Zbigniew Grande and Stanislaw P. Ponomarev, Institute of Mathematics, Pedagogical University, plac Weyssenhoffa 11, 85-072, Bydgoszcz, Poland e-mail: grande@wsp.bydgoszcz.pl

ON DIFFERENTIABILITY OF FUNCTIONS OF TWO VARIABLES

Abstract

Some special conditions (equidifferentiability or absolute equicontinuity) implying (or not) the differentiability of functions of two variables are considered.

1 Equidifferentiability

Let \mathbb{R} be the set of all reals. We denote by $|x|$ the absolute value of $x \in \mathbb{R}$, by $|(y, z)|$ the Euclidean norm of $(y, z) \in \mathbb{R}^{2}$, and by $|I|$ the length of the interval $I \subset \mathbb{R}$. Let

$$
\mathcal{A}=\left\{f_{s}: \mathbb{R} \rightarrow \mathbb{R} ; s \in S\right\}
$$

where S denotes a set of indexes. We say that the functions of the family \mathcal{A} are equidifferentiable at a point $x \in \mathbb{R}$ if they are differentiable at x and for every positive real η there is a positive real δ such that for each function $f \in \mathcal{A}$ and for all points t such that $0<|t-x|<\delta$ the inequality

$$
\left|\frac{f(t)-f(x)}{x-t}-f^{\prime}(x)\right|<\eta
$$

holds. Now, let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function of two variables. It is well known that the differentiability of all sections $F_{x}(t)=F(x, t)$ and all sections $F^{y}(t)=$ $F(t, y), x, y, t \in \mathbb{R}$, need not imply the differentiability of F.
Theorem 1. Let a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given and let $(x, y) \in \mathbb{R}^{2}$ be a point such that the section F_{x} is differentiable at y and there is a positive real r such that the sections $F^{v}, v \in(y-r, y+r)$, are equidifferentiable at x. If
(1),

$$
\lim _{v \rightarrow y} \frac{\partial F}{\partial x}(x, v)=\frac{\partial F}{\partial x}(x, y)
$$

then the function F is differentiable at the point (x, y).

[^0]Proof. Let $a(v)=\frac{\partial F}{\partial x}(x, v), v \in(y-r, y+r)$ and $b=\frac{\partial F}{\partial y}(x, y)$. Fix a positive real η. Since the sections $F^{v}, v \in(y-r, y+r)$, are equidifferentiable at the point x, there is a positive real δ_{1} such that for each point $u \in\left(x-\delta_{1}, x+\delta_{1}\right)$ and for each $v \in(y-r, y+r)$ we have

$$
\begin{equation*}
\left|\frac{F(u, v)-F(x, v)}{u-x}-a(v)\right|<\frac{\eta}{2} \tag{2}
\end{equation*}
$$

By (1) and by the differentiability of the section F_{x} at y there is a positive real $\delta_{2}<r$ such that for each point $v \in\left(y-\delta_{2}, y+\delta_{2}\right)$ the inequalities

$$
\begin{equation*}
\left|\frac{F(x, v)-F(x, y)}{v-y}-b\right|<\frac{\eta}{4} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
|a(v)-a(y)|<\frac{\eta}{4} \tag{4}
\end{equation*}
$$

are valid. Let

$$
\delta=\min \left(\delta_{1}, \delta_{2}\right), \quad I=(x-\delta, x+\delta) \times(y-\delta, y+\delta) .
$$

Fix a point $(u, v) \in I$. Then, by (2), (3) and (4) we obtain

$$
\begin{aligned}
& \left|\frac{F(u, v)-F(x, y)-a(y)(u-x)-b(v-y)}{|(u, v)-(x, y)|}\right| \leq \\
& \left|\frac{F(u, v)-F(x, v)}{u-x}-a(v)\right|+|a(v)-a(y)|+ \\
& \left|\frac{F(x, v)-F(x, y)}{v-y}-b\right|<\frac{\eta}{2}+\frac{\eta}{4}+\frac{\eta}{4}=\eta .
\end{aligned}
$$

