Vasile Ene, Ovidius University Constanța, Romania Current address: 23 August 8717, Jud. Constanța, Romania e-mail: ene@s23aug.sfos.ro or ene@univ-ovidius.ro

CHARACTERIZATIONS OF $VB^*G \cap (N)$

Abstract

We introduce the condition (PAC^*) that is a slight modification of the condition (PAC) of Sarkhel and Kar [10]. The main result is Theorem 4: A function $f : [a, b] \to \mathbb{R}$ is $VB^*G \cap (N)$ on a subset E of [a, b] if and only if $f \in (PAC^*)$ on E. Consequently, the set $\{f : [a, b] \to \mathbb{R} : f \in VB^*G \cap (N) \text{ on } E\}$ is an algebra, whenever Eis a subset of [a, b]. Using Theorem 1, we find seven characterizations of $VB^*G \cap (N)$ on a Lebesgue measurable set (Theorem 5). We also give fifteen characterizations of the class of AC^*G functions on a closed set E, that are continuous at each point of E (Theorem 6). In the last two sections, using Thomson's outer measure S_o - μ_f , we characterize a $VB^*G \cap (N)$ function f on a Lebesgue measurable set (Theorem 9). As a consequence we obtain that: A function $f : [a, b] \to \mathbb{R}$ is AC^*G on a closed subset E of [a, b] and continuous at each point of E if and only if S_o - $\mu_f(Z) = 0$ whenever Z is a null subset of E (Theorem 10).

1 Introduction

The purpose of this paper is to give some characterizations of $VB^*G \cap (N)$ on an arbitrary real set.

In [10], Sarkhel and Kar introduced the class (PAC) (Definition 4), showing that it is equivalent to the class $[VBG] \cap (N)$ on a closed set. In [5] we show that the class (PAC)G (generalized (PAC)) is equivalent to $VBG \cap (N)$ on an arbitrary set. In this paper, we introduce the condition (PAC^*) , that is a slight modification of (PAC). (We replace expressions like |f(a) - f(b)|by the oscillation of the function f on the interval [a, b].) Clearly the class (PAC^*) is contained in (PAC). Thus we obtain the main result: A function

Key Words: AC^*G , VB^*G , Lusin's condition (N), (PAC)

Mathematical Reviews subject classification: 26A45, 26A46

Received by the editors September 15, 1997

^{*}I would like to thank the referee for giving new proofs to Lemma 4, Proposition 1 and Theorem 10, and for many useful comments that led to the improvement of this paper.

 $f:[a,b] \to \mathbb{R} \text{ is } VB^*G \cap (N) \text{ on a subset } E \text{ of } [a,b] \text{ if and only if } f \in (PAC^*)$ on E (see Theorem 4). Consequently, the set $\{f:[a,b] \to \mathbb{R}: f \in VB^*G \cap (N) \text{ on } E\}$ is an algebra, whenever E is a subset of [a,b] (Corollary 3).

In Theorem 1 we obtain the following result. A function $f : [a, b] \to \mathbb{R}$ is VB^*G on a Lebesgue measurable subset E of [a, b] if and only if it is so on any null subset of E.

As a consequence of Theorems 1 and 4, we find seven characterizations of $VB^*G \cap (N)$ on a Lebesgue measurable set (Theorem 5).

In Theorem 2 we obtain the following result. A function $f : [a, b] \to \mathbb{R}$ is AC^*G on a Lebesgue measurable subset E of [a, b] if and only if it is so on any null subset of E.

Using Theorems 1 and 2, we find fifteen characterizations of the class of AC^*G functions on a closed set E, that are continuous at each point of E (Theorem 6).

In the last two sections we study the relationship between Thomson's outer measure $S_o \mu_f$ and $VB^*G \cap (N)$ on a Lebesgue measurable set. In Theorem 8 we obtain that: If $f : [a,b] \to \mathbb{R}$ is VB^*G and continuous at each point of a set $A \subseteq [a,b]$, then $m^*(f(A)) = 0$ if and only if $S_o \mu_f(A) = 0$. Using this theorem we obtain again that the set $\{f : [a,b] \to \mathbb{R} : f \in VB^*G \cap (N)$ on $E\}$ is an algebra, whenever E is a subset of [a,b] (Corollary 7), as well as the following characterization. A function $f : [a,b] \to \mathbb{R}$ is $VB^*G \cap (N)$ on a Lebesgue measurable subset E of [a,b] if and only if there is a countable subset E_1 of E such that $S_o \mu_f(Z) = 0$ whenever Z is a null subset of $E \setminus E_1$ (Theorem 9).

As a consequence of Theorem 9, it follows that: A function $f : [a, b] \to \mathbb{R}$ is AC^*G on a closed subset E of [a, b] and continuous at each point of E if and only if S_o - $\mu_f(Z) = 0$ whenever Z is a null subset of E (Theorem 10). Using different techniques, this result was obtained before in [3], [4], and rediscovered by Bongiorno, Di Piazza and Skvortsov in [1].

2 Preliminaries

We denote by $m^*(X)$ the outer measure of the set X and by m(A) the Lebesgue measure of A, whenever $A \subseteq \mathbb{R}$ is Lebesgue measurable. For the definitions of VB, AC, AC^* , VB^* and Lusin's condition (N), see [8].

Definition 1. Let *E* be a real compact set, $c = \inf(E)$, $d = \sup(E)$ and $f : E \to \mathbb{R}$. Let $\{(c_k, d_k)\}_k$ be the intervals contiguous to *E* and let $f_E : [c, d] \to \mathbb{R}$, $f_E(x) = f(x)$ if $x \in E$, f_E is linear on each $[c_k, d_k]$.

Definition 2. ([9]). A sequence $\{E_n\}$ of sets whose union is E is called an E- form with parts E_n ; if, in addition, each part E_n is closed in E (i.e., $E_n = P_n \cap E$, where P_n is a closed set; so $P_n = \overline{E}_n$), then the E-form is said to be closed. An expanding E-form is called an E-chain.

Lemma 1. ([10]). For every closed E-form $\{E_n\}$, there is a closed E-chain $\{Q_n\}$ such that $Q_n = \bigcup_{k \leq n} Q_{kn}$, where $Q_{kn} \subseteq Q_{km} \subseteq E_k$ for all k and for $m \geq n \geq k$, and $d(Q_{in}, Q_{jn}) \geq 1/n$ for $i \neq j$. (Here d denotes the usual metric distance.)

Definition 3. Let $f : [a, b] \to \mathbb{R}$, $E \subseteq [a, b]$, and $c = \inf E$, $d = \sup E$.

- Put $V^*(f; E) = \sup\{\sum_{i=1}^n \mathcal{O}(f; [a_i, b_i]) : \{[a_i, b_i]\}_{i=1}^n \text{ is a finite set of nonoverlapping closed intervals with endpoints in } E\}$ ([8], p. 228).
- f is said to be VB^* on E if $V^*(f; E) < +\infty$ ([8], p. 228).
- f is said to be VB^*G (respectively AC^*G , VBG, ACG) on E if there is an E-form $\{E_n\}$ such that f is VB^* (respectively AC^* , VB, AC) on each E_n . f is said to be $[VB^*G]$ (respectively $[AC^*G]$, [VBG], [ACG]) on E if the E-form is closed. Note that AC^*G and ACG here differ from the definitions given in [8], because f is not supposed to be continuous.
- (Krzyzewski) f is said to be increasing* on E if $f(x) \le f(y)$ whenever $c \le x < y \le d$ and $\{x, y\} \cap E \ne \emptyset$. f is said to be monotone* on E if either f or -f is increasing* on E ([4], p. 47).

Definition 4. Let $Q \subseteq \mathbb{R}$, $f : Q \to \mathbb{R}$, $E \subseteq Q$ and r > 0. Then:

- (Sarkhel, Kar, [10]) $V(f; E; r) = \sup\{\sum_{i=1}^{n} |f(b_i) f(a_i)| : \{[a_i, b_i]\}_{i=1}^{m}$ is a finite set of nonoverlapping closed intervals with the endpoints in Eand $\sum_{i=1}^{m} (b_i - a_i) < r\}$
- (Sarkhel, Kar, [10]) $V(f; E; 0) = \inf_{r>0} V(f; E; r).$
- (Sarkhel, Kar, [10]) $PV(f; E) = \inf\{\sup_n V(f; E_n; 0) : \{E_n\}$ is an *E*-chain}.
- (Sarkhel, Kar, [10]) f is said to be (PAC) on E if PV(f; E) = 0.
- $[PV](f; E) = \inf\{\sum_n V(f; E_n; 0) : \{E_n\} \text{ is a closed } E\text{-form}\}.$
- f is said to be [PAC] on E if [PV](f; E) = 0.

3 A Characterization of VB*G on a Lebesgue Measurable Set

Lemma 2. Let $f : [a,b] \to \mathbb{R}$ and let E be a closed subset of [a,b]. The following assertions are equivalent.

- (i) f is VB^*G on E.
- (ii) f is VB^*G on Z, whenever Z is a null subset of E.

PROOF. See Theorem 1.9.1, (i) of [4] and Theorem 7.1 of [8], p. 229. \Box

Theorem 1. Let $f : [a,b] \to \mathbb{R}$ and let E be a Lebesgue measurable subset of [a,b]. The following assertions are equivalent.

- (i) f is VB^*G on E.
- (ii) f is VB^*G on Z, whenever Z is a null subset of E.

PROOF. (i) \Rightarrow (ii) This part is always true, even if E is not assumed to be Lebesgue measurable.

(ii) \Rightarrow (i) Since E is Lebesgue measurable, there exists an increasing sequence of closed sets $\{Q_n\}$ such that $Z = E \setminus (\bigcup_{n=1}^{\infty} Q_n)$ is of measure zero. Clearly $f \in VB^*G$ on Z. By Lemma 2, f is VB^*G on each Q_n . It follows that $f \in VB^*G$ on E.

4 A Characterization of AC*G on a Lebesgue Measurable Set

Lemma 3. Let $f : [a,b] \to \mathbb{R}$ and let E be a closed subset of [a,b]. If $f_{|E}$ is continuous, then the following assertions are equivalent.

- (i) f is AC^*G on E.
- (ii) f is AC^*G on Z, whenever Z is a null subset of E.

PROOF. See Theorem 1.9.1, (iii) of [4].

Theorem 2. Let $f : [a, b] \to \mathbb{R}$ and let E be a Lebesgue measurable subset of [a, b]. Then the following assertions are equivalent.

- (i) f is AC^*G on E.
- (ii) f is AC^*G on Z, whenever Z is a null subset of E.

PROOF. (i) \Rightarrow (ii) This is always true (without Lebesgue measurability). (ii) \Rightarrow (i) By Theorem 1, clearly f is VB^*G on E. So f is Lebesgue measurable on E. By Lusin's Theorem ([8], p. 72), it follows that there is an increasing sequence $\{E_n\}$ of closed sets such that $Z = E \setminus (\bigcup_{n=1}^{\infty} E_n)$ is a null set and $f|_{E_n}$ is continuous. Clearly $f \in AC^*G$ on Z. By Lemma 3, $f \in AC^*G$ on each E_n . Therefore f is AC^*G on E.

