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PERIODIC L, FUNCTIONS WITH L,
DIFFERENCE FUNCTIONS'

Abstract
Let 0 < p < ¢ < . We investigate the following question: For
which subsets H of the circle group T = R/Z is it true that if f € L,
and Apf(z) = f(zx + h) — f(z) € Lq for any h € H, then f € L,7 We
prove that this is not true for pseudo-Dirichlet sets. Evidence is gathered
for the conjecture that the class of counter-examples is precisely the class
of N-sets.

1 Introduction

In [7] the following notion was introduced. Let FesG be classes of functions
on the circle group T = R/Z with F D G. We denote by $(F,G) the class of
those subsets H of T, for which a function f € F can have difference functions
Apf(x) = f(x + h) — f(x) in G for every h € H without f belonging to G.
That is,

.sa(f,g):{HcT:(afef\g) (Yhe H) ALf G }

We denote by Lo the class of measurable real functions on T, and L,
denotes the class of those measurable real functions f on T for which | f||, =

(J-1f1P) VP < oo, Tt was proved in [7] (Theorem 4.10) that for any 0 < p <
g < oo we have $(L,, Ly) C §» where §, denotes the family of those subsets
of T that can be covered by a proper F, subgroup of T.

The classes $(F,G) are often related to some classes of thin sets in har-
monic analysis. Now we define those classes that will arise in our results.
Detailed explanation of this topic can be found in the monographs [2], [10], in
the recent research papers [4] and [5] or in the recent topical survey [3].
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o Aset H C Tis called a Dirichlet set if there exists an increasing sequence
of integers (g, ) and a sequence (g,,) converging to zero such that for any
x € H we have |sing,7z| < &, for every n € N.

e A set H C T is called a pseudo-Dirichlet set if there exist an increasing
sequence of integers (g,) and a sequence (&,) converging to zero such
that for any = € H there exists a k(x) such that |sing,mz| < &, if
n > k(z).

e A set H C T is called an N-set if there exists a trigonometric series on
T that is absolutely convergent on H but is not absolutely convergent
everywhere.

The family of Dirichlet sets, pseudo-Dirichlet sets and N-sets are denoted
by ©, p® and N, respectively. It is known ([5],]9]) that

DCpDECNEG o

In this paper we prove that for and 0 < p < g we have p® C $H(L,p, Ly). We
also investigate the possible improvement of the earlier mentioned inclusion

H(Ly, Ly) C o of [7].

2 The Main Result

Lemma 2.1. Suppose that 0 < p < g < oo and (ay) is a sequence of positive
reals such that

Zaj < 0o and Zaj > C/kN for fixed C' > 0 and N > 2.
j=1 =k

Then there exists sequence of positive reals (c;) such that

Z@c? < 00, (A)
j=1
Zajcg = 00, (B)
j=1

and
> aj(max(je; = ¢j-al, lejar = ¢5) " < oo (©)

.
||
N
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PRrROOF. First we define a sequence of integers 0 = ng < n; < ny < ... such
that

(i) Z aj > C'/kN for infinitely many k for a fixed C’ > 0 and

J=nk

[ee]
(ii) > a;<C/EN  forevery k€ N.
Jj=ni+1

Let k € N and suppose that n_1 is already defined. If ZJ 1 > C/kN,

then let ny = max{ iy a > C/EN } Otherwise let ny = ngp_1 + 1.

Then clearly n, > ni—1 and (ii) holds. If ZJ 4145 > C/kN for infinitely
many k, then (i) clearly holds with C' = C. Otherwise, there exists an m € N
such that ng = n,, + (k —m) for every k > m. Then for every k > m,

o S - |
j;k aj j—nz+k:m aj B (nm + k— m)N - ((nm + 1-— m)k)N
Thus (i) holds for C’ = #—m)N

Let by = apjq1 +Onyy2+ ...+ any s (k:zO,l,Z...),anda:sup{B :
S bik? < o0 } We claim that 1 < a < N.
1 < o By (ii),

Zbkkz—ZZb Z Z aJ<ZC/kN<oo

k=1n=k k=1j=np+1

a < N: Let € > 0 arbitrary. If (i) holds for k > 2, then

anN+5> Z bnN+a> Z b N+5

n=k—1 n=k—1
00 S
— (k _ 1)N+s Z a; > (k— 1)N+s Z a;
j=nr—1+1 Jj=nk
o4
> (k _ 1)N+€ k7N

Since k can be arbitrarily big this implies that Y oo, b,n ¢ = co. Thus
a < N.



