Vasile Ene, Ovidius University Constanţa, Romania Current address: 23 August 8717, Jud. Constanţa, Romania
e-mail: ene@s23aug.sfos.ro or ene@univ-ovidius.ro

LUSIN'S CONDITION (N) AND FORAN'S CONDITION (M) ARE EQUIVALENT FOR BOREL FUNCTIONS THAT ARE VBG ON A BOREL SET

Abstract

In this paper we show that Lusin's condition (N) and Foran's condition (M) are equivalent for Borel functions that are $V B G$ on a Borel set. Also new characterizations of conditions (M) and \underline{M} are given.

Lusin's condition (N) plays an important role in the theory of integration, since the classes of primitives for many nonabsolutely convergent integrals (Denjoy-Perron, Denjoy, α-Ridder, β-Ridder [6], Sarkhel-De-Kar [11], [9], [10], [12], etc.) are contained in $(N) \cap V B G$. In [2], we showed that $(N) \cap V B G$ is a real linear space for Borel functions on Borel sets. However Foran's condition (M), which strictly contains condition (N), seems to be more relevant to the theory of integral (see [1]). In this paper we show that Lusin's condition (N) and Foran's condition (M) are equivalent for Borel functions that are $V B G$ on a Borel set (see Theorem 2, (ii)). In fact we prove stronger results (see Theorem 2, (i), (iii)), using conditions \underline{M} and (\underline{N}). These results are very useful proving theorems of Hake-Alexandroff-Looman type (see for example [1], p. 199). In the present paper we give some new characterizations of conditions (M) and \underline{M}.

1 Preliminaries

We denote by $m^{*}(X)$ the outer measure of a set X and by $m(A)$ the Lebesgue measure of A, whenever $A \subset \mathbb{R}$ is Lebesgue measurable. For the definitions of

[^0]$V B$ and $A C$ see [8]. Let \mathcal{C} denote the class of continuous functions. For two classes $\mathcal{A}_{1}, \mathcal{A}_{2}$ of real functions on a set P let
\[

$$
\begin{aligned}
& \mathcal{A}_{1} \boxplus \mathcal{A}_{2}=\left\{\alpha_{1} F_{1}+\alpha_{2} F_{2}: F_{1} \in \mathcal{A}_{1}, F_{2} \in \mathcal{A}_{2}, \alpha_{1}, \alpha_{2} \geq 0\right\} \text { and } \\
& \mathcal{A}_{1} \oplus \mathcal{A}_{2}=\left\{\alpha_{1} F_{1}+\alpha_{2} F_{2}: F_{1} \in \mathcal{A}_{1}, F_{2} \in \mathcal{A}_{2}, \alpha_{1}, \alpha_{2} \in \mathbb{R}\right\}
\end{aligned}
$$
\]

Definition 1. Let $P \subseteq[a, b], x_{0} \in P$ and $F: P \rightarrow \mathbb{R}$. F is said to be \mathcal{C}_{i} at x_{0} if $\limsup _{x \nearrow x_{0}, x \in P} F(x) \leq F\left(x_{0}\right)$, whenever x_{0} is a left accumulation point for P, and $F\left(x_{0}\right) \leq \liminf _{x \searrow x_{0}, x \in P} F(x)$, whenever x_{0} is a right accumulation point for $P . F$ is said to be \mathcal{C}_{i} on P, if F is so at each point $x \in P$.
Definition 2. ([7]). Let P be a bounded real set and let $F: P \rightarrow \mathbb{R}$. Put

- $\mathcal{O}(F ; P)=\sup \{|F(y)-F(x)|: x, y \in P\}$ the oscillation of F on P.
- $\mathcal{O}_{-}(F ; P)=\inf \{F(y)-F(x): x, y \in P, x \leq y\}$.
- $\mathcal{O}_{+}(F ; P)=\sup \{F(y)-F(x): x, y \in P, x \leq y\}$.

Definition 3. ([1], p. 6). Let $F:[a, b] \rightarrow \mathbb{R}, P \subseteq[a, b]$. Put

- $\mathcal{O}^{\infty}(F ; P)=\inf \left\{\sum_{i=1}^{\infty} \mathcal{O}\left(F ; P_{i}\right): \cup_{i=1}^{\infty} P_{i}=P\right\}$.
- $\mathcal{O}_{+}^{\infty}(F ; P)=\inf \left\{\sum_{i=1}^{\infty} \mathcal{O}_{+}\left(F ; P_{i}\right): \cup_{i=1}^{\infty} P_{i}=P\right\}$.
- $\mathcal{O}_{-}^{\infty}(F ; P)=\sup \left\{\sum_{i=1}^{\infty} \mathcal{O}_{-}\left(F ; P_{i}\right): \cup_{i=1}^{\infty} P_{i}=P\right\}$.

Definition 4. ([6], p. 236). A function $F: P \rightarrow \mathbb{R}$ is said to be $\underline{A C}$ (respectively $\overline{A C}$) if for every $\epsilon>0$ there is a $\delta>0$ such that

$$
\begin{gather*}
\qquad \sum_{k=1}^{n}\left(F\left(b_{k}\right)-F\left(a_{k}\right)\right)>-\epsilon \tag{1}\\
\text { (respectively } \sum_{k=1}^{n}\left(F\left(b_{k}\right)-F\left(a_{k}\right)\right)<\epsilon \text {), } \tag{2}
\end{gather*}
$$

whenever $\left\{\left[a_{k}, b_{k}\right]\right\}, k=1,2, \ldots, n$ is a finite set of nonoverlapping closed intervals with endpoint in P and $\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta$. Clearly $A C=\underline{A C} \cap \overline{A C}$.
Proposition 1. Let $F: P \rightarrow \mathbb{R}, F \in \underline{A C}$ and let $\epsilon>0$. For $\epsilon / 2$ let $\delta>0$ be given by the fact that $F \in \underline{A C}$ on P. Let $\left\{\left(a_{i}, b_{i}\right)\right\}_{i}$ be a sequence of nonoverlapping open intervals such that $\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right)<\delta$. Then

$$
\sum_{i=1}^{\infty} \mathcal{O}_{-}\left(F ; P \cap\left(a_{i}, b_{i}\right)\right)>-\epsilon
$$