5 The Conditions (PAC^{*}), [PAC^{*}], PAC^{*}

Definition 5. Let $f : [a, b] \to \mathbb{R}, E \subseteq [a, b]$ and r > 0. Put

- $V^*(f; E; r) = \sup\{\sum_{i=1}^n \mathcal{O}(f; [a_i, b_i]) : \{[a_i, b_i]\}_{i=1}^n \text{ is a finite set of non-overlapping closed intervals with endpoints in E and } \sum_{i=1}^n (b_i a_i) < r\};$
- $V^*(f; E; 0) = \inf_{r>0} V^*(f; E; r);$
- $PV^*(f; E) = \inf\{\sup_n V^*(f; E_n; 0) : \{E_n\} \text{ is an } E\text{-chain}\};$
- $[PV^*](f; E) = \inf\{\sum_n V^*(f; E_n; 0) : \{E_n\} \text{ is a closed } E\text{-form}\};$
- $\mu_f^*(E) = \inf\{\sum_n V^*(f; E_n; 0) : \{E_n\} \text{ is an } E\text{-form}\};$
- $V^{**}(f; E; r) = \sup\{\sum_{i=1}^{n} |f(b_i) f(a_i)| : \{[a_i, b_i]\}_{i=1}^n \text{ is a finite set of nonoverlapping closed intervals with } \sum_{i=1}^{n} (b_i a_i) < r \text{ such that each } [a_i, b_i] \text{ has at least one endpoint in } E\};$
- $V^{**}(f; E; 0) = \inf_{r>0} V^{**}(f; E; r);$
- $PV^{**}(f; E) = \inf\{\sup_n V^{**}(f; E_n; 0) : \{E_n\} \text{ is an } E\text{-chain}\};$
- $[PV^{**}](f; E) = \inf\{\sum_{n} V^{**}(f; E_n; 0) : \{E_n\} \text{ is a closed } E\text{-form}\};$
- $\mu_f^{**}(E) = \inf\{\sum_n V^{**}(f; E_n; 0) : \{E_n\} \text{ is an } E\text{-form}\};$

Definition 6. Let $f : [a, b] \to \mathbb{R}, E \subseteq [a, b]$.

- f is said to be (PAC^*) on E if $PV^*(f; E) = 0$;
- f is said to be $[PAC^*]$ on E if $[PV^*](f; E) = 0$;
- f is said to be PAC^* on E if $\mu_f^*(E) = 0$.
- f is said to be (PAC^{**}) on E if $PV^{**}(f; E) = 0$;
- f is said to be $[PAC^{**}]$ on E if $[PV^{**}](f; E) = 0;$

• f is said to be PAC^{**} on E if $\mu_f^{**}(E) = 0$.

Lemma 4. With the notations of Definition 5, we have each of the following assertions.

- (i) $V^*(f; E; r) \le 2V^{**}(f; E; r).$
- (*ii*) $V^*(f; E; 0) \le 2V^{**}(f; E; 0).$
- (*iii*) $PV^*(f; E) \le 2PV^{**}(f; E)$.
- (iv) $[PV^*](f; E) \le 2[PV^{**}](f; E).$
- (v) $\mu_f^*(E) \le 2\mu_f^{**}(E)$.

Moreover, if f is continuous at each point of \overline{E} , then

- (vi) $V^{**}(f; E; 0) \leq V^{*}(f; E; 0);$
- (vii) $PV^{**}(f; E) \le PV^{*}(f; E);$
- (viii) $[PV^{**}](f; E) \le [PV^*](f; E);$
- (*ix*) $\mu_f^{**}(E) \le \mu_f^*(E)$.

PROOF. (i) For any finite set of non-overlapping closed intervals $\{[a_i, b_i]\}_{i=1}^n$ with the endpoints in E and $\sum_{i=1}^n (b_i - a_i) < r$,

$$\sum_{i=1}^{n} \mathcal{O}(f; [a_i, b_i]) \le \sum_{i=1}^{n} 2 \sup_{x \in [a_i, b_i]} |f(x) - f(a_i)| \le 2V^{**}(f; E; r).$$

(ii),(iii),(iv),(v) follow by (i).

(vi) Since f is continuous at each point of \overline{E} , it is easily seen that $V^*(f;E;r) = V^*(f;\overline{E};r)$ for all r > 0. Let $V^*(f;E;r) < \infty$. (Otherwise there is nothing to prove.) Then for $\epsilon > 0$ there is an r > 0 such that

$$V^*(f; \overline{E}; r) = V^*(f; E; r) < V^*(f; E; 0) + \epsilon.$$
(1)

Let $(c_1, d_1), (c_2, d_2), \ldots$ be the intervals contiguous to \overline{E} , if any, and let $c_0 = \inf E, d_0 = \sup E$. Choose a positive integer k_0 such that $\sum_{k > k_0} (d_k - c_k) < r$. By (1), $\sum_{k > k_0} \mathcal{O}(f; [c_k, d_k]) \leq V^*(f; \overline{E}; r) < \infty$. Hence there is a positive integer $n_o > k_0$ such that

$$\sum_{k>n_0} \mathcal{O}(f; [c_k, d_k]) < \epsilon.$$
⁽²⁾

By continuity of f at the points of \overline{E} , there is a $\delta \in (0, r)$ such that

$$\sum_{k=0}^{n_0} \left(\mathcal{O}(f; [c_k - \delta, c_k + \delta]) + O(f; [d_k - \delta, d_k + \delta]) \right) < \epsilon \,. \tag{3}$$

Now, let $\{[a_i, b_i]\}_{i=1}^m$ be a finite set of non-overlapping closed intervals such that each $[a_i, \underline{b_i}]$ has at least one endpoint in E and $\sum_{i=1}^m (b_i - a_i) < \delta$.

If $a_i, b_i \in \overline{E}$ retain $[a_i, b_i]$. If $a_i \in \overline{E}$ and $b_i > d_0$, split $[a_i, b_i]$ into $[a_i, d_0]$ and $[d_0, b_i]$, and use

 $|f(b_i) - f(a_i)| \leq \mathcal{O}(f; [a_i, d_0]) + \mathcal{O}(f; [d_0, b_i])$. If $a_i \in \overline{E}$ and $c_k < b_i < d_k$ for some $k \geq 1$ split $[a_i, b_i]$ into $[a_i, c_k]$ and $[c_k, b_i]$, and use

$$|f(a_i) - f(b_i)| \le \begin{cases} \mathcal{O}(f; [a_i, c_k]) + O(f; [c_k, c_k + \delta]) & \text{if } k \le n_0, \\ \mathcal{O}(f; [a_i, c_k]) + \mathcal{O}(f; [c_k, d_k]) & \text{if } k > n_0. \end{cases}$$

If $b_i \in \overline{E}$ and $a_i < c_0$, split $[a_i, b_i]$ into $[c_0, b_i]$ and $[a_i, c_0]$, and use $|f(b_i) - f(a_i)| \leq \mathcal{O}(f; [c_0, b_i]) + \mathcal{O}(f; [c_0 - \delta, c_0])$. If $b_i \in \overline{E}$ and $c_k < a_i < d_k$ for some $k \geq 1$, split $[a_i, b_i]$ into $[d_k, b_i]$ and $[a_i, d_k]$ and use

$$|f(a_i) - f(b_i)| \le \begin{cases} \mathcal{O}(f; [d_k, b_i]) + O(f; [d_k - \delta, d_k]) & \text{if } k \le n_0, \\ \mathcal{O}(f; [d - k, b_i]) + \mathcal{O}(f; [c_k, d_k]) & \text{if } k > n_0. \end{cases}$$

Since $\sum_{i=1}^{m} (b_i - a_i) < \delta < r$, by (2) and (3), it follows that

$$\sum_{i=1}^{m} \left| f(b_i) - f(a_i) \right| < V^*(f; \overline{E}; r) + 2\epsilon + 2\epsilon.$$

Hence, by (1), $V^{**}(f; E; \delta) < V^*(f; \overline{E}; 0) + 5\epsilon$. Since $\epsilon > 0$ is arbitrary, we obtain that $V^{**}(f; E; 0) < V^*(f; \overline{E}; 0)$.

(vii), (viii), (ix) follow by (vi).

Corollary 1. Let $f : [a, b] \to \mathbb{R}, E \subseteq [a, b]$.

- (i) If f is (PAC**) (respectively [PAC**]; PAC**) on E, then f is (PAC*) (respectively [PAC*]; PAC*) on E, and f is continuous at each point of the set E.
- (ii) If f is (PAC^*) (respectively $[PAC^*]$; PAC^*) on E and f is continuous at each point of \overline{E} , then f is (PAC^{**}) (respectively $[PAC^{**}]$; PAC^{**}) on the set E.

PROOF. (i) For the first part see Lemma 4, (iii), (iv), (v). Let $x_0 \in E$ and suppose for example that $f \in (PAC^{**})$ on E (the other two cases are similar). For $\epsilon > 0$, there exist a sequence of positive numbers $\{r_n\}$ and an E-chain $\{E_n\}$ such that

$$V^{**}(f; E_n; r_n) < \epsilon \quad \text{for all } n$$

Let n_o be a positive integer such that $x_0 \in E_{n_o}$. Clearly for $x \in [a, b]$,

$$|f(x) - f(x_0)| < V^{**}(f; E_{n_o}; r_{n_o}) < \epsilon \quad \text{whenever } x \in (x_0 - r_{n_o}, x_0 + r_{n_o}).$$

Therefore f is continuous at x_0 .

(ii) See Lemma 4, (vii), (viii), (ix).

6 Characterizations of $VB^*G \cap (N)$ on a Real Set

Theorem 3. Let $f, g: [a, b] \to \mathbb{R}, E \subseteq [a, b], \alpha, \beta \in \mathbb{R}$. The following hold.

(i) $PV^*(\alpha f + \beta g; E) \le |\alpha|PV^*(f; E) + |\beta|PV^*(g; E)$. Moreover, if $c = \inf E, d = \sup E \text{ and } M = \sup_{x \in [c,d]} \{|f(x)|, |g(x)|\} < +\infty$, then $PV^*(f \cdot q; E) \le M(PV^*(f; E) + PV^*(q; E))$

and

$$V^*(f \cdot g; E) \le M(V^*(f; E) + V^*(g; E)).$$

- (ii) If $PV^*(q; E) = 0$, then $PV^*(f + q; E) = PV^*(f; E)$.
- (*iii*) $PV(f; E) \leq PV^*(f; E)$;
- (iv) (Sarkhel and Kar [10]) If $m^*(E) = 0$, then $m^*(f(E)) \le PV(f; E)$.
- (v) If $PV^*(f; E) < +\infty$, then $f \in [VB^*G]$ on E.
- (vi) $PV^*(f; E) \leq \sum_n PV^*(f; E_n)$ whenever $\{E_n\}$ is a closed E-form.
- (vii) $\mu_f^*(E) \le [PV^*](f; E)$.
- (viii) $PV^*(f; E) \le [PV^*](f; E)$.
- (ix) $[PV^*](f; E) \leq \sum_n [PV^*](f; E_n)$ whenever $\{E_n\}$ is a closed E-form.
- (x) $\mu_f^* : \mathcal{P}(E) \to [0, +\infty]$ is a metric outer measure.
- $\begin{array}{ll} (xi) \ PV^{**}(\alpha f + \beta g; E) \leq |\alpha| PV^{**}(f; E) + |\beta| PV^{**}(g; E) \,. \ Moreover, \ if \\ c = \inf E, \ d = \sup E \ and \ M = \sup_{x \in [c,d]} \{|f(x)|, |g(x)|\} < +\infty, \ then \end{array}$

$$PV^{**}(f \cdot g; E) \le M(PV^{**}(f; E) + PV^{**}(g; E)).$$

(xii) If $PV^{**}(q; E) = 0$, then $PV^{**}(f + q; E) = PV^{**}(f; E)$;

(xiii) $\mu_f^{**}(E) \leq [PV^{**}](f;E);$

(xiv) $PV^{**}(f; E) \leq [PV^{**}](f; E);$

(xv) $PV^{**}(f; \cdot) : \mathcal{P}(E) \to [0, +\infty]$ is a metric outer measure.

(xvi) $[PV^{**}](f; E) \leq \sum_{n} [PV^{**}](f; E_n)$ whenever $\{E_n\}$ is a closed E-form.

(xvii)
$$\mu_f^{**}: \mathcal{P}(E) \to [0, +\infty]$$
 is a metric outer measure.

