
Real Analysis Exchange
Vol. 23(2), 1997–1998, pp. 477–489

Vasile Ene∗, Ovidius University Constanţa, Romania
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LUSIN’S CONDITION (N) AND FORAN’S
CONDITION (M) ARE EQUIVALENT FOR
BOREL FUNCTIONS THAT ARE VBG ON

A BOREL SET

Abstract

In this paper we show that Lusin’s condition (N) and Foran’s con-
dition (M) are equivalent for Borel functions that are V BG on a Borel
set. Also new characterizations of conditions (M) and M are given.

Lusin’s condition (N) plays an important role in the theory of integration,
since the classes of primitives for many nonabsolutely convergent integrals
(Denjoy–Perron, Denjoy, α-Ridder, β-Ridder [6], Sarkhel-De-Kar [11], [9], [10],
[12], etc.) are contained in (N)∩V BG. In [2], we showed that (N)∩V BG is a
real linear space for Borel functions on Borel sets. However Foran’s condition
(M), which strictly contains condition (N), seems to be more relevant to the
theory of integral (see [1]). In this paper we show that Lusin’s condition
(N) and Foran’s condition (M) are equivalent for Borel functions that are
V BG on a Borel set (see Theorem 2, (ii)). In fact we prove stronger results
(see Theorem 2, (i), (iii)), using conditions M and (N). These results are very
useful proving theorems of Hake-Alexandroff-Looman type (see for example [1],
p. 199). In the present paper we give some new characterizations of conditions
(M) and M .

1 Preliminaries

We denote by m∗(X) the outer measure of a set X and by m(A) the Lebesgue
measure of A, whenever A ⊂ R is Lebesgue measurable. For the definitions of
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V B and AC see [8]. Let C denote the class of continuous functions. For two
classes A1, A2 of real functions on a set P let

A1 �A2 =
{
α1F1 + α2F2 : F1 ∈ A1, F2 ∈ A2, α1, α2 ≥ 0

}
and

A1 ⊕A2 =
{
α1F1 + α2F2 : F1 ∈ A1, F2 ∈ A2, α1, α2 ∈ R

}
.

Definition 1. Let P ⊆ [a, b], x0 ∈ P and F : P → R. F is said to be Ci at x0
if lim supx↗x0,x∈P F (x) ≤ F (x0), whenever x0 is a left accumulation point for
P , and F (x0) ≤ lim infx↘x0,x∈P F (x), whenever x0 is a right accumulation
point for P . F is said to be Ci on P , if F is so at each point x ∈ P .

Definition 2. ([7]). Let P be a bounded real set and let F : P → R. Put

• O(F ;P ) = sup{|F (y)− F (x)| : x, y ∈ P} the oscillation of F on P .

• O−(F ;P ) = inf{F (y)− F (x) : x, y ∈ P, x ≤ y}.

• O+(F ;P ) = sup{F (y)− F (x) : x, y ∈ P, x ≤ y}.

Definition 3. ([1], p. 6). Let F : [a, b]→ R, P ⊆ [a, b]. Put

• O∞(F ;P ) = inf{
∑∞
i=1O(F ;Pi) : ∪∞i=1Pi = P}.

• O∞+ (F ;P ) = inf{
∑∞
i=1O+(F ;Pi) : ∪∞i=1Pi = P}.

• O∞− (F ;P ) = sup{
∑∞
i=1O−(F ;Pi) : ∪∞i=1Pi = P}.

Definition 4. ([6], p. 236). A function F : P → R is said to be AC (respec-
tively AC) if for every ε > 0 there is a δ > 0 such that

n∑
k=1

(
F (bk)− F (ak)

)
> −ε , (1)

(respectively

n∑
k=1

(
F (bk)− F (ak)

)
< ε ), (2)

whenever {[ak, bk]}, k = 1, 2, . . . , n is a finite set of nonoverlapping closed
intervals with endpoint in P and

∑n
k=1(bk−ak) < δ. Clearly AC = AC∩AC.