So,

$$
\lim _{(u, v) \rightarrow(x, y)} \frac{F(u, v)-F(x, y)-a(x)(u-x)-b(v-y)}{|(u, v)-(x, y)|}=0
$$

and F is differentiable at (x, y).
Observe that the function

$$
F(x, y)=\left\{\begin{array}{ccc}
\frac{x y}{x^{2}+y^{2}} & \text { for } & (x, y) \neq(0,0) \\
0 & \text { for } & (x, y)=0,0)
\end{array}\right.
$$

satisfies the condition (1) for $(x, y)=(0,0)$, but it is not differentiable at the point $(0,0)$. So, for each $r>0$ the sections $F^{v}, v \in(-r, r)$, are not equidifferentiable at 0 . The next example shows that the condition (1) in Theorem 1 is essential.

Example 1. For $n=1,2, \ldots$ let $I_{n}=\left[\frac{1}{n}-\frac{1}{4 n^{2}}, \frac{1}{n}+\frac{1}{4 n^{2}}\right]=\left[a_{n}, b_{n}\right]$, and

$$
f_{n}(y)=\left\{\begin{array}{ccl}
0 & \text { if } & y=a_{n} \text { or } y=b_{n} \\
1 & \text { if } & y=\frac{a_{n}+b_{n}}{2}=c_{n} \\
\text { linear } & \text { on } & {\left[a_{n}, c_{n}\right],\left[c_{n}, b_{n}\right] .}
\end{array}\right.
$$

We let

$$
f(y)=\left\{\begin{array}{ccl}
f_{n}(y) & \text { for } & y \in I_{n}, n=1,2, \ldots \\
0 & \text { on } & \mathbb{R} \backslash \bigcup_{n} I_{n}
\end{array}\right.
$$

and $F(x, y)=x f(y)$ for $(x, y) \in \mathbb{R}^{2}$. Then F is continuous on $\mathbb{R}^{2} \backslash\{(x, 0) ; x \neq$ $0\}$, the section F_{0} is everywhere differentiable and the sections $F^{y}, y \in \mathbb{R}$, are equidifferentiable at 0 . Now we will show that F is not differentiable at the point $(0,0)$. Observe that $F(0,0)=0, F\left(\frac{1}{n}, \frac{1}{n}\right)=\frac{1}{n}$ for $n \geq 1,\left|\left(\frac{1}{n}, \frac{1}{n}\right)\right|=\frac{\sqrt{2}}{n}$ for $n \geq 1$ and $\frac{\partial F}{\partial x}(0,0)=\frac{\partial F}{\partial y}(0,0)=0$. So, for $n \geq 1$ we obtain

$$
\frac{F\left(\frac{1}{n}, \frac{1}{n}\right)-F(0,0)}{\left|\left(\frac{1}{n}, \frac{1}{n}\right)\right|}=\frac{1}{\sqrt{2}}
$$

and consequently the function F is not differentiable at the point $(0,0)$.
Theorem 2. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that all sections $F^{v}, v \in \mathbb{R}$, are continuous and the section F_{x} is differentiable at a point y. Suppose that there is a positive real r and a linear set $A \subset(y-r, y+r)$ dense in the interval $(y-r, y+r)$ such the the sections $F^{y}, y \in A$, are equidifferentiable at x and

$$
\lim _{\substack{v \rightarrow y \\ v \in A}} \frac{\partial F}{\partial x}(x, v)=\frac{\partial F}{\partial x}(x, y)
$$

Then F is differentiable at the point (x, y).
Proof. Same as in the proof of Theorem 1 we can show that

$$
\lim _{\substack{u \rightarrow x, v \rightarrow y \\ v \in A}} \frac{F(u, v)-F(x, y)-a(y)(u-x)-b(v-y)}{|(u, v)-(x, y)|}=0
$$

where $a(y)$ and b are the same as these in the proof of Theorem 1. By the continuity of the sections $F_{x}, x \in \mathbb{R}$, we obtain that the above limit is also equal to 0 if $(u, v) \rightarrow(x, y)$, so the function F is differentiable at (x, y).

Theorem 3. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that the section F_{x} is differentiable at a point y. Suppose that there is a positive real r such that the partial derivative $\frac{\partial F}{\partial x}$ is continuous on the open circle $K((x, y), r)$. Then F is differentiable at the point (x, y).