PROOF. (i) We shall use the technique of Theorem 3.1, (i) of [10]. For $\epsilon > 0$ there exist two *E*-chains $\{A_n\}$, $\{B_n\}$ and two sequences of positive numbers $\{r'_n\}$, $\{r''_n\}$ such that for all n we have

$$V^{*}(f; A_{n}; r_{n}^{'}) \leq PV^{*}(f; E) + \epsilon$$
 and $V^{*}(g; B_{n}; r_{n}^{''}) \leq PV^{*}(g; E) + \epsilon$

Let $E_n = A_n \cap B_n$ and $r_n = \min\{r'_n, r''_n\}$. Then $\{E_n\}$ is an *E*-chain and

$$V^{*}(\alpha f + \beta g; E_{n}; 0) \leq V^{*}(\alpha f + \beta g; E_{n}; r_{n})$$

$$\leq |\alpha|V^{*}(f; E_{n}; r_{n}) + |\beta|V^{*}(g; E_{n}; r_{n})$$

$$\leq |\alpha|V^{*}(f; A_{n}; r_{n}^{'}) + |\beta|V^{*}(g; B_{n}; r_{n}^{''})$$

$$\leq |\alpha|PV^{*}(f; E) + |\beta|PV^{*}(g; E) + \epsilon(|\alpha| + |\beta|).$$

Therefore

$$PV^*(\alpha f + \beta g; E) \le |\alpha| PV^*(f; E) + |\beta| PV^*(g; E).$$

We prove the second part. Let $a^{'}, b^{'} \in E, a^{'} \leq x < y \leq b^{'}$. Then

$$|f(y)g(y) - f(x)g(x)| = |g(y)(f(y) - f(x)) + f(x)(g(y) - g(x))| \le$$

 $\leq M(|f(y) - f(x)| + |g(y) - g(x)|) \leq M \cdot (\mathcal{O}(f; [a', b']) + \mathcal{O}(g; [a', b'])).$

Therefore $\mathcal{O}(f \cdot g; [a^{'}, b^{'}]) \leq M \left(\mathcal{O}(f; [a^{'}, b^{'}]) + \mathcal{O}(g; [a^{'}, b^{'}]) \right)$. It follows that

$$V^*(f \cdot g; E_n; 0) \le V^*(f \cdot g; E_n; r_n) \le M \big(V^*(f; E_n, r_n) + V^*(g; E_n; r_n) \big) \le V^*(f \cdot g; E_n; r_n) \big) \le V^*(f \cdot g; E_n; r_n) + V^*(g; E_n; r_n) \big) \le V^*(f \cdot g; E_n; r_n) \le V^*(f \cdot g; E_n; r_n)$$

$$\leq M \left(V^*(f; E_n; r_n') + V^*(g; E_n; r_n'') \right) \leq M \left(P V^*(f; E) + P V^*(g; E) + 2\epsilon \right)$$

Therefore

$$PV^*(f \cdot g; E) \le M(PV^*(f; E) + PV^*(g; E)).$$

Clearly

$$V^*(f \cdot g; E) \le M(V^*(f; E) + V^*(g; E)).$$

(ii) We shall use the technique of Theorem 3.1, (ii) of [10]. Since $PV^*(g; E) = 0$ implies that $PV^*(-g; E) = 0$, we have

$$\begin{split} PV^*(f;E) &= PV^*(f+g-g;E) \leq PV^*(f+g;E) + PV^*(-g;E) \\ &= PV^*(f+g;E) \leq PV^*(f;E) + PV^*(g;E) = PV^*(f;E) \,. \end{split}$$

Therefore $PV^*(f; E) = PV^*(f + g; E)$.

(iii) This is obvious.

(iv) See [10].

(v) There exist an *E*-chain $\{E_n\}$ and a sequence $\{r_n\}$ of positive numbers, such that $V^*(f; E_n; r_n) < PV^*(f; E) + 1$, for all n. For every integer k, let $E_{nk} = E_n \cap \left[k\frac{r_n}{2}, (k+1)\frac{r_n}{2}\right]$. Then $f \in VB^*$ on each E_{nk} . By Theorem 7.1 of [8] (p. 229), $f \in VB^*$ on $\overline{E_{nk}}$; so $f \in VB^*$ on $E \cap \overline{E_{nk}}$. It follows that $f \in [VB^*G]$ on E.

(vi) We shall use the technique of Theorem 3.4 of [10]. Let $\epsilon > 0$. For every k there exist an E_k -chain $\{E_{kn}\}$ and a sequence of positive numbers $\{r_{kn}\}$, such that $V^*(f; E_{kn}; r_{kn}) \leq PV^*(f; E_k) + \frac{\epsilon}{2^k}$ for all n. Now, considering the closed E-chain $\{Q_n\}$ given by Lemma 1 corresponding to the closed E-form $\{E_n\}$, and setting $H_n = \bigcup_{k \leq n} (Q_{kn} \cap E_{kn})$, it is easy to see that $\{H_n\}$ is an E-chain. Let $r_n = \min\{\frac{1}{n}, r_{1n}, r_{2n}, \ldots, r_{nn}\}$. If $\{[a_p, b_p]\}$ is a finite set of nonoverlapping closed intervals with the endpoints in H_m , m fixed, with $\sum(b_p - a_p) < r_m$, then, since $d(Q_{im}, Q_{jm}) \geq 1/m$ for $i \neq j$, the endpoints of an interval $[a_p, b_p]$ must both belong to precisely one of the sets $Q_{km} \cap E_{km}$, $k = 1, 2, \ldots, m$, and so we clearly have

$$\sum_{p} \mathcal{O}(f; [a_p, b_p]) \leq \sum_{k \leq m} V^*(f; Q_{km} \cap E_{km}; r_m) \leq$$
$$\leq \sum_{k \leq m} V^*(f; E_{km}; r_{km}) \leq \sum_{k \leq m} \left(PV^*(f; E_k) + \frac{\epsilon}{2^k} \right).$$

Hence $V^*(f; H_m; r_m) \leq \sum_n PV^*(f; E_n) + \epsilon$ for all m. Therefore $PV^*(f; E) \leq \sum_n PV^*(f; E_n) + \epsilon$. But ϵ is arbitrary; so

$$PV^*(f; E) \le \sum_n PV^*(f; E_n).$$

(vii) This is obvious.

(viii) Suppose that $[PV^*](f; E) = M < +\infty$. (If $M = +\infty$, there is nothing to prove.) Then for $\epsilon > 0$, it follows that there exist a closed *E*-form $\{E_n\}$ and a sequence of positive numbers $\{r_n\}$ such that $\sum_n V^*(f; E_n; r_n)$ $< M + \epsilon$. By Lemma 1, there exists a closed *E*-chain $\{Q_n\}$ such that $Q_n = \bigcup_{k=1}^n Q_{kn}, Q_{kn} \subseteq Q_{km} \subseteq E_k$ for all k and $m \ge n \ge k$, and

$$d(Q_{in}, Q_{jn}) \ge \frac{1}{n} \quad \text{for } i \neq j.$$
(4)

Let $\rho_n = \min\left\{r_1, r_2, \ldots, r_n, \frac{1}{2n}\right\}$. Let $\{[a_p, b_p]\}_{p=1}^q$ be a finite set of nonoverlapping closed intervals with the endpoints in Q_n and $\sum_{p=1}^q (b_p - a_p) < \rho_n$. By (4), both endpoints of an interval $[a_p, b_p]$ belong to some Q_{in} . It follows that

$$\sum_{p=1}^{q} \mathcal{O}(f; [a_p, b_p]) \le \sum_{i=1}^{n} V^*(f; Q_{in}; \rho_n) \le \sum_{i=1}^{n} V^*(f; E_i; r_i) < M + \epsilon \text{ for all } n.$$

Therefore $PV^*(f; E) \leq M$.

(ix) We may suppose that $\sum_{n} [PV^*](f; E_n) < +\infty$. (Otherwise there is nothing to prove.) Let $\epsilon > 0$. Then for every positive integer k, there exist a closed E_k -form $\{E_{kn}\}$ and a sequence of positive numbers $\{r_{kn}\}$ such that

$$\sum_{n} V^*(f; E_{kn}; r_{kn}) < [PV^*](f; E_k) + \frac{\epsilon}{2^k}$$

But $\{E_{kn}\}_{k,n}$ is a closed *E*-form, and

$$\sum_{k} \sum_{n} V^*(f; E_{kn}; r_{kn}) < \epsilon + \sum_{k} [PV^*](f; E_k).$$

It follows that $[PV^*](f; E) \leq \epsilon + \sum_k [PV^*](f; E_k)$. Since ϵ is arbitrary, we obtain that $[PV^*](f; E) \leq \sum_k [PV^*](f; E_k)$.

(x) Clearly $\mu_f^*(\emptyset) = 0$ and μ_f^* is an increasing set-function, i.e., $\mu_f^*(A) \leq \mu_f(B)$ whenever $A \subseteq B \subseteq E$. As in (ix) we obtain that

$$\mu_f^*(\cup_n E_n) \le \sum_n \mu_f^*(E_n) \,. \tag{5}$$

Let E_1 , E_2 be such that $d(E_1, E_2) = r > 0$. Suppose that $\mu_f^*(E_1 \cup E_2) < +\infty$. (If $\mu_f^*(E_1 \cup E_2) = +\infty$, by (5), it follows that $\mu_f^*(E_1 \cup E_2) = \mu_f^*(E_1) + \mu_f^*(E_2)$.) For $\epsilon > 0$ there exist an $E_1 \cup E_2$ -form $\{P_n\}$ and a sequence of positive numbers $\{r_n\}$ such that

$$\sum_n V^*(f; P_n; r_n) < \mu_f^*(E_1 \cup E_2) + \epsilon$$

Let $P_{1n} = E_1 \cap P_n$, $P_{2n} = E_2 \cap P_n$ and $\rho_n = \min\{r_n, r\}$. Fix some *n* and let $\{[a'_i, b'_i]\}$ be a finite set of nonoverlapping closed intervals with the endpoints in P_{1n} and $\sum (b'_i - a'_i) < \rho_n/2$. Let $\{[a''_j, b''_j]\}$ be a finite set of nonoverlapping closed intervals with the endpoints in P_{2n} and $\sum (b''_j - a''_j) < \rho_n/2$. Suppose that there exists $a_{ij} \in [a'_i, b'_i] \cap [a''_j, b''_j]$. Then

$$d(a'_i, a_{ij}) < \frac{\rho_n}{2}$$
 and $d(a_{ij}, b''_j) < \frac{\rho_n}{2};$

so $d(a_i^{'}, b_j^{''}) < \rho_n \leq r$, a contradiction. Therefore $[a_i^{'}, b_i^{'}] \cap [a_j^{''}, b_j^{''}] = \emptyset$. Hence

$$\sum |f(b'_i) - f(a'_i)| + \sum |f(b''_j) - f(a''_j)| \le V^*(f; P_n; \rho_n).$$

It follows that $V^*\left(f; P_{1n}; \frac{\rho_n}{2}\right) + V^*\left(f; P_{2n}; \frac{\rho_n}{2}\right) \le V^*(f; P_n; \rho_n)$. Then

$$\mu_f^*(E_1) + \mu_f^*(E_2) \le \sum_n V^*\left(f; P_{1n}; \frac{\rho_n}{2}\right) + \sum_n V^*\left(f; P_{2n}; \frac{\rho_n}{2}\right)$$
$$\le \sum_n V^*(f; P_n; \rho_n) \le \sum_n V^*(f; P_n; r_n) \le \mu_f^*(E_1 \cup E_2) + \epsilon.$$

Since ϵ is arbitrary and μ_f^* is an outer measure, we obtain that $\mu_f^*(E_1 \cup E_2) = \mu_f^*(E_1) + \mu_f^*(E_2)$.