Proof. We may suppose without loss of generality that for each i

$$
\begin{equation*}
\left(a_{i}, b_{i}\right) \cap P \neq \emptyset \quad \text { and } \quad \mathcal{O}_{-}\left(F ; P \cap\left(a_{i}, b_{i}\right)\right)<0 \tag{3}
\end{equation*}
$$

Since $F \in \underline{A C}$ the oscillations in (3) are always finite. Then, for each i, there exist $a_{i}^{\prime}, b_{i}^{\prime} \in P \cap\left(a_{i}, b_{i}\right), a_{i}^{\prime}<b_{i}^{\prime}$ such that

$$
F\left(b_{i}^{\prime}\right)-F\left(a_{i}^{\prime}\right)<\frac{2}{3} \cdot \mathcal{O}_{-}\left(F ; P \cap\left(a_{i}, b_{i}\right)\right)
$$

It follows that for each positive integer n we have

$$
\sum_{i=1}^{n} \mathcal{O}_{-}\left(F ; P \cap\left(a_{i}, b_{i}\right)\right)>\frac{3}{2} \cdot \sum_{i=1}^{n}\left(F\left(b_{i}^{\prime}\right)-F\left(a_{i}^{\prime}\right)\right)>-\frac{3}{4} \epsilon .
$$

Therefore $\sum_{i=1}^{\infty} \mathcal{O}_{-}\left(F ; P \cap\left(a_{i}, b_{i}\right)\right)>-\epsilon$.

Definition 5. A function $F: P \rightarrow \mathbb{R}$ is said to be $V B G$ (respectively $A C G$, $\underline{A C} G, \overline{A C} G)$ on P if there exists a sequence of sets $\left\{P_{n}\right\}$ with $P=\cup_{n} P_{n}$, such that F is $V B$ (respectively $A C, \underline{A C}, \overline{A C}$) on each P_{n}. If in addition the sets P_{n} are assumed to be closed, we obtain the classes $[V B G],[A C G],[\underline{A C G}]$ and $[\overline{A C} G]$. Note that condition $A C G$ used here differs from that of [8] (because in our definition the continuity is not assumed).

Definition 6. ([8], p. 224). A function $F: P \rightarrow \mathbb{R}$ is said to satisfy Lusin's condition (N) on P if $m^{*}(F(Z))=0$ whenever Z is a null subset of P.

Definition 7. Let $F:[a, b] \rightarrow \mathbb{R}, P \subset[a, b] . F$ is said to be \underline{M} on P if $F \in \underline{A C}$ on Q, whenever $Q=\bar{Q} \subset P$ and $F \in V B \cap \mathcal{C}$ on Q. A function F is said to satisfy Foran's condition (M) on P if F is simultaneously \underline{M} and \bar{M} (i.e., F is $A C$ on Q whenever Q is a closed subset of P and $F \in V B \cap \mathcal{C}$ on Q, see [3]).

Definition 8. ([1], p. 78). Let $F:[a, b] \rightarrow \mathbb{R}, P \subseteq[a, b] . F$ is said to be (\bar{N}) on P if $\mathcal{O}_{+}^{\infty}(F ; Z)=0$, whenever $Z \subset P$ and $m(Z)=0$. F is said to be (\underline{N}) on P if $-F$ is (\bar{N}) on P; i.e., $\mathcal{O}_{-}^{\infty}(F ; Z)=0$.

Remark 1. In [1] (p. 84), there is given an equivalent definition for \underline{M} (i.e., condition 4) of Theorem 3). By Corollary 2.21 .1 (iii) of [1], we have $(\underline{N}) \subset \underline{M}$ on a set P.

2 Conditions (N), (N), (M), \underline{M} and VB on Closed Sets

Lemma 1. Let P be a closed subset of $[a, b]$. Then we have
(i) $V B \cap(\underline{N}) \subseteq V B \cap \underline{M} \subseteq(V B \cap \underline{M}) \boxplus(V B \cap \underline{M}) \subseteq V B \cap(\underline{N})$ on P;
(ii) $V B \cap(N) \subseteq V B \cap(M) \subseteq(V B \cap(M)) \oplus(V B \cap(M)) \subseteq V B \cap(N)$ on P.

Proof. (i) By Remark 1 the first two inclusions are evident. We prove the last inclusion. Let $F_{1}, F_{2}: P \rightarrow \mathbb{R}$ such that $F_{1}, F_{2} \in V B \cap \underline{M}$. It is sufficient to show that $F=F_{1}+F_{2}$ is $V B \cap(\underline{N})$ on P. Let A_{1} and A_{2} be the sets of points of discontinuity for F_{1} respectively F_{2}. Then A_{1}, A_{2} are countable and

$$
A_{1} \cup A_{2}=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{n}, \ldots\right\}
$$

contains all discontinuity points of F. Given $\epsilon>0$, for each d_{n} we can find some intervals $I_{n}=\left(p_{n}, d_{n}\right)$ and $J_{n}=\left(d_{n}, q_{n}\right)$ such that

$$
\mathcal{O}\left(F ; P \cap I_{n}\right)+\mathcal{O}\left(F ; P \cap J_{n}\right)<\frac{\epsilon}{2^{n}}
$$

Let $Q=P \backslash \cup_{n=1}^{\infty}\left(I_{n} \cup J_{n}\right)$. Then Q is a compact set and $F_{1}, F_{2} \in V B \cap \mathcal{C}$ on Q. But $F_{1}, F_{2} \in \underline{M}$ on P; so $F_{1}, F_{2} \in \underline{A C}$ on Q. Hence $F \in \underline{A C}$ on Q.