Proof. It suffices to prove that F satisfies the hypothesis of Theorem 1. Condition (1) follows from the continuity of partial derivative $\frac{\partial F}{\partial x}$ at (x, y). The existence and the boundedness of the partial derivative $\frac{\partial F}{\partial x}$ on some neighborhood $V \subset K((x, y), r)$ implies, by the LaGrange theorem, the equidifferentiability of the sections $F^{v}, v \in V_{x}=\{t:(x, t) \in V\}$ at the point x.

2 Absolute Equicontinuity

Now, let \mathcal{B} be a family of functions $f_{s}: I \rightarrow \mathbb{R}, s \in S$ and $I=[0,1]$. We say that the functions of the family \mathcal{B} are absolutely equicontinuous if for every positive real η there is a positive real δ such that for each index $s \in S$ and for each family $\left\{I_{i}=\left[a_{i}, b_{i}\right] ; i \leq k\right\}$ of closed subintervals of I with int $I_{i} \cap i n t I_{j}=\emptyset$ for $i \neq j, i, j \leq k$, (int I_{i} denotes the interior of $\left.I_{i}\right)$ and $\sum_{i \leq k}\left(b_{i}-a_{i}\right)<\delta$ the inequality $\sum_{i \leq k}\left|f_{s}\left(b_{i}\right)-f_{s}\left(a_{i}\right)\right|<\eta$ holds.

Theorem 4. Let $F: I^{2} \rightarrow \mathbb{R}$ be a function such that the sections $F_{x}, x \in$ I, are absolutely equicontinuous and the sections $F^{y}, y \in I$, are absolutely equicontinuous. Then F has the following property.
(P) For each positive real η there is a positive real δ such that for every family of closed intervals $I_{1}, \ldots, I_{k} ; J_{1}, \ldots, J_{k} \subset I$ such that

$$
\begin{equation*}
\operatorname{int} I_{i} \cap \operatorname{int} I_{j}=\emptyset, \wedge \operatorname{int} J_{i} \cap \operatorname{int} J_{j}=\emptyset, \quad i \neq j, \quad i, j \leq k \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i \leq k ;}\left(\left|I_{i}\right|+\left|J_{i}\right|\right)<\delta \tag{6}
\end{equation*}
$$

the inequality $\sum_{i \leq k} \operatorname{diam}\left(F\left(I_{i} \times J_{i}\right)\right)<\eta$ holds ($\operatorname{diam}(X)$ denotes the diameter of the set X).

Proof. Since the sections $F_{x}, x \in I$, and $F^{y}, y \in I$, are equicontinuous, the function F is continuous. Fix a positive real η. There is a positive real δ such that for every point $(x, y) \in I^{2}$ and for each family of closed intervals

$$
K_{1}, K_{2}, \ldots, K_{l} \subset I
$$

with int $K_{i} \cap \operatorname{int} K_{j}=\emptyset$ for $i \neq j i, j \leq l$, and $\sum_{i \leq l}\left|K_{i}\right|<\delta$ the inequalities

$$
\sum_{i \leq l} \operatorname{diam}\left(F_{x}\left(K_{i}\right)\right)<\frac{\eta}{2} \text { and } \sum_{i \leq l} \operatorname{diam}\left(F^{y}\left(K_{i}\right)\right)<\frac{\eta}{2}
$$

hold.
Let $I_{1}, \ldots, I_{k} ; J_{1}, \ldots, J_{k} \subset I$ be closed intervals satisfying conditions (5) and (6). Let

$$
F\left(a_{i}, b_{i}\right)=\max _{(x, y) \in I_{i} \times J_{i}} F(x, y), \wedge F\left(c_{i}, d_{i}\right)=\min _{(x, y) \in I_{i} \times J_{i}} F(x, y), \text { for } i \leq k .
$$