- (xi) The proof is similar to (i).
- (xii) The proof is similar to (ii).
- (xiii) This is obvious.

(xiv) Suppose that $[PV^{**}](f; E) = M < +\infty$. (If $M = +\infty$, there is nothing to prove.) For $\epsilon > 0$ there exist a closed *E*-form $\{E_n\}$ and a sequence of positive numbers $\{r_n\}$ such that $\sum_n V^{**}(f; E_n; r_n) < M + \epsilon$. Let $Q_n = \bigcup_{i=1}^n E_i$. Then $\{Q_n\}$ is a closed *E*-chain. Fix some *n* and let $\rho_n = \min\{r_1, r_2, \ldots, r_n\}$. Let $\{[a_p, b_p]\}_{p=1}^q$ be a finite set of nonoverlapping closed intervals having at least one endpoint in Q_n and $\sum_{q=1}^p (b_p - a_p) < \rho_n$. It follows that for each *n*,

$$\sum_{p=1}^{q} |f(b_p) - f(a_p)| \le \sum_{i=1}^{n} V^{**}(f; E_i; \rho_n) \le \sum_{i=1}^{n} V^{**}(f; E_i; r_i) < M + \epsilon.$$

Therefore $PV^{**}(f; E) \leq M$.

(xv) Clearly $PV^{**}(f; \emptyset) = 0$ and $PV^{**}(f; \cdot)$ is an increasing set function. Let $\{E_k\}$ be an *E*-form and $\epsilon > 0$. For every *k* there exist an E_k -chain $\{E_{kn}\}$ and a sequence of positive numbers $\{r_{kn}\}$ such that

$$V^{**}(f; E_{kn}; r_{kn}) \le PV^{**}(f; E_k) + \frac{\epsilon}{2^k}$$
, for all n .

If $H_n = \bigcup_{k=1}^n E_{kn}$, then $\{H_n\}$ is an *E*-chain. Let $r_n = \min\{r_{1n}, \ldots, r_{nn}\}$. Fix some *m* and let $\{[a_p, b_p]\}_{p=1}^q$ be a finite set of nonoverlapping closed intervals having at least one endpoint in H_m and $\sum_{q=1}^p (b_p - a_p) < r_m$. Then we have

$$\sum_{p=1}^{q} |f(b_p) - f(a_p)| \le \sum_{k=1}^{m} V^{**}(f; E_{km}; r_m) \le \sum_{k=1}^{m} V^{**}(f; E_{km}; r_{km})$$
$$\le \sum_{k=1}^{m} \left(PV^{**}(f; E_k) + \frac{\epsilon}{2^k} \right) \le \sum_{k=1}^{\infty} PV^{**}(f; E_k) + \epsilon$$

Therefore $PV^{**}(f; E) \leq \sum_{n} PV^{**}(f; E_n) + \epsilon$. Since ϵ is arbitrary, we obtain that $PV^{**}(f; E) \leq \sum_{n} PV^{**}(f; E_n)$. That $PV^{**}(f; E_1 \cup E_2) = PV^{**}(f; E_1) + PV^{**}(f; E_2)$ whenever $d(E_1, E_2) = r > 0$, follows as in the proof of (x).

(xvi) The proof is similar to (ix).(xvii) The proof is similar to (x).

Lemma 5. Let $f : [a,b] \to \mathbb{R}$ and $E \subseteq [a,b]$, $c = \inf E$, $d = \sup E$. If $f \in VB^*$ on E, then there exists a function $F : [a,b] \to \mathbb{R}$ having the following properties.

(i) $F_{|\overline{E}} = f$ and $F \in VB$ on [a, b].

(*ii*)
$$\mathcal{O}(f; [\alpha, \beta]) = \mathcal{O}(F; [\alpha, \beta])$$
 whenever $\alpha, \beta \in \overline{E}, \alpha < \beta$.

PROOF. Let $\{(c_k, d_k)\}_k$ be the set of intervals contiguous to \overline{E} . For every positive integer k, let $c_k < \alpha_k < \beta_k < d_k$, and

$$M_k = \sup_{x \in [c_k, d_k]} f(x), \quad m_k = \inf_{x \in [c_k, d_k]} f(x).$$

Define $F: [a, b] \to \mathbb{R}$ by

$$F(x) = \begin{cases} f(c) & \text{if } x \in [a, c] \\ f(d) & \text{if } x \in [d, b] \\ f(x) & \text{if } x \in \overline{E} \\ M_k & \text{if } x = \alpha_k \\ m_k & \text{if } x = \beta_k \\ H_k & \text{if } x = \beta_k \end{cases}$$

 $\begin{bmatrix} linear & on each [c_k, \alpha_k], [\alpha_k, \beta_k], [\beta_k, d_k] \end{bmatrix}$

(i) Clearly $F_{|\overline{E}} = f$. Let $\Delta : a = x_0 < x_1 < \ldots < x_n = b$ be a partition of [a, b]. If, for example, $(x_{i-1}, x_i) \cap \overline{E} \neq \emptyset$, then let $x_{i-1}^* = \inf(x_{i-1}, x_i) \cap \overline{E}$ and $y_{i-1}^* = \sup(x_{i-1}, x_i) \cap \overline{E}$. This means that there exists a new partition Δ_1 of [a, b], finer than Δ , such that for each component interval I of Δ_1 we have $\operatorname{int}(I) \cap \overline{E} = \emptyset$, or both endpoints of I belong to \overline{E} . Therefore

$$V_{\Delta}(F) := \sum_{i=1}^{n} |F(x_{i-1}) - F(x_i)| \le V_{\Delta_1}(F) \le V(F; \overline{E}) + \sum_k V(F; [c_k, d_k]).$$

By Theorem 7.1 of [8] (p. 229), f is VB^* on \overline{E} ; so VB on \overline{E} . But

$$V(F; [c_k, d_k]) \le 3\mathcal{O}(F; [c_k, d_k]) = 3\mathcal{O}(f; [c_k, d_k])$$

and $\sum_k \mathcal{O}(f; [c_k, d_k]) < +\infty$ (see Theorem 8.5 of [8], p. 232). Therefore $V(F; [a, b]) < +\infty$. Hence $F \in VB$ on [a, b].

(ii) Let $\alpha < \beta$, $\alpha, \beta \in \overline{E}$. Then $\sup_{x \in [\alpha,\beta]} f(x) = \sup\{\sup(f([\alpha,\beta] \cap \overline{E}), M_k : k \text{ is a positive integer such that } (c_k, d_k) \subset (\alpha, \beta)\} = \sup_{x \in [\alpha,\beta]} F(x)$. Analogously, it follows that $\inf_{x \in [\alpha,\beta]} f(x) = \inf_{x \in [\alpha,\beta]} F(x)$. Thus we obtain that $\mathcal{O}(f; [\alpha,\beta]) = \mathcal{O}(F; [\alpha,\beta])$.

Lemma 6. Let $f : [a,b] \to \mathbb{R}$, and let E be a closed subset of [a,b], $x_0 \in E$. If $f \in VB^*$ on E, then for every $\epsilon > 0$ there is a $\delta > 0$ such that

 $V^*(f; E \cap (x_0, x_0 + \delta)) < \epsilon \quad \text{and} \quad V^*(f; E \cap (x_0 - \delta, x_0)) < \epsilon \,.$

Moreover, if $\{I_n\}_n$ is a sequence of abutting closed intervals with $\cup I_n = (x_0 - \delta, x_0)$ or $\cup I_n = (x_0, x_0 + \delta)$, then $\sum_n V^*(f; E \cap I_n) \leq \epsilon$.

PROOF. Let $F : [a, b] \to \mathbb{R}$ be the function given by Lemma 5, and define $V_F : [a, b] \to \mathbb{R}$ by

$$V_F(x) = \begin{cases} 0 & \text{if } x = a \\ V(F; [a, x]) & \text{if } x \in (a, b] \end{cases}$$

Clearly V_F is an increasing function on [a, b]. It follows that there exist $V_F(x_0-) = \ell^-$ and $V_F(x_0+) = \ell^+$, and that they are both finite. Then there is a $\delta > 0$ such that

$$V_F((x_0 - \delta, x_0)) \subset (\ell^- - \epsilon, \ell^-)$$
 and $V_F((x_0, x_0 + \delta)) \subset (\ell^+, \ell^+ + \epsilon)$.

Let $\alpha, \beta \in (x_0, x_0 + \delta) \cap E$. By Lemma 5, (ii). We have

$$\mathcal{O}(f; [\alpha, \beta]) = \mathcal{O}(F; [\alpha, \beta]) \le V(F; [\alpha, \beta]) = V_F(\beta) - V_F(\alpha).$$

Therefore $V^*(f; E \cap (x_0, x_0 + \delta)) \leq \ell^+ + \epsilon - \ell^+ = \epsilon$. Clearly $\sum_n V^*(f; E \cap I_n) \leq \ell^+ + \epsilon - \ell^+ = \epsilon$. $\sum_{n} V(F; I_n) = \sum_{n} (V_F(\beta_n) - V_F(\alpha_n)) < \epsilon, \text{ where } \{I_n\}_n = \{[\alpha_n, \beta_n]\}_n \text{ are as }$ in the hypothesis.

Lemma 7. Let $f : [a, b] \to \mathbb{R}$, $E \subseteq [a, b]$. If $f \in AC^*G$ on E, then $\mu_f^*(E) = 0$.

PROOF. Since $f \in AC^*G$ on E, there exists an E-form $\{E_n\}$ such that f is AC^* on each E_n . Let $\epsilon > 0$. For $\epsilon/2^n$, let $r_n > 0$ be given by the fact that $f \in AC^*$ on E_n . Then $V^*(f; E_n; r_n) < \epsilon/2^n$. Hence

$$\mu_f^*(E) \le \sum_n V^*(f; E_n; 0) \le \sum_n V^*(f; E_n; r_n) < \epsilon.$$

It follows that $\mu_f^*(E) = 0$.

Lemma 8. Let $f : [a,b] \to \mathbb{R}$, $E \subseteq [a,b]$, $m^*(f(E)) = 0$. If there exists an E-form $\{E_n\}$ such that f is monotone^{*} on each E_n , then $\mu_f^*(E) = 0$.

PROOF. Clearly $m^*(f(E_n)) = 0$ for each n. We may suppose without loss of generality that f is increasing^{*} on each E_n . Let $\epsilon > 0$. Then there exists an open set $G_n = \bigcup_{i=1}^{\infty} (\alpha_{ni}, \beta_{ni})$ such that $f(E_n) \subset G_n$ and $m(G_n) < \epsilon/2^n$. Let $E_{ni} = \{x \in E_n : f(x) \in (\alpha_{ni}, \beta_{ni})\}$. For $\alpha, \beta \in E_{ni}, \alpha < \beta$, we have $\mathcal{O}(f; [\alpha, \beta]) = f(\beta) - f(\alpha)$. It follows that $V^*(f; E_{ni}) \leq \beta_{ni} - \alpha_{ni}$. Hence

$$\mu_f^*(E) \le \sum_n V^*(f; E_n; 0) \le \sum_n \sum_i (\beta_{ni} - \alpha_{ni}) < \epsilon.$$

Therefore $\mu_f^*(E) = 0.$

Lemma 9. Let $f : [a, b] \to \mathbb{R}$, $f \in VB$ on [a, b]. Consider the curve

$$C: X(t) = t; \quad Y(t) = f(t), \quad t \in [a, b]$$

and let $Z = \{x \in [a,b] : f'(x) \text{ does not exist (finite or infinite)}\}$. Let S : $[a,b] \to \mathbb{R}$, where S(x) is the length of the curve C on the interval [a,x]. Then $m^*(S(Z)) = 0.$

PROOF. Let $C_f = \{x \in [a, b] : f \text{ is continuous at } x\}$. Then $[a, b] \setminus C_f$ is countable (see [7], p. 219). Let $N = Z \cap C_f$. Then $m^*(S(N)) = 0$ (see [8], pp. 125–126). It follows that $m^*(S(Z)) = 0$.