Proposition 1. Let F : P → R, F ∈ AC and let ε > 0. For ε/2 let δ > 0
be given by the fact that F ∈ AC on P . Let {(ai, bi)}i be a sequence of
nonoverlapping open intervals such that

∑∞
i=1(bi − ai) < δ. Then

∞∑
i=1

O−
(
F ;P ∩ (ai, bi)

)
> −ε .
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Proof. We may suppose without loss of generality that for each i

(ai, bi) ∩ P 6= ∅ and O−
(
F ;P ∩ (ai, bi)

)
< 0 . (3)

Since F ∈ AC the oscillations in (3) are always finite. Then, for each i, there
exist a

′

i, b
′

i ∈ P ∩ (ai, bi), a
′

i < b
′

i such that

F (b
′

i)− F (a
′

i) <
2

3
· O−

(
F ;P ∩ (ai, bi)

)
.

It follows that for each positive integer n we have

n∑
i=1

O−
(
F ;P ∩ (ai, bi)

)
>

3

2
·
n∑
i=1

(
F (b

′

i)− F (a
′

i)
)
> −3

4
ε .

Therefore
∑∞
i=1O−

(
F ;P ∩ (ai, bi)

)
> −ε.

Definition 5. A function F : P → R is said to be V BG (respectively ACG,
ACG, ACG) on P if there exists a sequence of sets {Pn} with P = ∪nPn, such
that F is V B (respectively AC, AC, AC) on each Pn. If in addition the sets
Pn are assumed to be closed, we obtain the classes [V BG], [ACG], [ACG] and
[ACG]. Note that condition ACG used here differs from that of [8] (because
in our definition the continuity is not assumed).

Definition 6. ([8], p. 224). A function F : P → R is said to satisfy Lusin’s
condition (N) on P if m∗(F (Z)) = 0 whenever Z is a null subset of P .

Definition 7. Let F : [a, b] → R, P ⊂ [a, b]. F is said to be M on P if
F ∈ AC on Q, whenever Q = Q ⊂ P and F ∈ V B ∩ C on Q. A function F is
said to satisfy Foran’s condition (M) on P if F is simultaneously M and M
(i.e., F is AC on Q whenever Q is a closed subset of P and F ∈ V B ∩ C on
Q, see [3]).

Definition 8. ([1], p. 78). Let F : [a, b]→ R, P ⊆ [a, b]. F is said to be (N)
on P if O∞+ (F ;Z) = 0, whenever Z ⊂ P and m(Z) = 0. F is said to be (N)

on P if −F is (N) on P ; i.e., O∞− (F ;Z) = 0.

Remark 1. In [1] (p. 84), there is given an equivalent definition for M (i.e.,
condition 4) of Theorem 3). By Corollary 2.21.1 (iii) of [1], we have (N) ⊂M
on a set P .
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2 Conditions (N), (N), (M), M and VB on Closed Sets

Lemma 1. Let P be a closed subset of [a, b]. Then we have

(i) V B ∩ (N) ⊆ V B ∩M ⊆ (V B ∩M) � (V B ∩M) ⊆ V B ∩ (N) on P ;

(ii) V B ∩ (N) ⊆ V B ∩ (M) ⊆ (V B ∩ (M))⊕ (V B ∩ (M)) ⊆ V B ∩ (N) on P .

Proof. (i) By Remark 1 the first two inclusions are evident. We prove the
last inclusion. Let F1, F2 : P → R such that F1, F2 ∈ V B ∩M . It is sufficient
to show that F = F1 + F2 is V B ∩ (N) on P . Let A1 and A2 be the sets of
points of discontinuity for F1 respectively F2. Then A1, A2 are countable and

A1 ∪A2 = {d1, d2, d3, . . . , dn, . . .}

contains all discontinuity points of F . Given ε > 0, for each dn we can find
some intervals In = (pn, dn) and Jn = (dn, qn) such that

O(F ;P ∩ In) +O(F ;P ∩ Jn) <
ε

2n
.

Let Q = P \ ∪∞n=1(In ∪ Jn). Then Q is a compact set and F1, F2 ∈ V B ∩ C on
Q. But F1, F2 ∈M on P ; so F1, F2 ∈ AC on Q. Hence F ∈ AC on Q.