434 TaMmAs KELETI

Choose « such that a/q < v < min(e/p, (a/q) + 1), and let ¢, = k7 for
any ng < n < ngy1 (k= 0,1,...). Then 3777 ajcf = 3772 (b (k7)P < oo,
since yp < . We also have Y%, ajef = Y777 by(k7)? = oo, since 7q > a. If
v <1, then |¢j+1 —¢;| <1 for any j € N; so we have

oo

o0
aj(max(|e; — ¢j1lleje1 —¢))" <D a; < oo
: =

Jj=2
If v > 1, then, applying the mean value theorem, we have
max(|k7 — (k — 1)), [(k + 1) = K]) < 7(k + 1)~ < y(2k)7?

for any k € N. Thus

aj(max(le; — ¢j 1|, ejr1 — ¢5)))*

V]2

Il
3

j=ni+1

b (max(|k” — (k —1)7],|(k + 1) — &7]))*

)

el
Il
—

< b (v(2R) N = (2717 bktOTY < o,

k=1

LI

since ¢(y — 1) . O

Notation 2.2. If A, B C T, then we put A+ B={a+b:a € A,be B}. The
sets A— B and — A are defined similarly. If k£ € N, the k-fold sum A+...4+ A is
denoted by kA. The Lebesgue outer measure of H is denoted by |H|. By the
measure of a set we mean its outer Lebesgue measure. Sometimes we identify
T with [0,1). If z € T, then by |x| we mean min(x,1 — z).

Lemma 2.3. Suppose that A and H are closed subsets of T, A=—A,0€ A,
H has positive measure and there exist constants C' > 0 and N > 2 such that

(1) |H+ kA <1-C/EN  (Vk e N).
Then A € $H(Ly, Ly) for any 0 < p < g < o0.

PrOOF. For given 0 < p < ¢ < oo we construct a function g € L, \ L,
such that Apg € Lg for any h € A. The construction is a modification of
the construction of Balcerzak, Buczolich and Laczkovich ([1], proof of the
(i)=(ii) part of Theorem 1.1). Using the same notation, we let H; = H + jA,
Hy = UjenH;. If Ais a finite subset of Q N'T, then an arbitrary periodic
function g € L, \ L, with period 1/m (where m is a common denominator of
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the elements of A) satisfies the conditions. Otherwise, since A = —A, Hy, has
infinitely many periods; thus |H| > 0 implies |Hs| = 1.
Let a; = |H; \ Hj_1| ( € N). Then, using |[Hs| =1 and (1), we get

> an = [Ho \ Hy| = |T\ Heoy| > |T\ Hy| > C/EY.
n=k

Then, according to Lemma 2.1, there exists a sequence of positive reals (c;)
such that (A), (B) and (C) hold.

Let g(z) =¢;. fx € Hi \ Hj_1 (j € N), and g(z) =0 for z € T\ Hy,
then, using (A) and (B), we get

0 0o
/Tlgl” = a;c? < oo and /T|g|q = a;c! = co.
j=1 j=1

Therefore g € Ly, \ Lg.

On the other hand, if h € A, x € H;, \H;, yandy =x+hec H; \Hj, 1,
then |j, — jal < 1. Thus | f(z + h) — f(z)] < max(les. — 51l et — 1))
Hence, using (C), for any h € A, we have

oo
/T\Ahgrl <3 (max(le; — ¢ 1), lej41 — )" < .

Jj=1

Therefore Apg € Ly. O

The following lemma was proved by Géza Kés ([8]).

Lemma 2.4. For any pseudo-Dirichlet set H C T there exists a Dirichlet set
A C T such that the group generated by A contains H.

Proor. Take sequences ¢ < g2 < ... and €, — 0 and a function k :
H — N according to the pseudo-Dirichlet property of H. Taking a suitable
subsequence we can assume that £, = . Then, denoting |sin7z| by |||, we
have ||q,z| < L for any z € H and n > k(z).

First we show that the sequence ¢1,¢qo, ... can be replaced by a sequence
71,72, ... such that (i) for n > k(z) we still have ||r,z|| < L, (ii) each r,, divides
Tnt1, and (iii) rp41 > 2(n + 1)r, (n € N). We define the sequence (r,) by
induction. Let 71 = ¢1 and 7,41 = 2(n + 1)7nG2(n41)2r,- Then clearly r,
divides 7,41 and rp41 > 2(n+ 1)r, (n € N). For n + 1 > k(z) we have

P12l = 120 + D) Tnganinyzr, 2|l

| <2(n+1) ! _ !
" rn2(n—|—1)2rn Con+ 1

<2(n+ Drallgemer)2r, ©
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Now we can define A. Let A = {x eT: Vn |rpz| < %} It is clear that

A is a Dirichlet set. We need to show that any element of H can be written
as a finite sum of elements in A.