Lemma 10. Let $f : [a,b] \to \mathbb{R}$, $f \in VB^*$ on [a,b]. Let $Z = \{x \in [a,b] : f'$ does not exist, finite or infinite}. Then $\mu_f^*(Z) = 0$.

PROOF. Let S be the function from Lemma 9. Then $m^*(S(Z)) = 0$. Let $\epsilon > 0$ and $G = \bigcup_{i=1}^{\infty} (\alpha_i, \beta_i)$, with $\{(\alpha_i, \beta_i)\}_i$ a sequence of nonoverlapping open intervals, such that $S(Z) \subset G$, $m(G) < \epsilon$ and $S(Z) \cap (\alpha_i, \beta_i) \neq \emptyset$. Let $Z_i = \{x \in Z : S(x) \in (\alpha_i, \beta_i)\}$. For $a \le \alpha < \beta \le b$ we have that $\mathcal{O}(f; [\alpha, \beta]) \le S(\beta) - S(\alpha)$ (because S is increasing). It follows that $V^*(f; Z_i) \le \beta_i - \alpha_i$. Therefore $\mu_f^*(Z) \le \sum_i V^*(f; Z_i; 0) \le \sum_i V^*(f; Z_i) \le \sum_i (\beta_i - \alpha_i) < \epsilon$. Since ϵ is arbitrary we obtain that $\mu_f^*(Z) = 0$.

Lemma 11 (Bruckner). ([2], pp. 196–197). Let $f : [a, b] \to \mathbb{R}$, $E \subseteq [a, b]$. If $f \in VB^*G$ on E, then there exists a countable set $E_1 \subseteq E$ such that f is continuous at each point of $E \setminus E_1$.

Lemma 12. Let $f : [a,b] \to \mathbb{R}$, $E \subseteq [a,b]$. If $f \in VB^* \cap (N)$ on E, then $\mu_f^*(E) = 0$.

PROOF. Let $F : [a, b] \to \mathbb{R}$ be the function from Lemma 5. By Lemma 5, (ii) we have that $\mu_f^*(E) = \mu_F^*(E)$. Let $A = \{x \in [a, b] : F'(x) \text{ exists and is finite}\}$. By Lemma 7, $\mu_F^*(A) = 0$. Hence $\mu_F^*(A \cap E) = 0$. Let $B = \{x \in E : F'(x) = \pm \infty\}$. Clearly $m^*(F(B)) = 0$ and there exists a *B*-form $\{B_n\}$ such that *F* is monotone^{*} on each B_n (see the technique of [8], p. 235). By Lemma 8, $\mu_F^*(B) = 0$. Let $C = \{x \in [a, b] : F'(x) \text{ does not exist, finite or infinite}\}$. It follows that $\mu_F^*(C) = 0$ (see Lemma 10). Hence $\mu_F^*(C \cap E) = 0$. It follows that $\mu_F^*(E) = 0$ (see Theorem 3, (x)).

Lemma 13. Let $f : [a,b] \to \mathbb{R}$, $E \subseteq [a,b]$ and $D = \{x \in \overline{E} : f \text{ is not continuous at } x\}$. If $f \in VB^*$ on E, then:

- (i) D is a countable set;
- (ii) $V^*(f;Q;r) \leq V^*(f;E;r)$ whenever Q is a closed subset of $\overline{E} \setminus D$ and r > 0.

PROOF. By Theorem 7.1 of [8] (p. 229), $f \in VB^*$ on \overline{E} .

(i) This follows by Lemma 11.

(ii) Let $\{[a_i, b_i]\}_{i=1}^m$ be a finite set of nonoverlapping closed intervals with the endpoints in Q and $\sum_{i=1}^m (b_i - a_i) < r$. Since f is continuous at each point of Q, for $\epsilon > 0$, there exists $\{[\alpha_i, \beta_i]\}_{i=1}^m$ a finite set of nonoverlapping closed intervals, with the endpoints in E and $\sum_{i=1}^m (\beta_i - \alpha_i) < r$, such that

$$\mathcal{O}(f;I_i^{'}) < \frac{\epsilon}{4m} \quad \text{and} \quad \mathcal{O}(f;I_i^{''}) < \frac{\epsilon}{4m} \,,$$

where $I_i^{'}$ is the closed interval with the endpoints a_i , α_i , and $I_i^{''}$ is the closed interval with the endpoints b_i , β_i . We have four situations.

If $[a_i, b_i] \subseteq [\alpha_i, \beta_i]$, then $\mathcal{O}(f; [a_i, b_i]) \leq \mathcal{O}(f; [\alpha_i, \beta_i])$.

- $$\begin{split} & \text{If} \left[\alpha_i, \beta_i \right] \subset [a_i, b_i], \text{ then } \mathcal{O}(f; [a_i, b_i]) \leq \mathcal{O}(f; [a_i, \alpha_i]) + \mathcal{O}(f; [\alpha_i, \beta_i]) + \mathcal{O}(f; [\beta_i, b_i]) \\ & < \mathcal{O}(f; [\alpha_i, \beta_i]) + \frac{\epsilon}{2m}. \end{split}$$
- If $a_i < \alpha_i < b_i < \beta_i$, then $\mathcal{O}(f; [a_i, b_i]) \leq \mathcal{O}(f; [a_i, \beta_i]) \leq \mathcal{O}(f; [a_i, \alpha_i]) + \mathcal{O}(f; [\alpha_i, \beta_i]) < \mathcal{O}(f; [\alpha_i, \beta_i]) + \frac{\epsilon}{4m}$.
- If $\alpha_i < a_i < \beta_i < b_i$, then $\mathcal{O}(f; [a_i, b_i]) \leq \mathcal{O}(f; [\alpha_i, b_i]) \leq \mathcal{O}(f; [\alpha_i, \beta_i]) + \mathcal{O}(f; [\beta_i, b_i]) < \mathcal{O}(f; [\alpha_i, \beta_i]) + \frac{\epsilon}{4m}$.

It follows that $\sum_{i=1}^{m} \mathcal{O}(f; [a_i, b_i]) < \frac{\epsilon}{2} + \sum_{i=1}^{m} \mathcal{O}(f; [\alpha_i, \beta_i]) < \frac{\epsilon}{2} + V^*(f; E; r)$. Therefore $V^*(f; Q; r) \leq \frac{\epsilon}{2} + V^*(f; E; r)$. Since ϵ is arbitrary, we obtain that $V^*(f; Q; r) \leq V^*(f; E; r)$.

Lemma 14. Let $f : [a, b] \to \mathbb{R}$, $E \subseteq [a, b]$. If $f \in VB^*$ on E and $\mu_f^*(E) = 0$, then $[PV^*](f; E) = 0$. Hence $PV^*(f; E) = 0$.

PROOF. Let $\epsilon > 0$. Then there exist an *E*-form $\{E_n\}$ and a sequence of positive numbers $\{r_n\}$ such that $\sum_n V^*(f; E_n; r_n) < \frac{\epsilon}{2}$ (because $\mu_f^*(E) = 0$). Since f is VB^* on E, it follows that f is VB^* on \overline{E} . Let $D = \{d_1, d_2, \ldots\}$ be the set of all discontinuity points of f in \overline{E} . (That D is a countable set follows by Lemma 13.) By Lemma 6, there exist $I_n = (p_n, d_n)$ and $J_n = (d_n, q_n)$ such that if $I_n = \bigcup_k I_{nk}$, $J_n = \bigcup_k J_{nk}$ and $\{I_{nk}\}_k, \{J_{nk}\}_k$ are nonoverlapping closed intervals, then

$$\sum_{k} V^*(f; \overline{E} \cap I_{nk}) + \sum_{k} V^*(f; \overline{E} \cap J_{nk}) < \frac{\epsilon}{2^{n+1}}.$$

Let $Q = \overline{E} \setminus (\bigcup_n (p_n, q_n))$. Then Q is a compact set and f is continuous at each point of Q. Let $Q_n = Q \cap \overline{E}_n$. By Lemma 13, (ii), it follows that $V^*(f; Q_n; r) \leq V^*(f; E_n; r)$. Then

$$\{E \cap Q_n\}_n \cup \{E \cap I_{nk}\}_{n,k} \cup \{E \cap J_{nk}\}_{n,k} \cup \{d_n\}_n$$

is a closed E-form. It follows that

$$\sum_{n} V^{*}(f; Q_{n}; r_{n}) + \sum_{n} \sum_{k} V^{*}(f; E \cap I_{nk}) + \sum_{n} \sum_{k} V^{*}(f; E \cap J_{nk}) < \epsilon.$$

Since $V^*(f; \{d_n\}) = 0$ for each n and ϵ is arbitrary, we obtain that $[PV^*](f; E) = 0$. That $PV^*(f; E) = 0$ follows by Theorem 3, (viii).

Corollary 2. Let $f : [a,b] \to \mathbb{R}$, $E \subseteq [a,b]$. If $f \in VB^* \cap (N)$ on E, then $[PV^*](f;E) = 0$.

PROOF. By Lemma 12, $f \in VB^*$ on E and $\mu_f^*(E) = 0$. Now by Lemma 14 it follows that $[PV^*](f; E) = 0$.

Lemma 15. Let $f : [a, b] \to \mathbb{R}$, $E \subseteq [a, b]$. If $\mu_f^*(E) < +\infty$, then $f \in VB^*G$ on E.

PROOF. Since $\mu_f^*(E) < +\infty$, there exist an *E*-form $\{E_n\}$ and a sequence $\{r_n\}$ of positive numbers such that $\sum_n V^*(f; E_n; r_n) < \mu_f^*(E) + 1$. It follows that $V^*(f; E_n; r_n) < \mu_f^*(E) + 1$. Consequently, $f \in VB^*$ on E_{nk} , where

$$E_{nk} = E_n \cap \left[k\frac{r_n}{2}, (k+1)\frac{r_n}{2}\right], \quad k = 0, \pm 1, \pm 2, \pm 3, \dots$$

It follows that $f \in VB^*G$ on E.

Theorem 4 (Main Theorem). Let $f : [a,b] \to \mathbb{R}$, $E \subseteq [a,b]$. The following assertions are equivalent.

- (i) $f \in VB^*G \cap (N)$ on E.
- (ii) $f \in [PAC^*]$ on E.
- (iii) $f \in PAC^*$ on E.
- (iv) $f \in (PAC^*)$ on E.

PROOF. (i) \Rightarrow (ii) By Theorem 7.1 of [8] (p. 229), $f \in [VB^*G] \cap (N)$ on E. Then there exists a closed E-form $\{E_n\}$ such that $f \in VB^* \cap (N)$ on each E_n . By Corollary 2, $f \in [PAC^*]$ on each E_n . By Theorem 3, (ix), it follows that $f \in [PAC^*]$ on E.

(ii) \Rightarrow (iii) See Theorem 3, (vii).

(iii) \Rightarrow (ii) By Lemma 15, $f \in VB^*G = [VB^*G]$ on E. Then there is a closed E-form $\{E_n\}$ such that $f \in VB^*$ on each E_n . But $\mu_f^*(E_n) = 0$. By Lemma 14 we obtain that $[PV^*](f; E_n) = 0$. Now by Theorem 3, (ix) we have that $[PV^*](f; E) = 0$. Hence $f \in [PAC^*]$ on E.

(ii) \Rightarrow (iv) See Theorem 3, (viii).

(iv) \Rightarrow (i) By Theorem 3, (v), $f \in VB^*G$ on E, and by Theorem 3, (iii) and (iv), we obtain that $f \in (N)$ on E.