Let Z ⊂ P , m(Z) = 0. For ε/2 > 0, let δε > 0 be given by the fact
that F ∈ AC on Q. By Proposition 1 there exists {(ai, bi)}i, a sequence of
nonoverlapping open intervals, such that Z∩Q ⊂ ∪∞i=1(ai, bi) ,

∑∞
i=1(bi−ai) <

δε and
∑∞
i=1O−

(
F ;Z ∩Q ∩ (ai, bi)

)
> −ε . Hence

O∞− (F ;Z) ≥ −ε−
( ∞∑
n=1

(O(F ;Z ∩ In) +O(F ;Z ∩ Jn)
)
> −2ε .

Since O∞− (F ;Z) ≤ 0 and ε is arbitrary, it follows that O∞− (F ;Z) = 0. Hence
F ∈ (N) on P .

(ii) The first two inclusions are evident, since (N) ⊂ (M) (see the Banach-
Zarecki Theorem). We prove the last inclusion. Let F1, F2, A1, A2, In, Jn
and Q be defined as in the proof of (i). Suppose that F1, F2 ∈ V B∩(M) on P .
From the definition of (M) it follows that F ∈ AC ⊂ (N) on Q. Let Z ⊂ P ,
m(Z) = 0. Then

m∗(F (Z)) ≤ m∗
(
F (Z ∩Q)

)
+

∞∑
n=1

m∗
(
F (Z ∩ In)

)
+

∞∑
n=1

m∗
(
F (Z ∩ Jn)

)
< ε .

Since ε is arbitrary, we obtain that m∗(F (Z)) = 0. Hence F ∈ (N) on P .
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Lemma 2. Let P be a closed subset of [a, b]. Then we have:

(i) V B ∩ (N) = V B ∩M is an upper real linear space on P .

(ii) V B ∩ (N) = V B ∩ (M) is a real linear space on P .

(iii) V B ∩ (M) = V B ∩M ∩M = V B ∩ (N) ∩ (N) = V B ∩ (N) on P .

Proof. (i) This follows by Lemma 1, (i).
(ii) This follows by Lemma 1, (ii).
(iii) We have V B ∩ (N) ⊆ V B ∩ (N) ∩ (N) = V B ∩M ∩M = V B ∩ (M) =
V B ∩ (N). (The equalities follow by (i), (ii) and the fact that we always have
(M) = M ∩M .)

Lemma 3. Let F : [a, b]→ R, Ek ⊂ [a, b], k = 1, 2, . . ., and E = ∪∞i=1Ek.

(i) F is (N) (respectively (N)) on E if and only if F is (N) (respectively
(N)) on each Ek.

(ii) If in addition each Ek is a closed set, then F is (M) (respectively M) on
E if and only if F ∈ (M) (respectively M) on each Ek.

Proof. (i) For (N) the proof is evident. For (N) the necessity is also obvious,
and the sufficiency follows by definitions and Lemma 2.20.1 of [1].

(ii) The “⇒” part is evident. We show the converse. Let Q be a closed
subset of E such that F ∈ V B ∩ C on Q. Clearly F ∈ V B ∩ C on each closed
set Q ∩ Ek. Since F is (M) (respectively M) on each Ek, it follows that F is
AC (respectively AC) on each Q ∩ Ek. Therefore F ∈ V B ∩ C ∩ ACG = AC
(respectively F ∈ V B ∩ C ∩ACG = AC) on Q (see Corollary 2.21.1, (iv), (iii)
of [1]). Therefore F is (M) (respectively M) on E.

Theorem 1. Let P be a closed subset of [a, b]. Then we have:

(i) [V BG] ∩ (N) = [V BG] ∩M is an upper real linear space on P .

(ii) [V BG] ∩ (N) = [V BG] ∩ (M) is a real linear space on P .

(iii) [V BG] ∩ (M) = [V BG] ∩M ∩M = [V BG] ∩ (N) ∩ (N) = [V BG] ∩ (N)
on P .

Proof. (i) Since (N) ⊂M , we have [V BG] ∩ (N) ⊂ [V BG] ∩M on P . Let
F ∈ [V BG]∩M . Then there exists a sequence of closed sets {Pn}n such that
P = ∪∞n=1Pn and F ∈ V B ∩M = V B ∩ (N) on each Pn (see Lemma 2, (i)).
By Lemma 3, (i) it follows that F ∈ (N) on P ; so [V BG]∩M ⊂ [V BG]∩ (N).
We show that [V BG] ∩ (N) is an upper linear space. Let F1, F2 : P → R,
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F1, F2 ∈ [V BG] ∩ (N). Then there exists {Qn}n, a sequence of closed sets,
such that P = ∪∞n=1Qn and F1, F2 ∈ V B ∩ (N) on each Qn. By Lemma 2,
(i), F1 + F2 ∈ V B ∩ (N) on each Qn. Now by Lemma 3, (i) it follows that
F1 + F2 ∈ [V BG] ∩ (N) on P .