Then

$$
\begin{array}{r}
\left|\sum_{i \leq k} \operatorname{diam}\left(F\left(I_{i} \times J_{i}\right)\right)\right|=\sum_{i \leq k}\left(F\left(a_{i}, b_{i}\right)-F\left(c_{i}, d_{i}\right)\right) \leq \\
\sum_{i \leq k}\left|F\left(a_{i}, b_{i}\right)-F\left(c_{i}, b_{i}\right)\right|+\sum_{i \leq k}\left|F\left(c_{i}, b_{i}\right)-F\left(c_{i}, d_{i}\right)\right|<\frac{\eta}{2}+\frac{\eta}{2}=\eta
\end{array}
$$

and the proof is completed.
Example 2. For $n=1,2, \ldots$ let $I_{n}\left[\frac{1}{n}-\frac{1}{4 n^{2}}\right]=\left[a_{n}, b_{n}\right], J_{n}=\left[-\frac{1}{n}, \frac{1}{n}\right]=$ [$\left.c_{n}, d_{n}\right]$ and

$$
f_{n}(y)= \begin{cases}0 & \text { if } y=a_{n} \text { or } y=b_{n} \\ 1 & \text { if } y=\frac{a_{n}+b_{n}}{2}=c_{n} \\ \text { linear } & \text { on }\left[a_{n}, c_{n}\right],\left[c_{n}, b_{n}\right]\end{cases}
$$

We let

$$
f(y)= \begin{cases}f_{n}(y) & \text { for } y \in I_{n}, n=1,2, \ldots \\ 0 & \text { on } \mathbb{R} \backslash \cup_{n} I_{n}\end{cases}
$$

and

$$
F(x, y)= \begin{cases}0=x f(y) & \text { if } y \in \mathbb{R} \backslash \cup_{n} I_{n} \\ x f(y) & \text { if }(x, y) \in J_{n} \times I_{n}, n=1,2, \ldots \\ e_{n} f(y) & \text { if } x \leq e_{n} \wedge y \in I_{n}, n=1,2, \ldots \\ d_{n} f(y) & \text { if } x \geq d_{n} \wedge y \in I_{n}, n=1,2, \ldots\end{cases}
$$

Put

$$
G(x, y)=\left\{\begin{array}{cl}
F(x, y) & \text { if } \quad y \geq 0, x \leq-2 y \\
F(x, y) & \text { if } \quad y \geq 0, x \geq 2 y \\
0 & \text { if } \quad y<0 \\
F(-y, y)+\frac{F(y, y)-F(-y, y)}{x+y} & \text { if } \quad y>0, x \in(-y, y)
\end{array}\right.
$$

Observe that the restricted function $g=G \mid I^{2}$ does not satisfy condition (P), but the sections $g^{y}, y \in I$, are absolutely equicontinuous on I and the sections $g_{x}, x \in I$, are absolutely continuous.

The next example shows that there is a function $F: I^{2} \rightarrow \mathbb{R}$ having absolutely equicontinuous sections F_{x} and $F^{y}, x, y \in I$, such that the set of points where F is not differentiable is of positive measure.

Example 3. Let $C \subset I$ be a Cantor set of positive measure and let $A=C \times C$. Since the set A is compact and the set C is nowhere dense, for each positive integer n there are points $\left(x_{n, i}, y_{n, i}\right) \subset(I \backslash C)^{2}$ for $i \leq k(n)$, such that

$$
\begin{aligned}
& \qquad \begin{array}{c}
0<\operatorname{dist}\left(\left(x_{n, j}, y_{n, j}\right), A\right)=\inf \left\{\left|\left(x_{n, j}, y_{n, j}\right)-(x, y)\right| ;(x, y) \in A\right\} \\
\left.<\min \left\{\operatorname{dist}\left(x_{n-1, i}, y_{n-1, i}\right), A\right) ; i \leq k(n-1)\right\}, j \leq k(n) \text { for } n>1, \\
\qquad x_{n_{1}, i_{1}} \neq x_{n_{1}, i_{2}} \wedge y_{n_{1}, i_{1}} \neq y_{n_{1}, i_{1}} \\
\text { for }\left(n_{1}, i_{1}\right) \neq\left(n_{2}, i_{2}\right), n_{1}, n_{2}=1,2, \ldots, i_{j} \leq k\left(n_{j}\right), j=1,2 \text { and } \\
\forall \forall_{(x, y) \in A} \forall_{n} \exists_{i \leq k(n)}\left|(x, y)-\left(x_{n, i}, y_{n, i}\right)\right|<\frac{1}{n^{2}}
\end{array}
\end{aligned}
$$