Corollary 3. Let $E \subseteq [a,b]$ and $\mathcal{A} = \{f : [a,b] \to \mathbb{R} : f \in VB^*G \cap (N) \text{ on } E\}$. Then \mathcal{A} is an algebra.

PROOF. Let $f, g \in \mathcal{A}, \alpha, \beta \in \mathbb{R}$. By Theorem 4, (i), (iv) we obtain that $f, g \in (PAC^*)$ on E. Hence $PV^*(f; E) = PV^*(g; E) = 0$. By Theorem 3, (i), $PV^*(\alpha f + \beta g; E) = 0$; so $\alpha f + \beta g \in (PAC^*) = VB^*G \cap (N)$ (see Theorem 4, (i), (iv)). It follows that \mathcal{A} is a real linear space. Let $\{E_n\}_n$ be an E-form such that $f, g \in VB^* \cap (N)$ on each E_n . But $f, g \in VB^*$ on \overline{E}_n ; so f and g are bounded on each $[c_n, d_n]$, where $c_n = \inf E_n, d_n = \sup E_n$. By Theorem 4, (i), (iv), we have that $f, g \in (PAC^*)$ on E_n . By Theorem 3, (i), $PV^*(fg; E_n) = 0$. Hence $f \cdot g \in (PAC^*)$ on each E_n and $f \cdot g \in VB^*$ on E_n . Again by Theorem 4, (i), (iv), it follows that $f \cdot g \in (N)$ on each E_n ; so $f \cdot g \in VB^*G \cap (N)$ on E.

7 Characterizations of $VB^*G \cap (N)$ on a Lebesgue Measurable Set

Theorem 5. Let $f : [a, b] \to \mathbb{R}$ and let E be a Lebesgue measurable subset of [a, b]. The following assertions are equivalent.

- (i) $f \in VB^*G \cap (N)$ on E.
- (ii) $f \in [PAC^*]$ on E.
- (iii) $f \in PAC^*$ on E.
- (iv) $f \in (PAC^*)$ on E.
- (v) $f \in VB^*G \cap (N)$ on Z, whenever Z is a null subset of E.
- (vi) $f \in [PAC^*]$ on Z, whenever Z is a null subset of E.
- (vii) $f \in PAC^*$ on Z, whenever Z is a null subset of E.

(viii) $f \in (PAC^*)$ on Z, whenever Z is a null subset of E.

PROOF. By Theorem 4, we obtain that (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) and (v) \Leftrightarrow (vi) \Leftrightarrow (vii) \Leftrightarrow (viii). For (i) \Leftrightarrow (v) see Theorem 1.

Theorem 6. Let $f : [a,b] \to \mathbb{R}$ and let E be a closed subset of [a,b]. The following assertions are equivalent.

- (i) $f \in AC^*G$ on E and f is continuous at each point of E.
- (ii) $f \in VB^*G \cap (N)$ on E and f is continuous at each point of E.
- (iii) $f \in (PAC^*)$ on E and f is continuous at each point of E.

- (iv) $f \in [PAC^*]$ on E and f is continuous at each point of E.
- (v) $f \in PAC^*$ on E and f is continuous at each point of E.
- (vi) $f \in (PAC^{**})$ on E.
- (vii) $f \in [PAC^{**}]$ on E.
- (viii) $f \in PAC^{**}$ on E.
- (ix) $f \in AC^*G$ on Z whenever Z is a null subset of E and f is continuous at each point of E.
- (x) $f \in VB^*G \cap (N)$ on Z, whenever Z is a null subset of E and f is continuous at each point of E.
- (xi) $f \in [PAC^*]$ on Z, whenever Z is a null subset of E and f is continuous at each point of E.
- (xii) $f \in PAC^*$ on Z, whenever Z is a null subset of E and f is continuous at each point of E.
- (xiii) $f \in (PAC^*)$ on Z, whenever Z is a null subset of E and f is continuous at each point of E.
- (xiv) f is $[PAC^{**}]$ on Z, whenever Z is a null subset of E.
- (xv) f is PAC^{**} on Z, whenever Z is a null subset of E.
- (xvi) f is (PAC^{**}) on Z, whenever Z is a null subset of E.

PROOF. (i) \Leftrightarrow (ii) follows by Theorem 8.8 of [8] (p. 233). (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v) follow from Theorem 4. (iii) \Leftrightarrow (vi), (iv) \Leftrightarrow (vii) and (v) \Leftrightarrow (viii) follow from Corollary 1. (i) \Leftrightarrow (ix) follows by Lemma 3. (ii) \Leftrightarrow (x) \Leftrightarrow (xi) \Leftrightarrow (xii) \Leftrightarrow (xiii) follow by Theorem 5, (i), (v), (vi), (vii), (vii). (xiv) \Leftrightarrow (xi), (xv) \Leftrightarrow (xii) and (xvi) \Leftrightarrow (xiii) follow from Corollary 1.

8 Thomson's Outer Measure S_{o} - μ_{f}

Definition 7. ([11], pp. 99–101). Let $E \subseteq [a, b]$ and let $\delta : E \to (0, +\infty)$.

- $\beta_{\delta}^{o}[E] = \{([y, z]; x) : x \in [y, z] \subset (x \delta(x), x + \delta(x)) \text{ and } x \in E\}$ and $\mathcal{A}_{\delta}^{o} = \{[y, z] : ([y, z]; x) \in \beta_{\delta}^{o}[E]\}.$
- $\beta_{\delta}[E] = \{([y, z]; x) : x \in E \cap \{y, z\} \text{ and } [y, z] \subset (x \delta(x), x + \delta(x))\} \text{ and } A_{\delta} = \{[y, z] : ([y, z]; x) \in \beta_{\delta}[E]\}.$

• A family \mathcal{A} of intervals is said to be a \mathcal{S}_o -cover of E if there exists a $\delta: E \to (0, +\infty)$ such that $\mathcal{A} \supseteq \mathcal{A}_\delta$. Clearly \mathcal{A}_δ is a \mathcal{S}_o -cover of E [12].

Definition 8 (Thomson). [12]. Let $f : [a, b] \to \mathbb{R}, E \subseteq [a, b]$. Let \mathcal{A} be a \mathcal{S}_o -cover of E and $\delta : E \to (0, +\infty)$. Put

- $V^*(f; \mathcal{A}) = \sup\{\sum_{i=1}^n |f(b_i) f(a_i)| : \{[a_i, b_i]\}_{i=1}^n \text{ is a finite set of nonoverlapping closed intervals belonging to } \mathcal{A}\};$
- \mathcal{S}_{o} - $\mu_{f}(E) = \inf\{V^{*}(f; \mathcal{A}) : \mathcal{A} \text{ is a } \mathcal{S}_{o}\text{-cover}\};$
- $V^*_{\delta}(f; E) = V^*(f; \mathcal{A}_{\delta})$ and $V^{*,o}_{\delta}(f; E) = V^*(f; \mathcal{A}^o_{\delta});$

Proposition 1. Let $f : [a,b] \to \mathbb{R}$, $E \subseteq [a,b]$ and $\delta : E \to (0,+\infty)$. Then $V_{\delta}^*(f;E) = V^*(f;\mathcal{A}_{\delta}) = V^*(f;\mathcal{A}_{\delta}^0) = V_{\delta}^{*,0}(f;E)$ and $\mathcal{S}_0 - \mu_f(E) = \inf_{\delta} V^*(f;\mathcal{A}_{\delta})$.

PROOF. By definitions, we clearly have

$$V_{\delta}^*(f; E) = V^*(f; \mathcal{A}_{\delta}) \le V^*(f; \mathcal{A}_{\delta}^0) = V_{\delta}^{*,0}(f; E) \,.$$

Let $\{[a_i, b_i]\}_{i=1}^m$ be any finite set of non-overlapping closed intervals with $[a_i, b_i] \in \mathcal{A}^0_{\delta}$. Then there exists $x_i \in E$ such that $x_i \in [a_i, b_i] \subset (x_i - \delta(x_i), x_i + \delta(x_i))$. Hence $[a_i, x_i], [x_i, b_i] \in \mathcal{A}_{\delta}$. Then

$$\sum_{i=1}^{m} |f(b_i) - f(a_i)| \le \sum_{i=1}^{m} |f(x_i) - f(a_i)| + \sum_{i=1}^{m} |f(b_i) - f(x_i)| \le V^*(f; \mathcal{A}_{\delta}).$$

Hence $V^*(f; \mathcal{A}^0_{\delta}) \leq V^*(f; \mathcal{A}_{\delta})$, as remained to be shown.

The second part is obvious from definitions.

Definition 9. ([4], p. 89). Let $f : [a,b] \to \mathbb{R}$ and $E \subseteq [a,b]$. f is said to be $Y_{D^{\circ}}$ (respectively Y_D) on E if for every null subset Z of E and for every $\epsilon > 0$, there is a $\delta : Z \to (0, +\infty)$ such that $\sum_{i=1}^{n} |f(d_i) - f(c_i)| < \epsilon$, whenever $\{[c_i, d_i]\}_{i=1}^{n}$ is a finite set of nonoverlapping closed intervals, with $([c_i, d_i], t_i) \in \beta_{\delta}^{\circ}[Z]$ (respectively $([c_i, d_i], t_i) \in \beta_{\delta}[Z]$).

The condition $Y_{D^{\circ}}$ was introduced by P. Y. Lee in [6]. He called it "the strong Lusin condition" (abbreviated *SLC*).

Corollary 4. Let $f : [a,b] \to \mathbb{R}$ and $E \subseteq [a,b]$. The following assertions are equivalent.

- (i) $f \in Y_D$ on E.
- (ii) $f \in Y_{D^o}$ on E.

(iii) $S_o - \mu_f(Z) = 0$ whenever Z is a null subset of E (i.e. $S_o - \mu_f$ is absolutely continuous on E).

PROOF. See Proposition 1.

Theorem 7. Let $f, g: [a, b] \to \mathbb{R}$, $E \subseteq [a, b]$, $c = \inf E$, $d = \sup E$, $\alpha, \beta \in \mathbb{R}$.

- (i) $\mathcal{S}_o \mu_{\alpha f + \beta g}(E) \leq |\alpha| \cdot \mathcal{S}_o \mu_f(E) + |\beta| \cdot \mathcal{S}_o \mu_g(E).$
- (ii) If $\mathcal{S}_o \mu_q(E) = 0$, then $\mathcal{S}_o \mu_{f+q}(E) = \mathcal{S}_o \mu_f(E)$.
- (iii) If $\sup_{x \in [c,d]} \{ |f(x)|, |g(x)| \} = M < +\infty$, then

$$\mathcal{S}_o - \mu_{f \cdot g}(E) \le M \cdot \left(\mathcal{S}_o - \mu_f(E) + \mathcal{S}_o - \mu_g(E) \right).$$

(iv) $PV^{**}(f; E) \leq \mathcal{S}_o - \mu_f(E)$.

PROOF. Recall Proposition 1. Let $\delta : E \to (0, +\infty)$. (i) We have

$$\mathcal{S}_{o} - \mu_{\alpha f + \beta g}(E) \le V_{\delta}^*(\alpha f + \beta g; E) \le |\alpha| \cdot V_{\delta}^*(f; E) + |\beta| \cdot V_{\delta}^*(g; E) \,.$$

Hence $S_o - \mu_{\alpha f + \beta g}(E) \leq |\alpha| \cdot S_o - \mu_f(E) + |\beta| \cdot S_o - \mu_g(E)$. (ii) Clearly $S_o - \mu_g(E) = 0$ implies that $S_o - \mu_{-g}(E) = 0$. By (i), we have

$$\begin{aligned} \mathcal{S}_{o} - \mu_f(E) &= \mathcal{S}_{o} - \mu_{f+g-g}(E) \leq \mathcal{S}_{o} - \mu_{f+g}(E) + \mathcal{S}_{o} - \mu_{-g}(E) \\ &= \mathcal{S}_{o} - \mu_{f+g}(E) \leq \mathcal{S}_{o} - \mu_f(E) + \mathcal{S}_{o} - \mu_g(E) = \mathcal{S}_{o} - \mu_f(E) \,. \end{aligned}$$

Therefore $\mathcal{S}_o - \mu_f(E) = \mathcal{S}_o - \mu_{f+g}(E)$.