(ii) The proof is similar to that of (i), using Lemma 2, (ii) and Lemma 3,
(i).

(iii) By (i), (ii) and because we always have (M) = M ∩M , it follows that

[V BG] ∩ (N) ⊆ [V BG] ∩ (N) ∩ (N) = [V BG] ∩M ∩M =

= [V BG] ∩ (M) = [V BG] ∩ (N) .

3 Conditions (N), (N), (M), M and VB on Borel Sets

Lemma 4. Let F : P → R be an increasing function, P ⊂ [a, b]. Then
F ∈ (N) if and only if F ∈ (N) on P .

Proof. “⇒” Suppose that F ∈ (N) on P , and let Z ⊂ P such that m(Z) = 0
Then O∞+ (F ;Z) = 0; i.e., for every ε > 0, there is a sequence {Zi}i of sets
such that Z = ∪∞i=1Zi and 0 ≤

∑∞
i=1O+(F ;Zi) < ε. Since F is increasing, it

follows that O+(F ;Zi) = O(F ;Zi). Therefore

m∗(F (Z)) ≤
∞∑
i=1

m∗(F (Zi)) ≤
∞∑
i=1

O(F ;Zi) < ε .

Since ε is arbitrary, we obtain that m∗(F (Z)) = 0. Hence F ∈ (N) on P .
“⇐” (N) ⊆ (N) is always true (see Theorem 2.20.1 of [1]).

Lemma 5 (Fundamental Lemma). Let P ⊂ [a, b] be a Borel set and let G :
P → R, G ∈ V B.

(i) If G /∈ (N) on P , then there exists a compact set K ⊂ P with m(K) = 0
such that G|K is strictly increasing and G(K) is a compact set of positive
measure.

(ii) If G /∈ (N) on P , then there exists a compact set K ⊂ P with m(K) = 0
such that G|K is strictly monotone and G(K) is a compact set of positive
measure.

Proof. (i) By Lemma 4.1 of [8] (p. 221), there exists F : [a, b] → R such
that F ∈ V B and F|P = G. Let E = {x ∈ [a, b] : F

′
(x) does not exist, finite

or infinite}. By Theorem 7.2 of [8] (p. 230), we have m(F (E)) = 0. Since
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F /∈ (N) on P , it follows that there exists a set Z ⊂ P with m(Z) = 0 and
O∞+ (F ;Z) > 0. Hence

F /∈ (N) on Z. (4)

Let A = Z ∩ E. Then
m(F (A)) = 0 . (5)

Let A1 = {x ∈ Z : |F ′
(x)| < 1}. Then

F ∈ (N) on A1 (6)

(see Theorem 10.5, p. 235 or Theorem 4.6, p. 271 of [8]). Let B = {x ∈ Z :
|F ′

(x)| ≥ 1}, B+ = {x ∈ Z : F
′
(x) ≥ 1} and B− = {x ∈ Z : F

′
(x) ≤ −1}.

Using the proof of Theorem 10.1 of [8] (pp. 234-235), it follows that the set
B− can be written as the union of a finite or countable family of sets {B′

n}n,
such that F is strictly decreasing on each B

′

n. Clearly O+(F ;B
′

n) = 0; so
O∞+ (F ;B−) = 0. Hence

F ∈ (N) on B− . (7)

The set B+ can also be written as the union of a finite or countable family of
sets {Bn}n, such that F − I is increasing on each of them (here I(x) = x for
each x ∈ [a, b]). By (5), (6), (7) and Lemma 3, (i), it follows that

F ∈ (N) on A ∪A1 ∪B− . (8)

Since Z = A ∪ A1 ∪ B− ∪ (∪nBn), by (4), (8), Lemma 3 and Lemma 4, it
follows that there exists at least a positive integer n such that F /∈ (N) on Bn.
Fix such a positive integer n. Since F ∈ V B on [a, b], F −I is bounded on Bn.