Let $Z \subset P, m(Z)=0$. For $\epsilon / 2>0$, let $\delta_{\epsilon}>0$ be given by the fact that $F \in \underline{A C}$ on Q. By Proposition 1 there exists $\left\{\left(a_{i}, b_{i}\right)\right\}_{i}$, a sequence of nonoverlapping open intervals, such that $Z \cap Q \subset \cup_{i=1}^{\infty}\left(a_{i}, b_{i}\right), \sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right)<$ δ_{ϵ} and $\sum_{i=1}^{\infty} \mathcal{O}_{-}\left(F ; Z \cap Q \cap\left(a_{i}, b_{i}\right)\right)>-\epsilon$. Hence

$$
\mathcal{O}_{-}^{\infty}(F ; Z) \geq-\epsilon-\left(\sum_{n=1}^{\infty}\left(\mathcal{O}\left(F ; Z \cap I_{n}\right)+\mathcal{O}\left(F ; Z \cap J_{n}\right)\right)>-2 \epsilon\right.
$$

Since $\mathcal{O}_{-}^{\infty}(F ; Z) \leq 0$ and ϵ is arbitrary, it follows that $\mathcal{O}_{-}^{\infty}(F ; Z)=0$. Hence $F \in(\underline{N})$ on P.
(ii) The first two inclusions are evident, since $(N) \subset(M)$ (see the BanachZarecki Theorem). We prove the last inclusion. Let $F_{1}, F_{2}, A_{1}, A_{2}, I_{n}, J_{n}$ and Q be defined as in the proof of (i). Suppose that $F_{1}, F_{2} \in V B \cap(M)$ on P. From the definition of (M) it follows that $F \in A C \subset(N)$ on Q. Let $Z \subset P$, $m(Z)=0$. Then
$m^{*}(F(Z)) \leq m^{*}(F(Z \cap Q))+\sum_{n=1}^{\infty} m^{*}\left(F\left(Z \cap I_{n}\right)\right)+\sum_{n=1}^{\infty} m^{*}\left(F\left(Z \cap J_{n}\right)\right)<\epsilon$.
Since ϵ is arbitrary, we obtain that $m^{*}(F(Z))=0$. Hence $F \in(N)$ on P.

Lemma 2. Let P be a closed subset of $[a, b]$. Then we have:
(i) $V B \cap(\underline{N})=V B \cap \underline{M}$ is an upper real linear space on P.
(ii) $V B \cap(N)=V B \cap(M)$ is a real linear space on P.
(iii) $V B \cap(M)=V B \cap \underline{M} \cap \bar{M}=V B \cap(\underline{N}) \cap(\bar{N})=V B \cap(N)$ on P.

Proof. (i) This follows by Lemma 1, (i).
(ii) This follows by Lemma 1, (ii).
(iii) We have $V B \cap(N) \subseteq V B \cap(\underline{N}) \cap(\bar{N})=V B \cap \underline{M} \cap \bar{M}=V B \cap(M)=$ $V B \cap(N)$. (The equalities follow by (i), (ii) and the fact that we always have $(M)=\underline{M} \cap \bar{M}$.

Lemma 3. Let $F:[a, b] \rightarrow \mathbb{R}, E_{k} \subset[a, b], k=1,2, \ldots$, and $E=\cup_{i=1}^{\infty} E_{k}$.
(i) F is (N) (respectively (\underline{N})) on E if and only if F is (N) (respectively (\underline{N})) on each E_{k}.
(ii) If in addition each E_{k} is a closed set, then F is (M) (respectively \underline{M}) on E if and only if $F \in(M)$ (respectively M) on each E_{k}.

Proof. (i) For (N) the proof is evident. For (\underline{N}) the necessity is also obvious, and the sufficiency follows by definitions and Lemma 2.20.1 of [1].
(ii) The " \Rightarrow " part is evident. We show the converse. Let Q be a closed subset of E such that $F \in V B \cap \mathcal{C}$ on Q. Clearly $F \in V B \cap \mathcal{C}$ on each closed set $Q \cap E_{k}$. Since F is (M) (respectively \underline{M}) on each E_{k}, it follows that F is $A C$ (respectively $\underline{A C}$) on each $Q \cap E_{k}$. Therefore $F \in V B \cap \mathcal{C} \cap A C G=A C$ (respectively $F \in V B \cap \mathcal{C} \cap \underline{A C G}=\underline{A C}$) on Q (see Corollary 2.21.1, (iv), (iii) of [1]). Therefore F is (M) (respectively \underline{M}) on E.

Theorem 1. Let P be a closed subset of $[a, b]$. Then we have:
(i) $[V B G] \cap(\underline{N})=[V B G] \cap \underline{M}$ is an upper real linear space on P.
(ii) $[V B G] \cap(N)=[V B G] \cap(M)$ is a real linear space on P.
(iii) $[V B G] \cap(M)=[V B G] \cap \underline{M} \cap \bar{M}=[V B G] \cap(\underline{N}) \cap(\bar{N})=[V B G] \cap(N)$ on P.