For each pair $(n, i), n \geq 1, i \leq k(n)$, we can find a positive real $r_{n, i}$ such that $\left[x_{n_{1}, i_{1}}-r\left(n_{1}, i_{1}\right), x_{n_{1}, i_{1}}+r\left(n_{1}, i_{1}\right)\right] \cap\left[x_{n_{2}, i_{2}}-r\left(n_{2}, i_{2}\right), x_{n_{2}, i_{2}}+r\left(n_{2}, i_{2}\right)\right]=\emptyset$
and

$$
\left[y_{n_{1}, i_{1}}-r\left(n_{1}, i_{1}\right), y_{n_{1}, i_{1}}+r\left(n_{1}, i_{1}\right)\right] \cap\left[y_{n_{2}, i_{2}}-r\left(n_{2}, i_{2}\right), y_{n_{2}, i_{2}}+r\left(n_{2}, i_{2}\right)\right]=\emptyset
$$

for $\left(n_{1}, i_{1}\right) \neq\left(n_{2}, i_{2}\right), n_{1}, n_{2} \geq 1, i_{j} \leq k_{n_{j}}, j=1,2$. Let $K_{n, i}$ be the circle with center $\left(x_{n, i}, y_{n, i}\right)$ and radius $r(n, i)$, let $S_{n, i}$ be the boundary of the circle $K_{n, i}$ and let $F_{n, i}: K_{n, i} \rightarrow\left[0, \frac{1}{n^{2}}\right], n \geq 1, i \leq k(n)$, be the continuous function defined by

$$
F_{n, i}(x, y)=\frac{\operatorname{dist}\left((x, y), S_{n, i}\right)}{n^{2} r(n, i)}
$$

Let

$$
F(x, y)= \begin{cases}F_{n, i}(x, y) & \text { for }(x, y) \in K_{n, i}, n \geq 1, i \leq k(n) \\ 0 & \text { on } I^{2} \backslash \bigcup_{n, i} K_{n, i}\end{cases}
$$

For each point $(x, y) \in A$ and for each positive integer n there is a point $\left(x_{n, i}, y_{n, i}\right)$ with $\left|\left(x_{n, i}, y_{n, i}\right)-(x, y)\right|<\frac{1}{n^{2}}$. Clearly, $\frac{\partial F}{\partial x}(x, y)=\frac{\partial F}{\partial y}(x, y)=0$. So,

$$
\left|\frac{F\left(x_{n, i}, y_{n, i}\right)-F(x, y)}{\left|\left(x_{n, i}, y_{n, i}\right)-(x, y)\right|}\right| \geq \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}=1
$$

and thus F is not differentiable at (x, y).

Now we will show that the sections $F_{x}, x \in I$, are absolutely equicontinuous. Fix a positive real η. There is an positive integer k with $\sum_{n>k} \frac{1}{n^{2}}<\frac{\eta}{2}$. Let δ be a positive real such that

$$
\delta<\frac{\eta}{2 \max _{n \leq k ; i \leq k(n)}\left(\frac{1}{r(n, i) n^{2}}\right)}
$$

Suppose that closed intervals $\left\{I_{i}=\left[a_{i}, b_{i}\right] ; i \leq j\right\}$ satisfy the following conditions:

$$
\operatorname{int}\left(I_{i}\right) \cap \operatorname{int}\left(I_{m}\right)=\emptyset \text { for } i \neq m \text { and } i, m \leq j
$$

and $\sum_{i \leq j}\left|I_{i}\right|<\delta$. Fix a point $x \in I$ and denote by K the set of all positive integers $\bar{l} \leq j$ for which there is a pair (n, i) with $n \leq k$ such that $I_{i} \cap\left(K_{n, i}\right)_{x} \neq$ \emptyset and by L the set $\{1, \ldots, j\} \backslash K$. Then

$$
\begin{gathered}
\sum_{i \leq j}\left|F\left(x, b_{i}\right)-F\left(x, a_{i}\right)\right|=\sum_{i \in K}\left|F\left(x, b_{i}\right)-F\left(x, a_{i}\right)\right|+ \\
\sum_{i \in L}\left|F\left(x, b_{i}\right)-F\left(x, a_{i}\right)\right|<\frac{\eta}{2}+\frac{\eta}{2}=\eta
\end{gathered}
$$

and the sections $F_{x}, x \in I$, are absolutely equicontinuous. The proof that the sections $F^{y}, y \in I$, are absolutely equicontinuous is analogous.