By Lemma 4.1 of [8] (p. 221), it follows that there exists F̃ − I : [a, b] → R
such that F̃ − I |Bn

= F − I and F̃ − I is increasing on [a, b]. Let B0 be a
Gδ-set of measure zero that contains Bn. Let

B̃ = P ∩B0 ∩ {x ∈ [a, b] : (F̃ − I)(x) = (F − I)(x)} .

Since F̃ − I, F − I ∈ V B ⊂ Borel functions on P , it follows that B̃ is a Borel
set of measure zero, m∗(F (B̃)) > 0 (because B̃ ⊆ Bn) and F = (F − I) + I
is strictly increasing on B̃. From [4] (pp. 391, 387, 365), we obtain that
F (B̃) is a Lebesgue measurable set (because the image of a Borel set under a
Borel function is an analytic set, and an analytic set is Lebesgue measurable).
Therefore F (B̃) contains a compact set Q of positive measure.

Let E = B̃ ∩ F−1(Q). Then F|E is a strictly increasing function and
F (E) = Q. So F|E admits an inverse on E, namely (F|E)−1 : Q → E, that



484 Vasile Ene

is strictly increasing. Let Q1 ⊂ Q be a compact set of positive measure such
that Q1 does not contain the countable set of discontinuity points of (F|E)−1.
Let K = (F|E)−1(Q1) . Then K is a compact set (because any continuous

function maps a compact set into a compact set). Clearly K ⊂ B̃. It follows
that m(K) = 0, F|K = G|K is strictly increasing and G(K) = Q1.

(ii) Since F /∈ (N) on P , there exists Z ⊂ P such that m(Z) = 0 and
m∗(F (Z)) > 0. Hence F /∈ (N) on Z. Let A, A1, B, B+ and B− be defined
as in the proof of (i). Since Z = A ∪ A1 ∪ B+ ∪ B− and F ∈ (N) on A ∪ A1,
by Lemma 3, (i) it follows that F /∈ (N) either on B+ or on B−. We may
suppose without loss of generality that F /∈ (N) on B+. Then there exists
at least one positive integer n such that F /∈ (N) on Bn. Fix such a positive
integer n and continue as in the proof of (i).

Lemma 6. Let P be a Borel subset of [a, b]. Then we have:

(i) V B ∩ (N) ⊆ V B ∩M ⊆ (V B ∩M) � (V B ∩M) ⊆ V B ∩ (N) on P .

(ii) V B ∩ (N) ⊆ V B ∩ (M) ⊆ (V B ∩ (M))⊕ (V B ∩ (M)) ⊆ V B ∩ (N) on P .

Proof. (i) The first two inclusions are evident. We show the last one. Let
F1, F2 : P → R, F1, F2 ∈ V B ∩M . Clearly F = F1 +F2 ∈ V B on P . Suppose
to the contrary that F /∈ (N) on P . By Lemma 5, (i) it follows that P contains
a compact set K of measure zero such that F|K is strictly increasing and F (K)

is a compact set of positive measure. By Lemma 2, (i) we obtain that F ∈ (N)
on K. Since F is increasing on K, by Lemma 4, it follows that F ∈ (N) on
K. Therefore m(F (K)) = 0, a contradiction.

(ii) Let F1, F2 : P → R, F1, F2 ∈ V B ∩ (M). Clearly F = F1 + F2 ∈ V B
on P . Suppose to the contrary that F /∈ (N) on P . Then P contains a
compact set K of measure zero such that F|K is strictly monotone and F (K)
is a compact set of positive measure (see Lemma 5, (ii)). By Lemma 2, (ii) we
obtain that F ∈ (N) on K. Therefore m(F (K)) = 0, a contradiction.

Lemma 7. Let P be a Borel subset of [a, b]. Then we have:

(i) V B ∩ (N) = V B ∩M is a real upper linear space on P .

(ii) V B ∩ (N) = V B ∩ (M) is a real algebra on P .

(iii) V B ∩ (M) = V B ∩M ∩M = V B ∩ (N) ∩ (N) = V B ∩ (N) on P .