Proof. (i) Since $(\underline{N}) \subset \underline{M}$, we have $[V B G] \cap(\underline{N}) \subset[V B G] \cap \underline{M}$ on P. Let $F \in[V B G] \cap \underline{M}$. Then there exists a sequence of closed sets $\left\{P_{n}\right\}_{n}$ such that $P=\cup_{n=1}^{\infty} P_{n}$ and $F \in V B \cap \underline{M}=V B \cap(\underline{N})$ on each P_{n} (see Lemma 2, (i)). By Lemma 3, (i) it follows that $F \in(\underline{N})$ on P; so $[V B G] \cap \underline{M} \subset[V B G] \cap(\underline{N})$. We show that $[V B G] \cap(\underline{N})$ is an upper linear space. Let $F_{1}, F_{2}: P \rightarrow \mathbb{R}$,
$F_{1}, F_{2} \in[V B G] \cap(\underline{N})$. Then there exists $\left\{Q_{n}\right\}_{n}$, a sequence of closed sets, such that $P=\cup_{n=1}^{\infty} Q_{n}$ and $F_{1}, F_{2} \in V B \cap(\underline{N})$ on each Q_{n}. By Lemma 2, (i), $F_{1}+F_{2} \in V B \cap(\underline{N})$ on each Q_{n}. Now by Lemma 3, (i) it follows that $F_{1}+F_{2} \in[V B G] \cap(\underline{N})$ on P.
(ii) The proof is similar to that of (i), using Lemma 2, (ii) and Lemma 3, (i).
(iii) By (i), (ii) and because we always have $(M)=\underline{M} \cap \bar{M}$, it follows that

$$
\begin{aligned}
{[V B G] \cap(N) } & \subseteq[V B G] \cap(\bar{N}) \cap(\underline{N})=[V B G] \cap \bar{M} \cap \underline{M}= \\
& =[V B G] \cap(M)=[V B G] \cap(N)
\end{aligned}
$$

3 Conditions (N), (N),(M), \underline{M} and VB on Borel Sets

Lemma 4. Let $F: P \rightarrow \mathbb{R}$ be an increasing function, $P \subset[a, b]$. Then $F \in(\bar{N})$ if and only if $F \in(N)$ on P.

Proof. " \Rightarrow " Suppose that $F \in(\bar{N})$ on P, and let $Z \subset P$ such that $m(Z)=0$ Then $\mathcal{O}_{+}^{\infty}(F ; Z)=0$; i.e., for every $\epsilon>0$, there is a sequence $\left\{Z_{i}\right\}_{i}$ of sets such that $Z=\cup_{i=1}^{\infty} Z_{i}$ and $0 \leq \sum_{i=1}^{\infty} \mathcal{O}_{+}\left(F ; Z_{i}\right)<\epsilon$. Since F is increasing, it follows that $\mathcal{O}_{+}\left(F ; Z_{i}\right)=\mathcal{O}\left(F ; Z_{i}\right)$. Therefore

$$
m^{*}(F(Z)) \leq \sum_{i=1}^{\infty} m^{*}\left(F\left(Z_{i}\right)\right) \leq \sum_{i=1}^{\infty} \mathcal{O}\left(F ; Z_{i}\right)<\epsilon
$$

Since ϵ is arbitrary, we obtain that $m^{*}(F(Z))=0$. Hence $F \in(N)$ on P. $" \Leftarrow "(N) \subseteq(\bar{N})$ is always true (see Theorem 2.20.1 of [1]).

Lemma 5 (Fundamental Lemma). Let $P \subset[a, b]$ be a Borel set and let G : $P \rightarrow \mathbb{R}, G \in V B$.
(i) If $G \notin(\bar{N})$ on P, then there exists a compact set $K \subset P$ with $m(K)=0$ such that $G_{\mid K}$ is strictly increasing and $G(K)$ is a compact set of positive measure.
(ii) If $G \notin(N)$ on P, then there exists a compact set $K \subset P$ with $m(K)=0$ such that $G_{\mid K}$ is strictly monotone and $G(K)$ is a compact set of positive measure.

Proof. (i) By Lemma 4.1 of [8] (p. 221), there exists $F:[a, b] \rightarrow \mathbb{R}$ such that $F \in V B$ and $F_{\mid P}=G$. Let $E=\left\{x \in[a, b]: F^{\prime}(x)\right.$ does not exist, finite or infinite $\}$. By Theorem 7.2 of $[8]$ (p. 230), we have $m(F(E))=0$. Since
$F \notin(\bar{N})$ on P, it follows that there exists a set $Z \subset P$ with $m(Z)=0$ and $\mathcal{O}_{+}^{\infty}(F ; Z)>0$. Hence

$$
\begin{equation*}
F \notin(\bar{N}) \text { on } Z \tag{4}
\end{equation*}
$$

Let $A=Z \cap E$. Then

$$
\begin{equation*}
m(F(A))=0 \tag{5}
\end{equation*}
$$

Let $A_{1}=\left\{x \in Z:\left|F^{\prime}(x)\right|<1\right\}$. Then

$$
\begin{equation*}
F \in(N) \text { on } A_{1} \tag{6}
\end{equation*}
$$

(see Theorem 10.5, p. 235 or Theorem 4.6, p. 271 of [8]). Let $B=\{x \in Z$: $\left.\left|F^{\prime}(x)\right| \geq 1\right\}, B_{+}=\left\{x \in Z: F^{\prime}(x) \geq 1\right\}$ and $B_{-}=\left\{x \in Z: F^{\prime}(x) \leq-1\right\}$. Using the proof of Theorem 10.1 of [8] (pp. 234-235), it follows that the set B_{-}can be written as the union of a finite or countable family of sets $\left\{B_{n}^{\prime}\right\}_{n}$, such that F is strictly decreasing on each B_{n}^{\prime}. Clearly $\mathcal{O}_{+}\left(F ; B_{n}^{\prime}\right)=0$; so $\mathcal{O}_{+}^{\infty}\left(F ; B_{-}\right)=0$. Hence

$$
\begin{equation*}
F \in(\bar{N}) \text { on } B_{-} . \tag{7}
\end{equation*}
$$