3 Other Results.

It is well known that if the sections F_{x} and $F^{y}, x, y \in \mathbb{R}$, of a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are polynomials of degree $\leq n$, then F is a polynomial of degree $\leq n$. By the Baire category method we can show that if the sections F_{x} and $F^{y}, x, y \in \mathbb{R}$, are polynomials, then F is also a polynomial. In this section we will solve some analogous problems concerning the differentiability of functions of two variables.

Let $\mathcal{F}=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ be a family of differentiable real functions defined on \mathbb{R} such that for every integer $n \geq 0$ and for each collection of different points $y_{0}, \ldots, y_{n} \in \mathbb{R}$ we have

$$
\operatorname{det}\left[f_{i}\left(y_{j}\right)\right]_{0 \leq i, j \leq n} \neq 0
$$

Furthermore, for $n=0,1, \ldots$, let

$$
\mathcal{W}_{n}(\mathcal{F})=\left\{g=\sum_{0 \leq k \leq n} a_{k} f_{k} ; a_{0}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

and suppose that there is a finite collection of points $y_{0}, \ldots, y_{k(n)}$ which is a determining set for the family $\mathcal{W}_{n}(\mathcal{F})$; i.e., for each pair of functions $g_{1}, g_{2} \in$ $\mathcal{W}_{n}(\mathcal{F})$, if $g_{1}\left(y_{i}\right)=g_{2}\left(y_{i}\right)$ for $i=0, \ldots, k(n)$, then $g_{1}(y)=g_{2}(y)$ for $y \in \mathbb{R}$.

Remark 1. Two important examples of such families \mathcal{F} are the following.

$$
f_{n}(y)=y^{n} ; n \geq 0, \quad y \in \mathbb{R}
$$

and

$$
f_{2 n}(y)=\cos 2 n y, \quad f_{2 n+1}(y)=\sin (2 n+1) y, \quad n \geq 0, \quad y \in \mathbb{R}
$$

We shall say that $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has locally differentiable sections F^{y} if for each $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ there is an $\eta>0$ such that the family $\left\{F^{y} ; y \in\left(y_{0}-\eta, y_{0}+\right.\right.$ $\eta)\}$ is equidifferentiable at x_{0}.

Theorem 5. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function with locally equidifferentiable sections $F^{y}, y \in \mathbb{R}$. If all sections $F_{x}, x \in \mathbb{R}$ are in $\mathcal{W}(\mathcal{F})=\bigcup_{n \geq 0} \mathcal{W}_{n}(\mathcal{F})$, then for every nonempty perfect set $A \subset \mathbb{R}$ there is an open interval I such that $I \cap A \neq \emptyset$ and F is differentiable (as the function of two variables) at each point of the set $(A \cap I) \times \mathbb{R}$.
Proof. Let $A \subset \mathbb{R}$ be a nonempty perfect set. For each integer $n \geq 0$ let

$$
A_{n}=\left\{x \in A ; F_{x} \in \mathcal{W}_{n}(\mathcal{F})\right\}
$$

Since $A=\bigcup_{n \geq 0} A_{n}$ and since the set A is a complete space, by the Baire category theorem we obtain that there is an integer $i \geq 0$ such that the set A_{i} is of the second category in A. So there is an open interval I such that $I \cap A \neq \emptyset$ and $I \cap A_{i}$ is dense in $I \cap A$. There is a finite determining set $\left\{y_{0}, y_{1}, \ldots, y_{k(i)}\right\}$ for the family $\mathcal{W}_{i}(\mathcal{F})$. We can obviously assume that $k(i) \geq i$. Observe that for each point x the system of equations

$$
\sum_{0 \leq n \leq k(i)} f_{n}\left(y_{j}\right) h_{n}(x)=F\left(x, y_{j}\right), \quad 0 \leq j \leq k(i)
$$

is a Cramer's system and it has unique solution $\left\{h_{0}(x), \ldots, h_{k(i)}(x)\right\}$. Since the functions $x \rightarrow F\left(x, y_{j}\right), j=0,1, \ldots, k(i)$, are differentiable, the functions $x \rightarrow h_{n}(x)$ for $n=0,1, \ldots, k(i)$, are also differentiable.