Proof. (i) This follows by Lemma 6, (i).
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(ii) That V B ∩ (N) = V B ∩ (M) is a real linear space on P follows by
Lemma 6, (ii). Let F1, F2 ∈ V B ∩ (N). Clearly F1 and F2 are bounded on P .
Let α1, α2 ∈ R such that

G1(x) := F1(x) + α1 ≥ 1 and G2(x) := F2(x) + α2 ≥ 1 on P .

Then F1 ·F2 = G1 ·G2−α1F2−α2F1−α1α2 . Since ln is a Lipschitz function
on [1,+∞), it follows that ln ◦G1 and ln ◦G2 are V B ∩ (N) on P . But

ln(G1 ·G2) = ln(G1) + ln(G2) ∈ V B ∩ (N)

(because V B ∩ (N) is a real linear space). Then

G1 ·G2 = exp(ln(G1 ·G2)) ∈ V B ∩ (N) on P

(since the exponential function is Lipschitz on each compact interval).
(iii) This follows by (i), (ii) and the fact that always (M) = M ∩M .

Remark 2. If F1, F2 : [a, b] → R are V B ∩ (N), then it is possible that
F1 ·F2 /∈ (N). Indeed, let F1 be the Cantor function on [0, 1] and F2(x) = −1
for x ∈ [0, 1]. Then F1 · F2 = −F1 /∈ (N) (see Lemma 4).

Theorem 2. We denote by Bor the collection of all real Borel measurable
functions. Let P be a Borel subset of [a, b]. Then we have:

(i) V BG ∩ (N) ∩ Bor = V BG ∩M ∩ Bor is a real upper linear space on P .

(ii) V BG ∩ (N) ∩ Bor = V BG ∩ (M) ∩ Bor is a real algebra on P .

(iii) V BG∩ (N)∩Bor = V BG∩M ∩M ∩Bor = V BG∩ (N)∩ (N)∩Bor =
V BG ∩ (N) ∩ Bor on P .

Proof. (i) Clearly V BG ∩ (N) ⊂ V BG ∩M on any set E ⊂ [a, b] (E not
necessarily a Borel set). Let F : P → R, F ∈ V BG ∩M . Then there exists
a sequence {Pn}n of sets such that P = ∪nPn and F is V B on each Pn. By
Lemma 4.1 of [8] (p. 221), there exists a function Fn : [a, b] → R, Fn ∈ V B
on [a, b], such that (Fn)|Pn

= F . Let Qn = {x ∈ P : F (x) = Fn(x)}. Since F
and Fn are Borel functions, it follows that Qn is a Borel set, that obviously
contains the set Pn. Thus F ∈ V B∩M = V B∩(N) on Qn (see Lemma 7, (i)).
Since P = ∪nQn, by Lemma 3, (i) we obtain that F ∈ (N) on P . Hence

V BG ∩M ∩ Bor ⊂ V BG ∩ (N) ∩ Bor on P .

Let F1, F2 : P → R, F1, F2 ∈ V BG ∩ (N) ∩ Bor on P . Then there exists a
sequence {En}n of sets such that P = ∪nEn and F1, F2 ∈ V B on each En.
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Arguing as above, we may suppose without loss of generality that each En is
a Borel set. By Lemma 7, (i), V B ∩ (N) is a real upper linear space on each
En. Hence F1 + F2 ∈ V B ∩ (N) on each En. By Lemma 3, (i) it follows that
F ∈ (N) on P ; so F1 + F2 ∈ V BG ∩ (N) ∩ Bor on P .

(ii) The proof is as that of (i), using Lemma 7, (ii) and Lemma 3, (i).
(iii) Clearly, we always have

V BG ∩ (N) ⊂ V BG ∩ (N) ∩ (N) ⊂ V BG ∩M ∩M = V BG ∩ (M) .

By (ii), we obtain that V BG ∩ (M) ∩ Bor = V BG ∩ (N) ∩ Bor.

Remark 3. That V BG ∩ (N) ∩ Bor is a real linear space on a Borel set was
shown first (in a different manner) in [2].

4 Characterizations of M and (M)

Theorem 3. Let P ⊂ [a, b] and F : P → R.

(i) The following assertions are equivalent.

1) F ∈M on P .

2) If F ∈ V B on a Borel set Q ⊂ P , then F ∈ (N) on Q.