(iii) Let $x, y \in [c, d], c \le x < y \le d$. Then

$$\begin{aligned} \left| f(y) \cdot g(y) - f(x) \cdot g(x) \right| &= \left| g(y) \cdot (f(y) - f(x)) + f(x)(g(y) - g(x)) \right| \\ &\leq M \cdot \left(\left| f(y) - f(x) \right| + \left| g(y) - g(x) \right| \right). \end{aligned}$$

We have $\mathcal{S}_{o}-\mu_{f\cdot g}(E) \leq V_{\delta}^{*}(f \cdot g; E) \leq M \cdot \left(V_{\delta}^{*}(f; E) + V_{\delta}^{*}(g; E)\right)$. Therefore $\mathcal{S}_{o}-\mu_{f\cdot g}(E) \leq M \cdot \left(\mathcal{S}_{o}-\mu_{f}(E) + \mathcal{S}_{o}-\mu_{g}(E)\right)$.

(iv) We may suppose that $\mathcal{S}_o - \mu_f(E) = M < +\infty$. For $\epsilon > 0$ there is a $\delta : E \to (0, +\infty)$ such that $V^*_{\delta}(f; E) < M + \epsilon$. Let

$$E_k = \left\{ x \in E : \delta(x) > \frac{1}{k} \right\}, \quad k = 1, 2, 3, \dots$$

Then $\{E_k\}$ is an *E*-chain. Fix some *k* and let $\{[a_i, b_i]\}_{i=1}^m$ be a finite set of nonoverlapping closed intervals having at least one endpoint in E_k , such that

 $\sum_{i=1}^{m} (b_i - a_i) < 1/k.$ We may suppose without loss of generality that each $a_i \in E_k.$ Then $b_i \in \left(a_i, a_i + \frac{1}{k}\right) \subset \left(a_i, a_i + \delta(a_i)\right);$ so $\sum_{i=1}^{m} \left|f(b_i) - f(a_i)\right| < V_{\delta}^*(f; E) < M + \epsilon.$

Then $V^{**}(f; E_k; 1/k) < M + \epsilon$. Hence $V^{**}(f; E_k; 0) \leq M + \epsilon$ for each k. Since ϵ is arbitrary, we obtain that $PV^{**}(f; E) \leq M$.

Lemma 16 (Thomson). (Theorem 43.1 of [12], p. 101). Let $f : [a, b] \to \mathbb{R}$, $E \subseteq [a, b]$. Then $m^*(f(E)) \leq S_o \cdot \mu_f(E)$.

Lemma 17. Let $f : [a, b] \to \mathbb{R}, E \subseteq [a, b]$.

- (i) If f is increasing^{*} on E, then $S_o \mu_f(A) \leq 2m^*(f(A))$, whenever $A \subseteq \{x \in E : f \text{ is continuous at } x\}$.
- (ii) If f is increasing on [a, b], then $S_o \mu_f(A) \leq m^*(f(A))$, whenever $A \subseteq \{x \in E : f \text{ is continuous at } x\}$.

PROOF. Suppose that $m^*(f(A)) < +\infty$. (If $m^*(f(A)) = +\infty$, there is nothing to prove.) For $\epsilon > 0$, let G be an open set such that $f(A) \subset G$ and $m(G) < m^*(f(A)) + \epsilon$. Let $\{(\alpha_i, \beta_i)\}_i$ be the components of G. Since f is continuous at each point of A, there exists a $\delta : A \to (0, +\infty)$ such that

$$f((x - \delta(x), x + \delta(x))) \subset (\alpha_i, \beta_i), \text{ whenever } f(x) \in (\alpha_i, \beta_i).$$

Let $\{[a_i, b_i]\}_{i=1}^m$ be a finite set of nonoverlapping closed intervals such that each $[a_i, b_i]$ contains a point $x_i \in A$ with $[a_i, b_i] \subset (x_i - \delta(x_i), x_i + \delta(x_i))$. Suppose that $a_1 < b_1 \le a_2 < b_2 \le \ldots \le a_m < b_m$. Then each $[f(a_i), f(b_i)] \subset G$.

that $a_1 < b_1 \le a_2 < b_2 \le \ldots \le a_m < b_m$. Then each $[f(a_i), f(b_i)] \subset G$. (i) Clearly, $\{[f(a_i), f(b_i)]\}_{i=1,i=\text{even}}^m$ and $\{[f(a_i), f(b_i)]\}_{i=1,i=\text{odd}}^m$, consist both of nonoverlapping closed intervals. It follows that

$$\sum_{i=1}^{m} (f(b_i) - f(a_i)) = \sum_{i=1, i=\text{even}}^{m} (f(b_i) - f(a_i)) + \sum_{i=1, i=\text{odd}}^{m} (f(b_i) - f(a_i))$$

< $2 \cdot m(G) < 2m^*(f(A)) + 2\epsilon$.

Hence $V_{\delta}^{*,o}(f;A) \leq 2m^*(f(A)) + 2\epsilon$. Now by Proposition 1, we obtain that $S_{o}-\mu_f(A) \leq 2m^*(f(A))$.

(ii) Clearly $\{[f(a_i, f(b_i)]\}_{i=1}^m$ are nonoverlapping closed intervals. It follows that

$$\sum_{i=1}^{m} (f(b_i) - f(a_i)) < m(G) < m^*(f(A)) + \epsilon.$$

Hence $V^{*,o}_{\delta}(f;A) \leq m^*(f(A)) + \epsilon$. Now by Proposition 1, we obtain that \mathcal{S}_o - $\mu_f(A) \leq m^*(f(A))$.

Corollary 5. Let $f : [a,b] \to \mathbb{R}$ and $E \subseteq \{x \in [a,b] : f \text{ is continuous at } x\}$.

- (i) If f is increasing^{*} on E and $m^*(f(E)) = 0$, then $S_o \mu_f(E) = 0$.
- (ii) If f is increasing on [a, b], then $m^*(f(E)) = S_o \mu_f(E)$. (This is the second part of Theorem 13.3 of [8], p. 100.)

Corollary 6. Let $f : [a,b] \to \mathbb{R}$ and $E = \{x \in [a,b] : \underline{D}f(x) > 0 \text{ and } f \text{ is continuous at } x\}$. If $m^*(f(E)) = 0$, then $\mathcal{S}_o \mu_f(E) = 0$.

PROOF. Let

$$E_n = \left\{ x \in E : \frac{f(t) - f(x)}{t - x} \ge \frac{1}{n}, \quad 0 < |t - x| < \frac{1}{n} \right\}, \ n = 1, 2, \dots$$

Let $E_n^i = \left[\frac{i}{2n}, \frac{i+1}{2n}\right] \cap E_n$, $i = 0, \pm 1, \pm 2, \ldots$ Then $E = \bigcup_{n,i} E_n^i$. Let J_n^i be an open interval such that $E_n^i \subset J_n^i$ and $m(J_n^i) < 3/(4n)$. Let $x, y \in J_n^i$, x < y. At least one of them belonging to E_n^i . Then $f(y) - f(x) > \frac{1}{n}(y-x)$. Hence f is increasing* on each E_n^i . Clearly $m^*(f(E_n^i)) = 0$. It follows that $\mathcal{S}_o - \mu_f(E_n^i) = 0$ (see Corollary 5, (i)). Since $\mathcal{S}_o - \mu_f$ is an outer measure, we obtain that $\mathcal{S}_o - \mu_f(E) = 0$.

Lemma 18. Let $f : [a,b] \to \mathbb{R}$ and let $X = \{x \in [a,b] : f'(x) = 0\}$. Then $S_o - \mu_f(X) = 0$.

PROOF. See Lemma 42.1 of [12], p. 99.

Lemma 19. (Theorem 9.1 of [8], p. 125). Let
$$f : [a,b] \to \mathbb{R}$$
, and let $N = \{x \in [a,b] : f \text{ is continuous at } x; f'(x) \text{ does not exist (finite or infinite)}\}$. If $f \in VB$ on $[a,b]$, then $m^*(f(N)) = \mathcal{S}_o \cdot \mu_f(N) = m^*(N) = 0$.

PROOF. That $m^*(f(N)) = m^*(N) = 0$ follows immediately from Theorem 9.1 of [8] (see (9.2) and (9.3), p. 125). Consider the curve:

$$C: X(t) = t$$
, $Y(t) = f(t)$, $t \in [a, b]$,

and let S(t) be its length on the interval [a, t]. In the proof of Theorem 9.1 of [8] (p. 126), it is shown that $m^*(S(N)) = 0$. By Corollary 5, $\mathcal{S}_o \mu_S(N) = m^*(S(N)) = 0$ (because S is a strictly increasing function on [a, b]). But $|f(t_2) - f(t_1)| \leq S(t_2) - S(t_1)$, whenever $a \leq t_1 < t_2 \leq b$; so

$$0 \leq \mathcal{S}_o \cdot \mu_f(N) \leq \mathcal{S}_o \cdot \mu_S(N) = 0.$$

Therefore $\mathcal{S}_o - \mu_f(N) = 0.$

Lemma 20. Let $f : [a,b] \to \mathbb{R}$, $E \subseteq [a,b]$, $A \subseteq \{x \in E : f \text{ is continuous at } x\}$, and let $\tilde{f} : [a,b] \to \mathbb{R}$, $\tilde{f} = f_{\overline{E} \cup \{a,b\}}$ (see Definition 1). If $f \in VB^*$ on E, then $\mathcal{S}_o - \mu_f(A) = \mathcal{S}_o - \mu_{\tilde{f}}(A)$.

PROOF. Let $g = \tilde{f} - f$. Since \tilde{f} is continuous at each point of A, the function g has this property as well. Suppose that there are infinitely many intervals contiguous to $\overline{E} \cup \{a, b\}$, and let's denote them by $\{(a_i, b_i)\}_{i=1}^{\infty}$. Let

$$A_1 = A \cap \{a, b, a_1, b_1, a_2, b_2, \ldots\}$$
 and $A_2 = A \setminus A_1$

Since g is continuous at each point of A, we have that $S_o - \mu_g(\{x\}) = 0$ for every $x \in A$. It follows that $S_o - \mu_g(A_1) = 0$ (because A_1 is at most countable and $S_o - \mu_g$ is an outer measure). For $\epsilon > 0$ let n_o be a positive integer such that $\sum_{i=n_o+1}^{\infty} \mathcal{O}(f; [a_i, b_i]) < \epsilon$. Then

$$\sum_{i=n_o+1}^{\infty} \mathcal{O}(g; [a_i, b_i]) < 2\epsilon.$$
(6)

Let $G = (a, b) \setminus (\bigcup_{i=1}^{n_o} [a_i, b_i])$ and let $\delta : A_2 \to (0, +\infty)$ be a positive function such that $(x - \delta(x), x + \delta(x)) \subset G$. Let $\{[c_j, d_j]\}_{j=1}^n$ be a finite set of nonoverlapping closed intervals such that each $[c_j, d_j]$ contains a point $x_j \in A_2$ with $[c_j, d_j] \subset (x_j - \delta(x_j), x_j + \delta(x_j))$. Since any interval (a_i, b_i) with $i \ge n_o + 1$ contains at most two points of the set $\{c_1, d_1, c_2, d_2, \ldots, c_n, d_n\}$, and g = 0 on \overline{E} , by $(6), \sum_{j=1}^n |g(d_j) - g(c_j)| < 2\epsilon$; so $V_{\delta}^{*,o}(f; A_2) < 4\epsilon$. By Proposition 1, it follows that $\mathcal{S}_o - \mu_g(A_2) = 0$. Clearly $\mathcal{S}_o - \mu_g(A) = 0$. Now, by Theorem 7, (ii), we obtain that $\mathcal{S}_o - \mu_f(A) = \mathcal{S}_o - \mu_{\tilde{f}}(A)$.

