $v \in \mathbb{R}$, are continuous and the section F_x is differentiable at a point y. Suppose that there is a positive real r and a linear set $A \subset (y-r, y+r)$ dense in the interval (y-r, y+r) such the the sections F^y , $y \in A$, are equidifferentiable at x and

$$\lim_{\substack{v \to y \\ v \in A}} \frac{\partial F}{\partial x}(x, v) = \frac{\partial F}{\partial x}(x, y).$$

Then F is differentiable at the point (x, y).

PROOF. Same as in the proof of Theorem 1 we can show that

$$\lim_{\substack{u \to x, v \to y \\ v \in A}} \frac{F(u, v) - F(x, y) - a(y)(u - x) - b(v - y)}{|(u, v) - (x, y)|} = 0,$$

where a(y) and b are the same as these in the proof of Theorem 1. By the continuity of the sections F_x , $x \in \mathbb{R}$, we obtain that the above limit is also equal to 0 if $(u, v) \to (x, y)$, so the function F is differentiable at (x, y). \Box

Theorem 3. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a function such that the section F_x is differentiable at a point y. Suppose that there is a positive real r such that the partial derivative $\frac{\partial F}{\partial x}$ is continuous on the open circle K((x, y), r). Then F is differentiable at the point (x, y).

603

PROOF. It suffices to prove that F satisfies the hypothesis of Theorem 1. Condition (1) follows from the continuity of partial derivative $\frac{\partial F}{\partial x}$ at (x, y). The existence and the boundedness of the partial derivative $\frac{\partial F}{\partial x}$ on some neighborhood $V \subset K((x, y), r)$ implies, by the LaGrange theorem, the equidifferentiability of the sections F^v , $v \in V_x = \{t : (x, t) \in V\}$ at the point x.

2 Absolute Equicontinuity

Now, let \mathcal{B} be a family of functions $f_s: I \to \mathbb{R}$, $s \in S$ and I = [0, 1]. We say that the functions of the family \mathcal{B} are absolutely equicontinuous if for every positive real η there is a positive real δ such that for each index $s \in S$ and for each family $\{I_i = [a_i, b_i]; i \leq k\}$ of closed subintervals of I with int $I_i \cap int I_j = \emptyset$ for $i \neq j$, $i, j \leq k$, (int I_i denotes the interior of I_i) and $\sum_{i \leq k} (b_i - a_i) < \delta$ the inequality $\sum_{i \leq k} |f_s(b_i) - f_s(a_i)| < \eta$ holds.

Theorem 4. Let $F : I^2 \to \mathbb{R}$ be a function such that the sections F_x , $x \in I$, are absolutely equicontinuous and the sections F^y , $y \in I$, are absolutely equicontinuous. Then F has the following property.

(P) For each positive real η there is a positive real δ such that for every family of closed intervals $I_1, \ldots, I_k; J_1, \ldots, J_k \subset I$ such that

(5)
$$\operatorname{int} I_i \cap \operatorname{int} I_j = \emptyset, \wedge \operatorname{int} J_i \cap \operatorname{int} J_j = \emptyset, \ i \neq j, \ i, j \leq k,$$

and

(6)
$$\sum_{i \le k;} (|I_i| + |J_i|) < \delta$$

the inequality $\sum_{i \leq k} \operatorname{diam}(F(I_i \times J_i)) < \eta$ holds $(\operatorname{diam}(X)$ denotes the diameter of the set X).

PROOF. Since the sections F_x , $x \in I$, and F^y , $y \in I$, are equicontinuous, the function F is continuous. Fix a positive real η . There is a positive real δ such that for every point $(x, y) \in I^2$ and for each family of closed intervals

$$K_1, K_2, \ldots, K_l \subset I$$

with int $K_i \cap \operatorname{int} K_j = \emptyset$ for $i \neq j i, j \leq l$, and $\sum_{i < l} |K_i| < \delta$ the inequalities

$$\sum_{i \leq l} \operatorname{diam}(F_x(K_i)) < \frac{\eta}{2} \text{ and } \sum_{i \leq l} \operatorname{diam}(F^y(K_i)) < \frac{\eta}{2}$$

hold.

Let $I_1, \ldots, I_k; J_1, \ldots, J_k \subset I$ be closed intervals satisfying conditions (5) and (6). Let

$$F(a_i, b_i) = \max_{(x, y) \in I_i \times J_i} F(x, y), \land F(c_i, d_i) = \min_{(x, y) \in I_i \times J_i} F(x, y), \text{ for } i \le k.$$

Then

$$\left|\sum_{i \le k} \operatorname{diam}(F(I_i \times J_i))\right| = \sum_{i \le k} (F(a_i, b_i) - F(c_i, d_i)) \le \sum_{i \le k} |F(a_i, b_i) - F(c_i, b_i)| + \sum_{i \le k} |F(c_i, b_i) - F(c_i, d_i)| < \frac{\eta}{2} + \frac{\eta}{2} = \eta,$$

and the proof is completed.