3) If F ∈ V B on a closed set Q ⊂ P , then F ∈ (N) on Q.

4) If F ∈ V B ∩ Ci on a closed set Q ⊂ P , then F ∈ AC on Q (see also
[1], p. 84).

5) If F is decreasing and bounded on a Borel set Q ⊂ P , then F ∈ (N)
on Q.

6) If F is decreasing on a closed set Q ⊂ P , then F ∈ (N) on Q.

7) If F is strictly decreasing and continuous on a closed set Q ⊂ P , then
F ∈ AC on Q.

(ii) If P is a Borel set and F is a Borel function, then F ∈ M on P if and
only if F ∈ (N) on any Borel subset Q of P on which F is V BG.

Proof. (i) 1) ⇒ 2) Let Q ⊂ P be a Borel set such that F ∈ V B on Q. By
1) it follows that F ∈ V B ∩M = V B ∩ (N) on Q (see Lemma 7, (i)). Hence
F ∈ (N) on Q.

2)⇒ 3) This is obvious.
3) ⇒ 4) Let Q be a closed subset of P such that F ∈ V B ∩ Ci on Q. By

3), F ∈ V B ∩ Ci ∩ (N) = AC on Q (see Corollary 2.21.1, (iii) of [1]).
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4)⇒ 1) Let Q be a closed subset of P such that F ∈ V B ∩ C on Q. Then
F ∈ V B ∩ Ci on Q, and by 4), F is AC on Q. Therefore F ∈M .

1) ⇒ 5) Let Q be a Borel subset of P such that F is decreasing and
bounded on Q. Clearly F is V B on Q, and by 1), F ∈ V B ∩M = V B ∩ (N)
on Q (see Lemma 7, (i)). Thus F ∈ (N) on Q. By Lemma 4, F ∈ (N) on Q.

5)⇒ 6) A real valued function that is decreasing on a bounded closed set
is bounded on that set. Now the assertion is obvious.

6) ⇒ 7) Let Q be a closed subset of P such that F is continuous and
decreasing on Q. By 6), F ∈ (N) on Q. Clearly F ∈ V B ∩C ∩ (N) = AC (see
the Banach-Zarecki Theorem).

7)⇒ 1) By Corollary 2.21.1, (iii) of [1], we have that V B ∩ C ∩ (N) ⊆ AC
on a closed set. Suppose that 7) is true and 1) isn’t. Since F /∈M on P , there
exists a closed set Q ⊂ P such that F ∈ V B ∩ C but f /∈ AC on Q. It follows
that F /∈ (N) on Q. By Lemma 5, (i), there exists a compact set K ⊂ Q of
measure zero such that m(F (K)) > 0 and F is strictly decreasing on K. By
7), F is AC on K. Since AC ⊂ (N), we obtain a contradiction.

(ii) “⇒” Let Q ⊂ P be a Borel set such that F|Q is V BG. By hypotheses,
F ∈ V BG∩M = V BG∩ (N) (see Theorem 2, (i)). Therefore F ∈ (N) on Q.

“⇐” Let Q be a closed subset of P such that F|Q ∈ V B∩C. By hypotheses,
F ∈ V B ∩ C ∩ (N) ⊂ AC on Q (see Corollary 2.21.1 (iii) of [1]).

Theorem 4. Let P ⊂ [a, b] and F : P → R.

(i) The following assertions are equivalent.

1) F ∈ (M) on P .

2) If F ∈ V B on a Borel set Q ⊂ P , then F ∈ (N) on Q.

3) If F ∈ V B on a closed set Q ⊂ P , then F ∈ (N) on Q.

4) If F is monotone and bounded on a Borel set Q ⊂ P , then F ∈ (N)
on Q.

5) If F is monotone on a closed subset Q of P , then F ∈ (N) on Q.

6) If F is strictly monotone and continuous on a closed set Q ⊂ P , then
F ∈ AC on Q.

(ii) If P is a Borel set and F is a Borel function, then F ∈ (M) if and only
if F ∈ (N) on any Borel set Q ⊂ P on which F is V BG.

Proof. (i) 1) ⇒ 2) Let Q ⊂ P be a Borel set such that F ∈ V B on Q. By
1), F ∈ V B ∩ (M) = V B ∩ (N) on Q (see Lemma 7, (ii)).