The set B_{+}can also be written as the union of a finite or countable family of sets $\left\{B_{n}\right\}_{n}$, such that $F-I$ is increasing on each of them (here $I(x)=x$ for each $x \in[a, b])$. By (5), (6), (7) and Lemma 3, (i), it follows that

$$
\begin{equation*}
F \in(\bar{N}) \text { on } A \cup A_{1} \cup B_{-} \tag{8}
\end{equation*}
$$

Since $Z=A \cup A_{1} \cup B_{-} \cup\left(\cup_{n} B_{n}\right)$, by (4), (8), Lemma 3 and Lemma 4, it follows that there exists at least a positive integer n such that $F \notin(N)$ on B_{n}. Fix such a positive integer n. Since $F \in V B$ on $[a, b], F-I$ is bounded on B_{n}. By Lemma 4.1 of [8] (p. 221), it follows that there exists $\widetilde{F-I}:[a, b] \rightarrow \mathbb{R}$ such that $\widetilde{F-I_{\mid B_{n}}}=F-I$ and $\widetilde{F-I}$ is increasing on $[a, b]$. Let B_{0} be a G_{δ}-set of measure zero that contains B_{n}. Let

$$
\tilde{B}=P \cap B_{0} \cap\{x \in[a, b]:(\widetilde{F-I})(x)=(F-I)(x)\} .
$$

Since $\widetilde{F-I}, F-I \in V B \subset$ Borel functions on P, it follows that \tilde{B} is a Borel set of measure zero, $m^{*}(F(\tilde{B}))>0$ (because $\tilde{B} \subseteq B_{n}$) and $F=(F-I)+I$ is strictly increasing on \tilde{B}. From [4] (pp. 391, 387, 365), we obtain that $F(\tilde{B})$ is a Lebesgue measurable set (because the image of a Borel set under a Borel function is an analytic set, and an analytic set is Lebesgue measurable). Therefore $F(\tilde{B})$ contains a compact set Q of positive measure.

Let $E=\tilde{B} \cap F^{-1}(Q)$. Then $F_{\mid E}$ is a strictly increasing function and $F(E)=Q$. So $F_{\mid E}$ admits an inverse on E, namely $\left(F_{\mid E}\right)^{-1}: Q \rightarrow E$, that
is strictly increasing. Let $Q_{1} \subset Q$ be a compact set of positive measure such that Q_{1} does not contain the countable set of discontinuity points of $\left(F_{\mid E}\right)^{-1}$. Let $K=\left(F_{\mid E}\right)^{-1}\left(Q_{1}\right)$. Then K is a compact set (because any continuous function maps a compact set into a compact set). Clearly $K \subset \tilde{B}$. It follows that $m(K)=0, F_{\mid K}=G_{\mid K}$ is strictly increasing and $G(K)=Q_{1}$.
(ii) Since $F \notin(N)$ on P, there exists $Z \subset P$ such that $m(Z)=0$ and $m^{*}(F(Z))>0$. Hence $F \notin(N)$ on Z. Let A, A_{1}, B, B_{+}and B_{-}be defined as in the proof of (i). Since $Z=A \cup A_{1} \cup B_{+} \cup B_{-}$and $F \in(N)$ on $A \cup A_{1}$, by Lemma 3, (i) it follows that $F \notin(N)$ either on B_{+}or on B_{-}. We may suppose without loss of generality that $F \notin(N)$ on B_{+}. Then there exists at least one positive integer n such that $F \notin(N)$ on B_{n}. Fix such a positive integer n and continue as in the proof of (i).

Lemma 6. Let P be a Borel subset of $[a, b]$. Then we have:
(i) $V B \cap(\bar{N}) \subseteq V B \cap \bar{M} \subseteq(V B \cap \bar{M}) \boxplus(V B \cap \bar{M}) \subseteq V B \cap(\bar{N})$ on P.
(ii) $V B \cap(N) \subseteq V B \cap(M) \subseteq(V B \cap(M)) \oplus(V B \cap(M)) \subseteq V B \cap(N)$ on P.

Proof. (i) The first two inclusions are evident. We show the last one. Let $F_{1}, F_{2}: P \rightarrow \mathbb{R}, F_{1}, F_{2} \in V B \cap \bar{M}$. Clearly $F=F_{1}+F_{2} \in V B$ on P. Suppose to the contrary that $F \notin(\bar{N})$ on P. By Lemma 5 , (i) it follows that P contains a compact set K of measure zero such that $F_{\mid K}$ is strictly increasing and $F(K)$ is a compact set of positive measure. By Lemma 2, (i) we obtain that $F \in(\bar{N})$ on K. Since F is increasing on K, by Lemma 4, it follows that $F \in(N)$ on K. Therefore $m(F(K))=0$, a contradiction.
(ii) Let $F_{1}, F_{2}: P \rightarrow \mathbb{R}, F_{1}, F_{2} \in V B \cap(M)$. Clearly $F=F_{1}+F_{2} \in V B$ on P. Suppose to the contrary that $F \notin(N)$ on P. Then P contains a compact set K of measure zero such that $F_{\mid K}$ is strictly monotone and $F(K)$ is a compact set of positive measure (see Lemma 5, (ii)). By Lemma 2, (ii) we obtain that $F \in(N)$ on K. Therefore $m(F(K))=0$, a contradiction.

Lemma 7. Let P be a Borel subset of $[a, b]$. Then we have:
(i) $V B \cap(\underline{N})=V B \cap \underline{M}$ is a real upper linear space on P.
(ii) $V B \cap(N)=V B \cap(M)$ is a real algebra on P.
(iii) $V B \cap(M)=V B \cap \underline{M} \cap \bar{M}=V B \cap(\underline{N}) \cap(\bar{N})=V B \cap(N)$ on P.