Example 2. For n = 1, 2, ... let $I_n \left[\frac{1}{n} - \frac{1}{4n^2} \right] = [a_n, b_n], J_n = \left[-\frac{1}{n}, \frac{1}{n} \right] = [c_n, d_n]$ and

$$f_n(y) = \begin{cases} 0 & \text{if } y = a_n \text{ or } y = b_n \\ 1 & \text{if } y = \frac{a_n + b_n}{2} = c_n \\ \text{linear} & \text{on } [a_n, c_n], [c_n, b_n]. \end{cases}$$

We let

$$f(y) = \begin{cases} f_n(y) & \text{for } y \in I_n, n = 1, 2, \dots \\ 0 & \text{on } \mathbb{R} \setminus \bigcup_n I_n \end{cases}$$

and

$$F(x,y) = \begin{cases} 0 = xf(y) & \text{if } y \in \mathbb{R} \setminus \bigcup_n I_n \\ xf(y) & \text{if } (x,y) \in J_n \times I_n, \, n = 1, 2, \dots \\ e_n f(y) & \text{if } x \le e_n \land y \in I_n, \, n = 1, 2, \dots \\ d_n f(y) & \text{if } x \ge d_n \land y \in I_n, \, n = 1, 2, \dots \end{cases}$$

Put

$$G(x,y) = \begin{cases} F(x,y) & \text{if } y \ge 0, \ x \le -2y \\ F(x,y) & \text{if } y \ge 0, \ x \ge 2y \\ 0 & \text{if } y < 0 \\ F(-y,y) + \frac{F(y,y) - F(-y,y)}{x+y} & \text{if } y > 0, \ x \in (-y,y). \end{cases}$$

Observe that the restricted function $g = G|I^2$ does not satisfy condition (P), but the sections $g^y, y \in I$, are absolutely equicontinuous on I and the sections $g_x, x \in I$, are absolutely continuous. The next example shows that there is a function $F : I^2 \to \mathbb{R}$ having absolutely equicontinuous sections F_x and F^y , $x, y \in I$, such that the set of points where F is not differentiable is of positive measure.

Example 3. Let $C \subset I$ be a Cantor set of positive measure and let $A = C \times C$. Since the set A is compact and the set C is nowhere dense, for each positive integer n there are points $(x_{n,i}, y_{n,i}) \subset (I \setminus C)^2$ for $i \leq k(n)$, such that

$$0 < \operatorname{dist}((x_{n,j}, y_{n,j}), A) = \inf\{|(x_{n,j}, y_{n,j}) - (x, y)|; (x, y) \in A\} < \min\{\operatorname{dist}(x_{n-1,i}, y_{n-1,i}), A); i \le k(n-1)\}, \ j \le k(n) \text{ for } n > 1,$$

 $x_{n_1,i_1} \neq x_{n_1,i_2} \land y_{n_1,i_1} \neq y_{n_1,i_1}$

for $(n_1, i_1) \neq (n_2, i_2), n_1, n_2 = 1, 2, \dots, i_j \leq k(n_j), j = 1, 2$, and

$$\forall_{(x,y)\in A} \forall_n \exists_{i \le k(n)} | (x,y) - (x_{n,i}, y_{n,i}) | < \frac{1}{n^2}$$

For each pair $(n, i), n \ge 1, i \le k(n)$, we can find a positive real $r_{n,i}$ such that

$$[x_{n_1,i_1} - r(n_1,i_1), x_{n_1,i_1} + r(n_1,i_1)] \cap [x_{n_2,i_2} - r(n_2,i_2), x_{n_2,i_2} + r(n_2,i_2)] = \emptyset$$

and

$$[y_{n_1,i_1} - r(n_1,i_1), y_{n_1,i_1} + r(n_1,i_1)] \cap [y_{n_2,i_2} - r(n_2,i_2), y_{n_2,i_2} + r(n_2,i_2)] = \emptyset$$

for $(n_1, i_1) \neq (n_2, i_2)$, $n_1, n_2 \geq 1$, $i_j \leq k_{n_j}$, j = 1, 2. Let $K_{n,i}$ be the circle with center $(x_{n,i}, y_{n,i})$ and radius r(n,i), let $S_{n,i}$ be the boundary of the circle $K_{n,i}$ and let $F_{n,i}: K_{n,i} \to [0, \frac{1}{n^2}]$, $n \geq 1$, $i \leq k(n)$, be the continuous function defined by

$$F_{n,i}(x,y) = \frac{\operatorname{dist}((x,y), S_{n,i})}{n^2 r(n,i)}.$$

Let

$$F(x,y) = \begin{cases} F_{n,i}(x,y) & \text{ for } (x,y) \in K_{n,i}, n \ge 1, i \le k(n), \\ 0 & \text{ on } I^2 \setminus \bigcup_{n,i} K_{n,i}. \end{cases}$$