2)⇒ 3) This is obvious.
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3) ⇒ 1) Let Q be a closed subset of P such that F|Q is V B ∩ C. By 3),
F|Q ∈ V B ∩ C ∩ (N) = AC (see the Banach-Zarecki Theorem). Therefore
F ∈ (M) on P .

1)⇒ 4) Let Q be a Borel subset of P such that F is monotone and bounded
on Q. Then F ∈ V B on Q. By 1), F ∈ V B ∩ (M) = V B ∩ (N) on Q (see
Lemma 7, (ii)).

4)⇒ 5) This is obvious.
5) ⇒ 6) Let Q be a closed subset of P such that F is strictly monotone

and continuous on Q. By 5), F ∈ (N) on Q. Clearly F ∈ V B ∩C ∩ (N) = AC
on Q (see the Banach-Zarecki Theorem).

6) ⇒ 1) Suppose that 6) is true and 1) isn’t. Since F /∈ (M) on P , it
follows that there exists a closed set Q ⊂ P such that F ∈ V B ∩ C on Q, but
F /∈ AC on Q. Since V B ∩ C ∩ (N) = AC on a closed set (see the Banach-
Zarecki Theorem), we obtain that F /∈ (N) on Q. By Lemma 5, (ii), there
exists a compact set K ⊂ Q of measure zero such that m(F (K)) > 0 and F is
strictly monotone on K. By 6), F ∈ AC on K, a contradiction.

(ii)“⇒” Let Q ⊂ P be a Borel set such that F|Q ∈ V BG. By hypothesis,
F ∈ V BG ∩ (M) = V BG ∩ (N) (see Theorem 2, (ii)). Hence F ∈ (N) on Q.

“⇐” This follows by the Banach-Zarecki Theorem.

Corollary 1. Let P ⊂ [a, b] be a Borel set. Then we have:

(i) (V BG ∩M ∩ Bor) � (M ∩ Bor) = (M ∩ Bor) on P .

(ii) (V BG ∩ (M) ∩ Bor)⊕ ((M) ∩ Bor) = (M) ∩ Bor on P .

Proof. Let F1, F2, F : P → R, F = F1 + F2.
(i) Suppose that F1 ∈ V BG∩M ∩Bor and F2 ∈M ∩Bor on P . Let Q be a

Borel subset of P such that F|Q is V B. Clearly F2 = F−F1 is V BG∩M∩Bor
on Q. By Theorem 2, (i), it follows that F ∈ (N) on Q, and by Theorem 3,
1), 2) we obtain that F ∈M on P .

(ii) Suppose that F1 ∈ V BG ∩ (M) ∩ Bor and F2 ∈ (M) ∩ Bor on P .
Let Q ⊂ P be a Borel set such that F|Q is V B. Clearly F2 = F − F1 is
V BG ∩ (M) ∩ Bor on Q. By Theorem 2, (ii), it follows that F ∈ (N) on Q,
and by Theorem 4, 1), 2), we obtain that F ∈ (M) on P .

Remark 4. In Corollary 1, (ii), Foran’s condition (M) cannot be replaced
by Lusin’s condition (N), although V BG ∩ (N) ∩ Bor = V BG ∩ (M) ∩ Bor
(see Theorem 2, (ii)). This follows from an example of Mazurkiewicz ([5] or
[1], p. 226). He constructed a continuous function f(x) on [0, 1], such that
f ∈ (N), but for b 6= 0 the function f(x) + bx /∈ (N).



Lusin’s Condition (N) and Foran’s Condition (M) 489

References

[1] V. Ene, Real functions - current topics, Lect. Notes in Math., vol. 1603,
Springer-Verlag, 1995.

[2] V. Ene, On Borel measurable functions that are V BG and (N), Real
Analysis Exchange 22 (1996–1997), no. 2, 688–695.

[3] J. Foran, A generalization of absolute continuity, Real Analysis Exchange
5 (1979-1980), 82–91.

[4] K. Kuratowski, Topology, New York - London - Warszawa, 1966.

[5] S. Mazurkiewicz, Sur les fonctions qui satisfont a la condition (N), Fund.
Math. 16 (1930), 348–352.
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