For $(x, y) \in \mathbb{R}^{2}$ let $G(x, y)=\sum_{0 \leq n \leq k(i)} h_{n}(x) f_{n}(y)$. Fix a point $x \in A_{i}$ and observe that we have $G_{x}, F_{x} \in \mathcal{W}_{k(i)}(\mathcal{F})$ and $G\left(x, y_{n}\right)=F\left(x, y_{n}\right)$ for $n=0,1, \ldots, k(i)$. Since $\left\{y_{n} ; 0 \leq n \leq k(i)\right\}$ is a determining set for the family $\mathcal{W}_{k(i)}(\mathcal{F})$, the equality $F(x, y)=G(x, y)$ holds for all points $(x, y) \in A_{i} \times \mathbb{R}$. But since the sections F^{y} and $G^{y}, y \in \mathbb{R}$, are differentiable (and hence continuous) and the set A_{i} is dense in $I \cap A$, the equality $F(x, y)=G(x, y)$ holds for all points $(x, y) \in(I \cap A) \times \mathbb{R}$. Let $H(x, y)=F(x, y)-G(x, y), \quad(x, y) \in \mathbb{R}^{2}$. Clearly $H(x, y)=0, \quad(x, y) \in(A \cap I) \times \mathbb{R}$, and all sections $H^{y}, y \in \mathbb{R}$, are differentiable. So, for each point $(x, y) \in(A \cap I) \times \mathbb{R}$ we have

$$
\frac{\partial H}{\partial x}(x, y)=\frac{\partial H}{\partial y}(x, y)=0 .
$$

Since G obviously has locally equidifferentiable sections G^{y}, the function H has that property too. Now the differentiability of H at $(x, y) \in(A \cap I) \times \mathbb{R}$ follows immediately by Theorem 1.

Since the function G is differentiable at each point $(x, y) \in \mathbb{R}^{2}$ and $F=$ $G+H$, the function F is differentiable at each point $(x, y) \in(A \cap I) \times \mathbb{R}$.

For a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ let $S(F)$ denote the set of points (x, y) at which F is not differentiable.

Remark 2. Let F be the function from Theorem 3. If there is an integer $n \geq 0$ such that $F_{x} \in \mathcal{W}_{n}(\mathcal{F}), x \in \mathbb{R}$, then $S(F)=\emptyset$

Proof. We can repeat the proof of Theorem 3 taking $A=I=\mathbb{R}$.
Corollary 1. If a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies the hypothesis of Theorem 3, then the projection $\operatorname{Pr}(S(F))=\left\{x \in \mathbb{R} ; \exists_{y}(x, y) \in S(F)\right\}$ of the set $S(F)$ is a countable set such that the closure of each nonempty subset of $\operatorname{Pr}(S(F))$ contains an isolated point.

Proof. If there is a nonempty set $A \subset \operatorname{Pr} S(F))$ such that the closure $\operatorname{cl}(A)$ is a perfect set, then by Theorem 3 there is an open interval I such that $I \cap \operatorname{cl}(A) \neq \emptyset$ and $(I \cap \operatorname{cl}(A)) \times \mathbb{R} \subset \mathbb{R}^{2} \backslash S(F)$. So, we obtain a contradiction with $A \cap I \neq \emptyset \wedge A \subset \operatorname{Pr}(S(F))$. If $\operatorname{Pr}(S(F))$ is not countable, then there is a nonempty set $A \subset \operatorname{Pr}(S(F))$ such that $\operatorname{cl}(A)$ is a perfect set.

In the next example we will show that there are functions F satisfying the hypothesis of Theorem 3 for which the set $D(F)$ of discontinuity points of F is not countable.