For each point $(x, y) \in A$ and for each positive integer *n* there is a point $(x_{n,i}, y_{n,i})$ with $|(x_{n,i}, y_{n,i}) - (x, y)| < \frac{1}{n^2}$. Clearly, $\frac{\partial F}{\partial x}(x, y) = \frac{\partial F}{\partial y}(x, y) = 0$. So,

$$\frac{F(x_{n,i}, y_{n,i}) - F(x, y)}{|(x_{n,i}, y_{n,i}) - (x, y)|} \ge \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = 1,$$

and thus F is not differentiable at (x, y).

606

Now we will show that the sections F_x , $x \in I$, are absolutely equicontinuous. Fix a positive real η . There is an positive integer k with $\sum_{n>k} \frac{1}{n^2} < \frac{\eta}{2}$. Let δ be a positive real such that

$$\delta < \frac{\eta}{2\max_{n \le k; i \le k(n)} \left(\frac{1}{r(n,i)n^2}\right)}.$$

Suppose that closed intervals $\{I_i = [a_i, b_i]; i \leq j\}$ satisfy the following conditions:

$$\operatorname{int}(I_i) \cap \operatorname{int}(I_m) = \emptyset$$
 for $i \neq m$ and $i, m \leq j$.

and $\sum_{i \leq j} |I_i| < \delta$. Fix a point $x \in I$ and denote by K the set of all positive integers $l \leq j$ for which there is a pair (n, i) with $n \leq k$ such that $I_i \cap (K_{n,i})_x \neq \emptyset$ and by L the set $\{1, \ldots, j\} \setminus K$. Then

$$\sum_{i \le j} |F(x, b_i) - F(x, a_i)| = \sum_{i \in K} |F(x, b_i) - F(x, a_i)| + \sum_{i \in L} |F(x, b_i) - F(x, a_i)| < \frac{\eta}{2} + \frac{\eta}{2} = \eta,$$

and the sections F_x , $x \in I$, are absolutely equicontinuous. The proof that the sections F^y , $y \in I$, are absolutely equicontinuous is analogous.

3 Other Results.

It is well known that if the sections F_x and F^y , $x, y \in \mathbb{R}$, of a function $F : \mathbb{R}^2 \to \mathbb{R}$ are polynomials of degree $\leq n$, then F is a polynomial of degree $\leq n$. By the Baire category method we can show that if the sections F_x and F^y , $x, y \in \mathbb{R}$, are polynomials, then F is also a polynomial. In this section we will solve some analogous problems concerning the differentiability of functions of two variables.

Let $\mathcal{F} = \{f_0, f_1, \dots, f_n, \dots\}$ be a family of differentiable real functions defined on \mathbb{R} such that for every integer $n \ge 0$ and for each collection of different points $y_0, \dots, y_n \in \mathbb{R}$ we have

$$\det[f_i(y_j)]_{0 \le i,j \le n} \neq 0.$$

Furthermore, for $n = 0, 1, \ldots$, let

$$\mathcal{W}_n(\mathcal{F}) = \{g = \sum_{0 \le k \le n} a_k f_k; a_0, \dots, a_n \in \mathbb{R}\}$$

and suppose that there is a finite collection of points $y_0, \ldots, y_{k(n)}$ which is a determining set for the family $\mathcal{W}_n(\mathcal{F})$; **i.e.**, for each pair of functions $g_1, g_2 \in \mathcal{W}_n(\mathcal{F})$, if $g_1(y_i) = g_2(y_i)$ for $i = 0, \ldots, k(n)$, then $g_1(y) = g_2(y)$ for $y \in \mathbb{R}$.