Proof. (i) This follows by Lemma 6, (i).
(ii) That $V B \cap(N)=V B \cap(M)$ is a real linear space on P follows by Lemma 6, (ii). Let $F_{1}, F_{2} \in V B \cap(N)$. Clearly F_{1} and F_{2} are bounded on P. Let $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ such that

$$
G_{1}(x):=F_{1}(x)+\alpha_{1} \geq 1 \text { and } G_{2}(x):=F_{2}(x)+\alpha_{2} \geq 1 \text { on } P .
$$

Then $F_{1} \cdot F_{2}=G_{1} \cdot G_{2}-\alpha_{1} F_{2}-\alpha_{2} F_{1}-\alpha_{1} \alpha_{2}$. Since \ln is a Lipschitz function on $[1,+\infty)$, it follows that $\ln \circ G_{1}$ and $\ln \circ G_{2}$ are $V B \cap(N)$ on P. But

$$
\ln \left(G_{1} \cdot G_{2}\right)=\ln \left(G_{1}\right)+\ln \left(G_{2}\right) \in V B \cap(N)
$$

(because $V B \cap(N)$ is a real linear space). Then

$$
G_{1} \cdot G_{2}=\exp \left(\ln \left(G_{1} \cdot G_{2}\right)\right) \in V B \cap(N) \text { on } P
$$

(since the exponential function is Lipschitz on each compact interval).
(iii) This follows by (i), (ii) and the fact that always $(M)=\underline{M} \cap \bar{M}$.

Remark 2. If $F_{1}, F_{2}:[a, b] \rightarrow \mathbb{R}$ are $V B \cap(\underline{N})$, then it is possible that $F_{1} \cdot F_{2} \notin(\underline{N})$. Indeed, let F_{1} be the Cantor function on $[0,1]$ and $F_{2}(x)=-1$ for $x \in[0,1]$. Then $F_{1} \cdot F_{2}=-F_{1} \notin(\underline{N})$ (see Lemma 4).

Theorem 2. We denote by \mathcal{B} or the collection of all real Borel measurable functions. Let P be a Borel subset of $[a, b]$. Then we have:
(i) $V B G \cap(\underline{N}) \cap \mathcal{B o r}=V B G \cap \underline{M} \cap \mathcal{B}$ or is a real upper linear space on P.
(ii) $V B G \cap(N) \cap \mathcal{B}$ or $=V B G \cap(M) \cap \mathcal{B}$ or is a real algebra on P.
(iii) $V B G \cap(N) \cap \mathcal{B}$ or $=V B G \cap \underline{M} \cap \bar{M} \cap \mathcal{B}$ or $=V B G \cap(\underline{N}) \cap(\bar{N}) \cap \mathcal{B}$ or $=$ $V B G \cap(N) \cap \mathcal{B o r}$ on P.

Proof. (i) Clearly $V B G \cap(\underline{N}) \subset V B G \cap \underline{M}$ on any set $E \subset[a, b]$ (E not necessarily a Borel set). Let $F: P \rightarrow \mathbb{R}, F \in V B G \cap \underline{M}$. Then there exists a sequence $\left\{P_{n}\right\}_{n}$ of sets such that $P=\cup_{n} P_{n}$ and F is $V B$ on each P_{n}. By Lemma 4.1 of [8] (p. 221), there exists a function $F_{n}:[a, b] \rightarrow \mathbb{R}, F_{n} \in V B$ on $[a, b]$, such that $\left(F_{n}\right)_{\mid P_{n}}=F$. Let $Q_{n}=\left\{x \in P: F(x)=F_{n}(x)\right\}$. Since F and F_{n} are Borel functions, it follows that Q_{n} is a Borel set, that obviously contains the set P_{n}. Thus $F \in V B \cap \underline{M}=V B \cap(\underline{N})$ on Q_{n} (see Lemma 7, (i)). Since $P=\cup_{n} Q_{n}$, by Lemma 3, (i) we obtain that $F \in(\underline{N})$ on P. Hence

$$
V B G \cap \underline{M} \cap \mathcal{B} o r \subset V B G \cap(\underline{N}) \cap \mathcal{B o r} \text { on } P .
$$

Let $F_{1}, F_{2}: P \rightarrow \mathbb{R}, F_{1}, F_{2} \in V B G \cap(\underline{N}) \cap \mathcal{B}$ or on P. Then there exists a sequence $\left\{E_{n}\right\}_{n}$ of sets such that $P=\cup_{n} E_{n}$ and $F_{1}, F_{2} \in V B$ on each E_{n}.

Arguing as above, we may suppose without loss of generality that each E_{n} is a Borel set. By Lemma 7, (i), VB $\cap(\underline{N})$ is a real upper linear space on each E_{n}. Hence $F_{1}+F_{2} \in V B \cap(\underline{N})$ on each E_{n}. By Lemma 3, (i) it follows that $F \in(\underline{N})$ on P; so $F_{1}+F_{2} \in V B G \cap(\underline{N}) \cap \mathcal{B o r}$ on P.
(ii) The proof is as that of (i), using Lemma 7, (ii) and Lemma 3, (i).
(iii) Clearly, we always have

$$
V B G \cap(N) \subset V B G \cap(\underline{N}) \cap(\bar{N}) \subset V B G \cap \underline{M} \cap \bar{M}=V B G \cap(M)
$$

By (ii), we obtain that $V B G \cap(M) \cap \mathcal{B}$ or $=V B G \cap(N) \cap \mathcal{B}$ or.
Remark 3. That $V B G \cap(N) \cap \mathcal{B o r}$ is a real linear space on a Borel set was shown first (in a different manner) in [2].