Example 4. Let $C \subset[0,1]$ be the ternary Cantor set and let $\left\{I_{n}=\left(a_{n}, b_{n}\right) ; n \geq\right.$ $1\}$ be an enumeration of all components of the set $[0,1] \backslash C$ such that $I_{n} \cap I_{m}=\emptyset$ for $n \neq m$ and $n, m \geq 1$. For each integer $n \geq 1$ we find squares

$$
K_{n, m}=\left[a_{n, m}, b_{n, m}\right] \times\left[c_{n, m}, d_{n, m}\right], \quad m \leq n
$$

such that

- $\left[a_{n_{1}, m_{1}}, b_{n_{1}, m_{1}}\right] \cap\left[a_{n_{2}, m_{2}}, b_{n_{2}, m_{2}}\right]=\emptyset$,
- $\left[c_{n_{1}, m_{1}}, d_{n_{1}, m_{1}}\right] \cap\left[c_{n_{2}, m_{2}}, d_{n_{2}, m_{2}}\right]=\emptyset$, for $\left(n_{1}, m_{1}\right) \neq\left(n_{2}, m_{2}\right)$ satisfying $n_{1}, m_{1}, n_{2}, m_{2} \geq 1$,
- $\left[c_{n, m}, d_{n, m}\right] \subset I_{m}, m \leq n, \quad n \geq 1$,
- $\forall_{m} \lim _{n \rightarrow \infty} c_{n, m}=a_{m}$ and
- $\forall_{n} \forall_{m \leq n} 0<a_{n, m}<b_{n, m}<\frac{1}{n}$.

For $n \geq 1$ and $m \leq n$ let $\left(x_{n, m}, y_{n, m}\right)$ be the center of the square $K_{n, m}$, let

$$
f_{n, m}(y)= \begin{cases}0 & \text { if } y \in\left(-\infty, c_{n, m}\right] \cup\left[d_{n, m}, \infty\right) \\ 1 & \text { if } y=y_{n, m} \\ \text { linear } & \text { on }\left[c_{n, m}, y_{n, m}\right] \wedge\left[y_{n, m}, d_{n, m}\right]\end{cases}
$$

and let

$$
g_{n, m}(x)= \begin{cases}\frac{4\left(\min \left(\left|x-a_{n, m}\right|,\left|x-b_{n, m}\right|\right)\right)^{2}}{\left|b_{n, m}-a_{n, m}\right|^{2}} & \text { on }\left[a_{n, m}, b_{n, m}\right] \\ 0 & \text { on }\left(-\infty, a_{n, m}\right] \cup\left[b_{n, m}, \infty\right)\end{cases}
$$

By the well known Weierstrass theorem, for $m \leq n$ and $n \geq 1$ there is a polynomial $h_{n, m}$ such that $\forall_{y \in[0, n]}\left|f_{n, m}(y)-h_{n, m}(y)\right|<\frac{1}{4^{n}}$. For $(x, y) \in \mathbb{R}^{2}$ define

$$
F(x, y)= \begin{cases}g_{n, m}(x) h_{n, m}(y) & \text { for } x \in\left[a_{n, m}, b_{n, m}\right], n \geq 1, m \leq n \\ 0 & \text { for } x \in \mathbb{R} \backslash \bigcup_{n \geq 1, m \leq n}\left[a_{n, m}, b_{n, m}\right]\end{cases}
$$

Clearly, the sections $F_{x}, x \in \mathbb{R}$, are polynomials and the sections $F^{y}, y \in \mathbb{R}$, are differentiable. Since $F(0, y)=0, y \in R$, and

$$
F\left(x_{n, m}, y_{n, m}\right)>1-\frac{1}{4^{n}}, \quad n \geq 1, \quad m \leq n
$$

the function F is not continuous at each point $(0, y)$ where $y \in C$.

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659 (1978), Springer-Verlag.
[2] W. Kolodziej, Mathematical Analysis, (Polish), Warsaw PWN 1985.
[3] S. Saks, Theory of the Integral, New York 1957.
[4] R. Sikorski, Real Functions I, (Polish), Warsaw PWN 1958.

[^0]: Key Words: differentiability, sections, polynomial, equidifferentiability, absolute equicontinuity.
 Mathematical Reviews subject classification: 26B05, 26B30, 26A46
 Received by the editors September 22, 1997