Lemma 21. Let $f : [a,b] \to \mathbb{R}$, $E \subseteq [a,b]$, $N = \{x \in E : f'(x) \text{ does not exist (finite or infinite)}\}$ and $N_o = N \cap \{x \in [a,b] : f \text{ is continuous at } x\}$. If $f \in VB^*G$ on E, then

- (i) f is derivable almost everywhere on E and $m^*(f(N)) = 0$;
- (ii) $\mathcal{S}_o \mu_f(N_o) = 0.$

PROOF. (i) See Theorem 7.2 of [8], p. 230.

(ii) Since $S_o \mu_f$ is an outer measure, it is sufficient to suppose that $f \in VB^*$ on E. Let \tilde{f} be the function defined in Lemma 20. Then $S_o \mu_f(N_o) = S_o \mu_{\tilde{f}}(N_o)$. Let

$$N_1 = \{ x \in N_o : \tilde{f}'(x) = 0 \};$$

$$N_2 = \{ x \in N_o : \tilde{f}'(x) > 0 \};$$

 $N_{3} = \{x \in N_{o} : \tilde{f}'(x) < 0\};$ $N_{4} = \{x \in N_{o} : \tilde{f}'(x) \text{ does not exist (finite or infinite)}\};$ $\tilde{N} = \{x \in [a, b] : \tilde{f} \text{ is continuous at } x; \tilde{f}'(x) \text{ does not exist (finite or infinite)}\}.$

Then $N_4 \subset \tilde{N}$ and \tilde{f} is VB on [a, b]. By Lemma 19, $S_o - \mu_{\tilde{f}}(\tilde{N}) = 0$. Therefore $S_o - \mu_{\tilde{f}}(N_4) = 0$. By Lemma 18, $S_o - \mu_{\tilde{f}}(N_1) = 0$, and by (i), $m^*(\tilde{f}(N_2)) = 0$. Hence $S_o - \mu_{\tilde{f}}(N_2) = 0$ (see Corollary 6). Analogously, it follows that $S_o - \mu_{\tilde{f}}(N_3) = 0$. Therefore $S_o - \mu_{\tilde{f}}(N_o) = 0$.

Remark 1. Lemma 21 is an extension of Theorem 7.2 of [8] (p. 230), Theorem 44.2 and Theorem 44.1 of [12] (pp. 103–104).

Theorem 8. (An Extension of Corollary 43.4 of [12], p. 103). Let $f : [a, b] \to \mathbb{R}$, $E \subseteq [a, b]$ and $A \subseteq \{x \in E : f \text{ is continuous at } x\}$. If $f \in VB^*G$ on E, then the following assertions are equivalent.

(i)
$$m^*(f(A)) = 0.$$

(ii) $\mathcal{S}_o \cdot \mu_f(A) = 0.$

PROOF. (i) \Rightarrow (ii) Let $N = \{x \in A : f'(x) \text{ does not exist (finite or infinite)}\}$. By Lemma 21, (ii), we have that $\mathcal{S}_o - \mu_f(N) = 0$.

Let
$$B = A \setminus N$$
.

Let $B_1 = \{x \in B : f'(x) = 0\}$. Then $S_o - \mu_f(B_1) = 0$ (see Lemma 18).

Let $B_2 = \{x \in B : f'(x) > 0\}$. Then $S_o - \mu_f(B_2) = 0$ (see Corollary 6).

Let $B_3 = \{x \in B : f'(x) < 0\}$. Then $S_o - \mu_f(B_3) = 0$ (see Corollary 6).

Therefore $S_o - \mu_f(A) = 0$. (ii) \Rightarrow (i) See Lemma 16.

Corollary 7. (Identical with Corollary 3). Let $E \subseteq [a, b]$. Then

$$\mathcal{A} = \{ f : [a, b] \to \mathbb{R} : f \in VB^*G \cap (N) \text{ on } E \}$$

is an algebra.

PROOF. Let $f, g \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{R}$. By Lemma 11, there exists a countable set $E_1 \subseteq E$ such that both functions f and g are continuous at each point of $E \setminus E_1$. Clearly $\alpha f + \beta g \in VB^*G$ on E. We have to show that $\alpha f + \beta g \in (N)$ on $E \setminus E_1$. Let Z be a null subset of $E \setminus E_1$. Then $m^*(f(Z)) = m^*(g(Z)) = 0$. By Theorem 8, $\mathcal{S}_o - \mu_f(Z) = \mathcal{S}_o - \mu_g(Z) = 0$. It follows that $\mathcal{S}_o - \mu_{\alpha f + \beta g}(Z) = 0$ (see Theorem 7, (i)). Hence by Lemma 16, we obtain that $m^*((\alpha f + \beta g)(Z)) = 0$. Therefore $\alpha f + \beta g \in (N)$ on $E \setminus E_1$.

It is well known that $f \cdot g \in VB^*G$ on E. We show that $f \cdot g \in (N)$ on E. Since $f, g \in VB^*G$ on E, there exists a sequence $\{E_n\}_n$ of sets such that $E = \bigcup_n E_n$ and $f, g \in VB^*$ on each E_n . Then $f, g \in VB^*$ on \overline{E}_n (see Theorem 7.1 of [8], p. 229). Let $c_n = \inf E_n$ and $d_n = \sup E_n$. Then f and g are bounded by some number M_n on $[c_n, d_n]$. By Lemma 11, there exists a countable subset $E'_n \subseteq E_n$ such that f and g are both continuous at each point of $E_n \setminus E'_n$. Let Z be a null subset of $E_n \setminus E'_n$. Then $m^*(f(Z)) = m^*(g(Z)) = 0$, and by Theorem 8, $\mathcal{S}_o - \mu_f(Z) = \mathcal{S}_o - \mu_g(Z) = 0$. It follows that $\mathcal{S}_o - \mu_f \cdot g(Z) = 0$ (see Theorem 7, (iii)). Now, by Lemma 16, we obtain that $m^*((f \cdot g)(Z)) = 0$. Hence $f \cdot g \in (N)$ on each E_n . Therefore $f \cdot g \in (N)$ on E.

9 Characterizations of a VB*G \cap (N) Function f on a Lebesgue Measurable Set, Using S_{0} - μ_{f}

Theorem 9. Let $f : [a, b] \to \mathbb{R}$ and let E be a Lebesgue measurable subset of [a, b]. The following assertions are equivalent.

- (i) $f \in VB^*G \cap (N)$ on E.
- (ii) $f \in VB^*G \cap (N)$ on Z, whenever Z is a null subset of E.
- (iii) there exists a countable subset E_1 of E such that $S_o \mu_f(Z) = 0$, whenever Z is a null subset of $E \setminus E_1$.

PROOF. Let $E_1 = \{x \in E : f \text{ is not continuous at } x\}$.

(i) \Rightarrow (ii) This is obvious.

(ii) \Rightarrow (i) Clearly $f \in (N)$ on E, and by Theorem 1, $f \in VB^*G$ on E. Therefore $f \in VB^*G \cap (N)$ on E.

(i) \Rightarrow (iii) By Lemma 11, E_1 is at most countable. Let Z be a null subset of $E \setminus E_1$. Then $m^*(f(Z)) = 0$. By Theorem 8, we obtain that $\mathcal{S}_o - \mu_f(Z) = 0$.

(iii) \Rightarrow (ii) Let Z be a null subset of E. Then $Z = Z_1 \cup Z_2$, where $Z_1 = Z \cap E_1$ and $Z_2 = Z \cap (E \setminus E_1)$. By Lemma 16, we obtain that $m^*(f(Z_2)) = S_o - \mu_f(Z_2) = 0$. By Theorem 40.1 of [12] (p. 94), it follows that $f \in VB^*G$ on Z_2 . Hence $f \in VB^*G$ on Z. Since the set $f(Z_1)$ is at most countable, it follows that $m^*(f(Z)) = 0$.

Lemma 22. Let $f : [a,b] \to \mathbb{R}$, and let E be a null subset of [a,b]. If $f \in AC^*G$ on E, then \mathcal{S}_o - $\mu_f(E) = 0$.

PROOF. Suppose that $f \in AC^*$ on E, and for $\epsilon > 0$ let $\delta > 0$ be given by this fact. Let G be an open set such that $E \subset G$ and $m(G) < \delta$. Let $\eta : E \to (0, +\infty)$, with $(x - \eta(x), x + \eta(x)) \subset G$. Then $V_{\eta}^*(f; E) < \epsilon$; so $\mathcal{S}_o - \mu_f(E) = 0$. Now, if $f \in AC^*G$ on E, since $\mathcal{S}_o - \mu_f$ is an outer measure, it follows that $\mathcal{S}_o - \mu_f(E) = 0$.

Theorem 10. (An extension of Theorem 45.3, (i), (ii) of [12], p. 106) Let $f : [a,b] \to \mathbb{R}$ and let E be a closed subset of [a,b]. The following assertions are equivalent

- (i) $f \in AC^*G$ on E and f is continuous at every point of E.
- (ii) $f \in VB^*G \cap (N)$ on E and f is continuous at every point of E.
- (iii) $f \in VB^*G \cap (N)$ on any null subset of E and f is continuous at every point of E.
- (iv) $S_o \mu_f(Z) = 0$, whenever Z is a null subset of E.
- (v) $f \in Y_{D^o}$ on E (i.e., $f \in SLC$ on E).

PROOF. By Theorem 6 ((i),(ii),(x)), (i) \Leftrightarrow (ii) \Leftrightarrow (iii). By Theorem 9 ((ii),(iii)), (iii) \Leftrightarrow (iv). By Corollary 4 ((ii),(iii)), (iv) \Leftrightarrow (v).

Remark 2. Theorem 10, (i), (v) was obtained before in [3] (see Corollary 1, (i), (vii)) and [4] (see Corollary 2.27.1, (i), (vii)). The same result is also shown by Bongiorno, Di Piazza and Skvortsov in [1], using a different technique.

References

- B. Bongiorno, L. Di Piazza, and V. Skvortsov, A new full descriptive characterization of Denjoy-Perron integral, Real Analysis Exchange 21 (1995–1996), no. 2, 656–663.
- [2] A. M. Bruckner, Differentiation of real functions, Lect. Notes in Math., vol. 659, Springer-Verlag, 1978.
- [3] V. Ene, Characterization of $AC^*G\cap C$, $\underline{AC}^*G\cap C_i$, AC and \underline{AC} functions, Real Analysis Exchange **19** (1994), 491–510.
- [4] V. Ene, *Real functions current topics*, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.

- [5] V. Ene, Characterizations of $VBG \cap (N)$, Real Analysis Exchange, 23, this issue.
- [6] P. Y. Lee, On ACG^{*} functions, Real Analysis Exchange 15 (1989–1990), no. 2, 754–759.
- [7] I. P. Natanson, *Theory of functions of a real variable*, 2nd. rev. ed., Ungar, New York, 1961.
- [8] S. Saks, *Theory of the integral*, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.
- [9] D. N. Sarkhel, A wide Perron integral, Bull. Austral. Math. Soc. 34 (1986), 233–251.
- [10] D. N. Sarkhel and A. B. Kar, (PVB) functions and integration, J. Austral. Math. Soc. (Series A) 36 (1984), 335–353.
- [11] B. S. Thomson, Derivation bases on the real line, I and II, Real Analysis Exchange 8 (1982–1983), 67–207 and 278–442.
- [12] B. S. Thomson, *Real functions*, Lect. Notes in Math., vol. 1170, Springer-Verlag, 1985.