4 Characterizations of \underline{M} and (M)

Theorem 3. Let $P \subset[a, b]$ and $F: P \rightarrow \mathbb{R}$.
(i) The following assertions are equivalent.

1) $F \in \underline{M}$ on P.
2) If $F \in V B$ on a Borel set $Q \subset P$, then $F \in(\underline{N})$ on Q.
3) If $F \in V B$ on a closed set $Q \subset P$, then $F \in(\underline{N})$ on Q.
4) If $F \in V B \cap \mathcal{C}_{i}$ on a closed set $Q \subset P$, then $F \in \underline{A C}$ on Q (see also [1], p. 84).
5) If F is decreasing and bounded on a Borel set $Q \subset P$, then $F \in(N)$ on Q.
6) If F is decreasing on a closed set $Q \subset P$, then $F \in(N)$ on Q.
7) If F is strictly decreasing and continuous on a closed set $Q \subset P$, then $F \in A C$ on Q.
(ii) If P is a Borel set and F is a Borel function, then $F \in \underline{M}$ on P if and only if $F \in(\underline{N})$ on any Borel subset Q of P on which F is VBG.

Proof. (i) 1) \Rightarrow 2) Let $Q \subset P$ be a Borel set such that $F \in V B$ on Q. By 1) it follows that $F \in V B \cap \underline{M}=V B \cap(\underline{N})$ on Q (see Lemma 7, (i)). Hence $F \in(\underline{N})$ on Q.
$2) \Rightarrow 3)$ This is obvious.
3) $\Rightarrow 4)$ Let Q be a closed subset of P such that $F \in V B \cap \mathcal{C}_{i}$ on Q. By 3), $F \in V B \cap \mathcal{C}_{i} \cap(\underline{N})=\underline{A C}$ on Q (see Corollary 2.21.1, (iii) of [1]).
4) $\Rightarrow 1)$ Let Q be a closed subset of P such that $F \in V B \cap \mathcal{C}$ on Q. Then $F \in V B \cap \mathcal{C}_{i}$ on Q, and by 4), F is $\underline{A C}$ on Q. Therefore $F \in \underline{M}$.
$1) \Rightarrow 5)$ Let Q be a Borel subset of P such that F is decreasing and bounded on Q. Clearly F is $V B$ on Q, and by 1), $F \in V B \cap \underline{M}=V B \cap(\underline{N})$ on Q (see Lemma 7, (i)). Thus $F \in(\underline{N})$ on Q. By Lemma $4, F \in(N)$ on Q.
$5) \Rightarrow 6)$ A real valued function that is decreasing on a bounded closed set is bounded on that set. Now the assertion is obvious.
$6) \Rightarrow 7$) Let Q be a closed subset of P such that F is continuous and decreasing on Q. By 6), $F \in(N)$ on Q. Clearly $F \in V B \cap \mathcal{C} \cap(N)=A C$ (see the Banach-Zarecki Theorem).
$7) \Rightarrow 1$) By Corollary 2.21.1, (iii) of [1], we have that $V B \cap \mathcal{C} \cap(\underline{N}) \subseteq \underline{A C}$ on a closed set. Suppose that 7) is true and 1) isn't. Since $F \notin M$ on P, there exists a closed set $Q \subset P$ such that $F \in V B \cap \mathcal{C}$ but $f \notin \underline{A C}$ on Q. It follows that $F \notin(\underline{N})$ on Q. By Lemma $5,(\mathrm{i})$, there exists a compact set $K \subset Q$ of measure zero such that $m(F(K))>0$ and F is strictly decreasing on K. By 7), F is $A C$ on K. Since $A C \subset(N)$, we obtain a contradiction.
(ii) " \Rightarrow " Let $Q \subset P$ be a Borel set such that $F_{\mid Q}$ is $V B G$. By hypotheses, $F \in V B G \cap \underline{M}=V B G \cap(\underline{N})$ (see Theorem 2, (i)). Therefore $F \in(\underline{N})$ on Q.
" \Leftarrow " Let Q be a closed subset of P such that $F_{\mid Q} \in V B \cap \mathcal{C}$. By hypotheses, $F \in V B \cap \mathcal{C} \cap(\underline{N}) \subset \underline{A C}$ on Q (see Corollary 2.21.1 (iii) of [1]).

Theorem 4. Let $P \subset[a, b]$ and $F: P \rightarrow \mathbb{R}$.
(i) The following assertions are equivalent.

1) $F \in(M)$ on P.
2) If $F \in V B$ on a Borel set $Q \subset P$, then $F \in(N)$ on Q.
3) If $F \in V B$ on a closed set $Q \subset P$, then $F \in(N)$ on Q.
4) If F is monotone and bounded on a Borel set $Q \subset P$, then $F \in(N)$ on Q.
5) If F is monotone on a closed subset Q of P, then $F \in(N)$ on Q.
6) If F is strictly monotone and continuous on a closed set $Q \subset P$, then $F \in A C$ on Q.
(ii) If P is a Borel set and F is a Borel function, then $F \in(M)$ if and only if $F \in(N)$ on any Borel set $Q \subset P$ on which F is $V B G$.

Proof. (i) 1) \Rightarrow 2) Let $Q \subset P$ be a Borel set such that $F \in V B$ on Q. By 1), $F \in V B \cap(M)=V B \cap(N)$ on Q (see Lemma 7, (ii)).
$2) \Rightarrow 3$) This is obvious.
3) $\Rightarrow 1$) Let Q be a closed subset of P such that $F_{\mid Q}$ is $V B \cap \mathcal{C}$. By 3), $F_{\mid Q} \in V B \cap \mathcal{C} \cap(N)=A C$ (see the Banach-Zarecki Theorem). Therefore $F \in(M)$ on P.