Remark 1. Two important examples of such families \mathcal{F} are the following.

$$f_n(y) = y^n; n \ge 0, \quad y \in \mathbb{R}$$

and

$$f_{2n}(y) = \cos 2ny, \quad f_{2n+1}(y) = \sin (2n+1)y, \quad n \ge 0, \quad y \in \mathbb{R}.$$

We shall say that $F : \mathbb{R}^2 \to \mathbb{R}$ has locally differentiable sections F^y if for each $(x_0, y_0) \in \mathbb{R}^2$ there is an $\eta > 0$ such that the family $\{F^y; y \in (y_0 - \eta, y_0 + \eta)\}$ is equidifferentiable at x_0 .

Theorem 5. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a function with locally equidifferentiable sections F^y , $y \in \mathbb{R}$. If all sections F_x , $x \in \mathbb{R}$ are in $\mathcal{W}(\mathcal{F}) = \bigcup_{n \ge 0} \mathcal{W}_n(\mathcal{F})$, then for every nonempty perfect set $A \subset \mathbb{R}$ there is an open interval I such that $I \cap A \neq \emptyset$ and F is differentiable (as the function of two variables) at each point of the set $(A \cap I) \times \mathbb{R}$.

PROOF. Let $A \subset \mathbb{R}$ be a nonempty perfect set. For each integer $n \ge 0$ let

$$A_n = \{ x \in A; F_x \in \mathcal{W}_n(\mathcal{F}) \}$$

Since $A = \bigcup_{n\geq 0} A_n$ and since the set A is a complete space, by the Baire category theorem we obtain that there is an integer $i \geq 0$ such that the set A_i is of the second category in A. So there is an open interval I such that $I \cap A \neq \emptyset$ and $I \cap A_i$ is dense in $I \cap A$. There is a finite determining set $\{y_0, y_1, \ldots, y_{k(i)}\}$ for the family $\mathcal{W}_i(\mathcal{F})$. We can obviously assume that $k(i) \geq i$. Observe that for each point x the system of equations

$$\sum_{0 \le n \le k(i)} f_n(y_j) h_n(x) = F(x, y_j), \ 0 \le j \le k(i),$$

is a Cramer's system and it has unique solution $\{h_0(x), \ldots, h_{k(i)}(x)\}$. Since the functions $x \to F(x, y_j)$, $j = 0, 1, \ldots, k(i)$, are differentiable, the functions $x \to h_n(x)$ for $n = 0, 1, \ldots, k(i)$, are also differentiable.

For $(x, y) \in \mathbb{R}^2$ let $G(x, y) = \sum_{0 \le n \le k(i)} h_n(x) f_n(y)$. Fix a point $x \in A_i$ and observe that we have $G_x, F_x \in W_{k(i)}(\mathcal{F})$ and $G(x, y_n) = F(x, y_n)$ for $n = 0, 1, \ldots, k(i)$. Since $\{y_n; 0 \le n \le k(i)\}$ is a determining set for the family $W_{k(i)}(\mathcal{F})$, the equality F(x, y) = G(x, y) holds for all points $(x, y) \in A_i \times \mathbb{R}$. But since the sections F^y and $G^y, y \in \mathbb{R}$, are differentiable (and hence continuous) and the set A_i is dense in $I \cap A$, the equality F(x, y) = G(x, y) holds for all points $(x, y) \in (I \cap A) \times \mathbb{R}$. Let H(x, y) = F(x, y) - G(x, y), $(x, y) \in \mathbb{R}^2$. Clearly H(x, y) = 0, $(x, y) \in (A \cap I) \times \mathbb{R}$, and all sections $H^y, y \in \mathbb{R}$, are differentiable. So, for each point $(x, y) \in (A \cap I) \times \mathbb{R}$ we have

$$\frac{\partial H}{\partial x}(x,y) = \frac{\partial H}{\partial y}(x,y) = 0.$$

Since G obviously has locally equidifferentiable sections G^y , the function H has that property too. Now the differentiability of H at $(x, y) \in (A \cap I) \times \mathbb{R}$ follows immediately by Theorem 1.

Since the function G is differentiable at each point $(x, y) \in \mathbb{R}^2$ and F = G + H, the function F is differentiable at each point $(x, y) \in (A \cap I) \times \mathbb{R}$. \Box

For a function $F : \mathbb{R}^2 \to \mathbb{R}$ let S(F) denote the set of points (x, y) at which F is not differentiable.

Remark 2. Let F be the function from Theorem 3. If there is an integer $n \ge 0$ such that $F_x \in W_n(\mathcal{F}), x \in \mathbb{R}$, then $S(F) = \emptyset$

PROOF. We can repeat the proof of Theorem 3 taking $A = I = \mathbb{R}$.