1) $\Rightarrow 4)$ Let Q be a Borel subset of P such that F is monotone and bounded on Q. Then $F \in V B$ on Q. By 1), $F \in V B \cap(M)=V B \cap(N)$ on Q (see Lemma 7, (ii)).
2) $\Rightarrow 5$) This is obvious.
$5) \Rightarrow 6)$ Let Q be a closed subset of P such that F is strictly monotone and continuous on Q. By 5), $F \in(N)$ on Q. Clearly $F \in V B \cap \mathcal{C} \cap(N)=A C$ on Q (see the Banach-Zarecki Theorem).
$6) \Rightarrow 1)$ Suppose that 6) is true and 1) isn't. Since $F \notin(M)$ on P, it follows that there exists a closed set $Q \subset P$ such that $F \in V B \cap \mathcal{C}$ on Q, but $F \notin A C$ on Q. Since $V B \cap \mathcal{C} \cap(N)=A C$ on a closed set (see the BanachZarecki Theorem), we obtain that $F \notin(N)$ on Q. By Lemma 5, (ii), there exists a compact set $K \subset Q$ of measure zero such that $m(F(K))>0$ and F is strictly monotone on K. By 6), $F \in A C$ on K, a contradiction.
(ii) " \Rightarrow " Let $Q \subset P$ be a Borel set such that $F_{\mid Q} \in V B G$. By hypothesis, $F \in V B G \cap(M)=V B G \cap(N)$ (see Theorem 2, (ii)). Hence $F \in(N)$ on Q.
$" \Leftarrow$ " This follows by the Banach-Zarecki Theorem.
Corollary 1. Let $P \subset[a, b]$ be a Borel set. Then we have:
(i) $(V B G \cap \underline{M} \cap \mathcal{B}$ or $) \boxplus(\underline{M} \cap \mathcal{B}$ or $)=(\underline{M} \cap \mathcal{B}$ or $)$ on P.
(ii) $(V B G \cap(M) \cap \mathcal{B o r}) \oplus((M) \cap \mathcal{B o r})=(M) \cap \mathcal{B}$ or on P.

Proof. Let $F_{1}, F_{2}, F: P \rightarrow \mathbb{R}, F=F_{1}+F_{2}$.
(i) Suppose that $F_{1} \in V B G \cap \underline{M} \cap \mathcal{B}$ or and $F_{2} \in \underline{M} \cap \mathcal{B}$ or on P. Let Q be a Borel subset of P such that $F_{\mid Q}$ is $V B$. Clearly $F_{2}=F-F_{1}$ is $V B G \cap \underline{M} \cap \mathcal{B}$ or on Q. By Theorem 2, (i), it follows that $F \in(\underline{N})$ on Q, and by Theorem 3, 1), 2) we obtain that $F \in \underline{M}$ on P.
(ii) Suppose that $F_{1} \in V B G \cap(M) \cap \mathcal{B o r}$ and $F_{2} \in(M) \cap \mathcal{B o r}$ on P. Let $Q \subset P$ be a Borel set such that $F_{\mid Q}$ is $V B$. Clearly $F_{2}=F-F_{1}$ is $V B G \cap(M) \cap \mathcal{B o r}$ on Q. By Theorem 2, (ii), it follows that $F \in(N)$ on Q, and by Theorem 4,1$), 2$), we obtain that $F \in(M)$ on P.

Remark 4. In Corollary 1, (ii), Foran's condition (M) cannot be replaced by Lusin's condition (N), although $V B G \cap(N) \cap \mathcal{B}$ or $=V B G \cap(M) \cap \mathcal{B}$ or (see Theorem 2, (ii)). This follows from an example of Mazurkiewicz ([5] or [1], p. 226). He constructed a continuous function $f(x)$ on $[0,1]$, such that $f \in(N)$, but for $b \neq 0$ the function $f(x)+b x \notin(N)$.

References

[1] V. Ene, Real functions - current topics, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
[2] V. Ene, On Borel measurable functions that are VBG and (N), Real Analysis Exchange 22 (1996-1997), no. 2, 688-695.
[3] J. Foran, A generalization of absolute continuity, Real Analysis Exchange 5 (1979-1980), 82-91.
[4] K. Kuratowski, Topology, New York - London - Warszawa, 1966.
[5] S. Mazurkiewicz, Sur les fonctions qui satisfont a la condition (N), Fund. Math. 16 (1930), 348-352.
[6] J. Ridder, Über den Perronschen Integralbegriff und seine Beziehung zu den R-, L-, und D - Integralen, Math. Zeit. 34 (1931), 234-269.
[7] S. Saks, Sur certaines classes de fonctions continues, Fund. Math. 17 (1931), 124-151.
[8] S. Saks, Theory of the integral, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.
[9] D. N. Sarkhel, A wide Perron integral, Bull. Austral. Math. Soc. 34 (1986), 233-251.
[10] D. N. Sarkhel, A wide constructive integral, Math. Japonica 32 (1987), 295-309.
[11] D. N. Sarkhel and A. K. De, The proximally continuous integrals, J. Austral. Math. Soc. (Series A) 31 (1981), 26-45.
[12] D. N. Sarkhel and A. B. Kar, (PVB) functions and integration, J. Austral. Math. Soc. (Series A) 36 (1984), 335-353.

[^0]: Key Words: Lusin's condition (N), Foran's condition $(M), V B, V B G, A C, \underline{A C}$
 Mathematical Reviews subject classification: 26A45, 26A46, 26A21, 26A30
 Received by the editors April 7, 1997
 *I would like to thank the referees for helpful comments and careful reading.