Corollary 1. If a function $F : \mathbb{R}^2 \to \mathbb{R}$ satisfies the hypothesis of Theorem 3, then the projection $\Pr(S(F)) = \{x \in \mathbb{R}; \exists_y(x, y) \in S(F)\}$ of the set S(F) is a countable set such that the closure of each nonempty subset of $\Pr(S(F))$ contains an isolated point.

PROOF. If there is a nonempty set $A \subset \Pr S(F)$ such that the closure $\operatorname{cl}(A)$ is a perfect set, then by Theorem 3 there is an open interval I such that $I \cap \operatorname{cl}(A) \neq \emptyset$ and $(I \cap \operatorname{cl}(A)) \times \mathbb{R} \subset \mathbb{R}^2 \setminus S(F)$. So, we obtain a contradiction with $A \cap I \neq \emptyset \land A \subset \Pr(S(F))$. If $\Pr(S(F))$ is not countable, then there is a nonempty set $A \subset \Pr(S(F))$ such that $\operatorname{cl}(A)$ is a perfect set. \Box

In the next example we will show that there are functions F satisfying the hypothesis of Theorem 3 for which the set D(F) of discontinuity points of F is not countable.

Example 4. Let $C \subset [0,1]$ be the ternary Cantor set and let $\{I_n = (a_n, b_n); n \geq 1\}$ be an enumeration of all components of the set $[0,1] \setminus C$ such that $I_n \cap I_m = \emptyset$ for $n \neq m$ and $n, m \geq 1$. For each integer $n \geq 1$ we find squares

$$K_{n,m} = [a_{n,m}, b_{n,m}] \times [c_{n,m}, d_{n,m}], \ m \le n,$$

such that

- $[a_{n_1,m_1}, b_{n_1,m_1}] \cap [a_{n_2,m_2}, b_{n_2,m_2}] = \emptyset,$
- $[c_{n_1,m_1}, d_{n_1,m_1}] \cap [c_{n_2,m_2}, d_{n_2,m_2}] = \emptyset$, for $(n_1, m_1) \neq (n_2, m_2)$ satisfying $n_1, m_1, n_2, m_2 \ge 1$,
- $[c_{n,m}, d_{n,m}] \subset I_m, m \le n, n \ge 1,$
- $\forall_m \lim_{n \to \infty} c_{n,m} = a_m$ and

• $\forall_n \forall_{m \le n} 0 < a_{n,m} < b_{n,m} < \frac{1}{n}.$

For $n \ge 1$ and $m \le n$ let $(x_{n,m}, y_{n,m})$ be the center of the square $K_{n,m}$, let

$$f_{n,m}(y) = \begin{cases} 0 & \text{if } y \in (-\infty, c_{n,m}] \cup [d_{n,m}, \infty) \\ 1 & \text{if } y = y_{n,m} \\ \text{linear} & \text{on } [c_{n,m}, y_{n,m}] \wedge [y_{n,m}, d_{n,m}], \end{cases}$$

and let

$$g_{n,m}(x) = \begin{cases} \frac{4(\min(|x-a_{n,m}|,|x-b_{n,m}|))^2}{|b_{n,m}-a_{n,m}|^2} & \text{ on } [a_{n,m},b_{n,m}]\\ 0 & \text{ on } (-\infty,a_{n,m}] \cup [b_{n,m},\infty). \end{cases}$$

By the well known Weierstrass theorem, for $m \leq n$ and $n \geq 1$ there is a polynomial $h_{n,m}$ such that $\forall_{y \in [0,n]} |f_{n,m}(y) - h_{n,m}(y)| < \frac{1}{4^n}$. For $(x,y) \in \mathbb{R}^2$ define

$$F(x,y) = \begin{cases} g_{n,m}(x)h_{n,m}(y) & \text{for } x \in [a_{n,m}, b_{n,m}], n \ge 1, m \le n \\ 0 & \text{for } x \in \mathbb{R} \setminus \bigcup_{n \ge 1, m \le n} [a_{n,m}, b_{n,m}]. \end{cases}$$

Clearly, the sections F_x , $x \in \mathbb{R}$, are polynomials and the sections F^y , $y \in \mathbb{R}$, are differentiable. Since F(0, y) = 0, $y \in R$, and

$$F(x_{n,m}, y_{n,m}) > 1 - \frac{1}{4^n}, \ n \ge 1, \ m \le n,$$

the function F is not continuous at each point (0, y) where $y \in C$.

References

- A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math.659 (1978), Springer-Verlag.
- [2] W. Kolodziej, Mathematical Analysis, (Polish), Warsaw PWN 1985.
- [3] S. Saks, Theory of the Integral, New York 1957.
- [4] R. Sikorski, Real Functions I, (Polish), Warsaw PWN 1958.

610