Let « € H and m > k(z). Clearly = can be written in the form of x =
7= +y, where a € Z and [ly[| < 57—. We have y € A, since if n > m, then

a T 1
[rayll = ||rn { 2 — — ||| < lIrnzll + ||a—]|| = [Iraz|l < =,
T'm T'm n
and if n < m, then
ol < vllyll < s 5 < g = < 2
T T Ty— T = —.
Yl = TallYll = Tm 12rm - 14m7"m,1 4m n

On the other hand % € A, as well, since if n > m, then ‘

rn—| =0, and if
Tm

n <m, then 0 < r,-1 <=2 <L <1 Thys z is indeed in the subgroup

Tm -

generated by A. O

Theorem 2.5. For any 0 <p < q¢ < oo,
H(Lyp, Lyg) D pD.

That is, for any pseudo-Dirichlet set Hy there exists a function g € L, \ Lq
such that Apg € Lq for any h € Hy.

PrROOF. By Lemma 2.4, there exists a Dirichlet set A C T such that the
group generated by A contains Hy. Then clearly it is enough to prove that
Ae H(Ly, Ly).

Take a sequence q; < g2 < ... and a sequence &, — 0 according to the
Dirichlet property of A. Taking a suitable subsequence of (gy,€,) we can
assume that &, < C/2n3, where C < 1/(3>°77 , 2/n?) (= 3/n?) is fixed.

Let

A={aeT: (VneN) [sing,ma| <&y}

Then clearly 0 € A, A = —A, A is closed and A C A. Thus, according to
Lemma 2.3, it is enough to find a closed set H C T with positive measure
having property (1). Denoting Z/mZ by Z,,, we let

Bn:US<j C) (n e N),

72
n
j€Z,, An dn

where S(x,r) denotes the open neighborhood of & with radius r. Let

(o]
B = UBnandH:’JI‘\B.

n=1
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Then H is clearly closed. In addition,

oo o0 C o0
B| < B,| < 2—— =C) 2/n?<1,
||_nzzjl| n|_nZ:jlqn e ;/n

thus |H| > 0. Therefore we only need to prove (1).
We claim that if |¢, 3] < e, then

2) B,+5> | s(j ¢ _E>.

72
n
jer, N\ M dn

Indeed, since (on T) 8 = pn.g/qn + (¢u8)/qn (for a proper p, g € Zg,),
i C i —png C
S(J7 ( _é‘) S(wa)%
qn M°Qn qn qn neqn

For any a € A we have |qpa| < |sin(rqra)| < ep < C/2k3. Hence, if
ag,...,ap € A, then |gr(aq + ...+ ag)| < kC/2k3 = C/2k?. Therefore, by
(2), for any 8 € kA,

i C (/) _ i ¢
B+B>B+5> | S(qk’kQ%_>_ U S(%M)

. k .
J€Lq, 4 J€ELy,,

Thus, for any B € kA, H+3 C T\UjGqu S (j ¢ ) . Therefore H+ kA C

ax’ 2k2qp
J C .
T\Ujez,, 9 (qk’ 2k2qk) » 80

C
H4+ kA <1—q2— =1-— 2,
|H + kAl <1—qx T C/K?. O

Combining the previous theorem with the result of [7] mentioned in the
Introduction, we get the following.

Corollary 2.6. For any 0 <p < ¢ < o0, p© C H(L,, L,) C Fo-

3 Evidence for a Conjecture

Notation 3.1. A Borel set F' C T is called a weak Dirichlet set (see e.g. in
[4] p. 48), if for every probability measure p supported by F,

limsup |@(n)| = 1, where fi(n) = / 2™t du(t).
T

[n|—o0
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Theorem 3.2. If H C T is not an N-set, f : T — R is a measurable function,
and Apf € Lo for any h € H, then f € L, for any p > 0.

PROOF. Let K,, = {h : |Anf] < m a.e.} (m € N). Then clearly H C
UmenKm; so H ¢ 9 implies UpenKm € 91 It is easy to prove (see e.g.
[7], proof of Proposition 4.2) that K, is closed. Thus (K,,) is an increasing
sequence of compact sets.

It is known (see e.g. in [5] p. 190) that for each increasing sequence (K,,)
of compact weak Dirichlet sets, Up,en K. € M. Therefore, in our case, there
exists an m € N such that K,, is not a weak Dirichlet set. Dividing f by m,
we can assume that m = 1. Then, denoting K7 by K, we have

K={h:|Arf|<la. e}
and there exists a probability measure u supported by K such that

limsup |ia(n)] < 1.

[n|—o00

Thus there exists an 7 > 0 such that Re fi(n) <1 —n for every n € Z with at
most finitely many exceptions. If, for any n # 0, Re fi(n) = 1, then 2™ = 1
p-a.e.; so for any k € Z also €™ —= 1 y-a.e., which is impossible, since
lim supy,, |, |2(n)| < 1. Therefore we can assume, with a suitable 5 > 0, that

Re fi(n) <1-—n (Vn e Z\ {0}).

It is proved in [9] that if there exists a probability measure p supported
on K such that Re fi(n) < 1 —n for every n € Z \ {0}, then K is “essentially
ejective”, which means that for every = € (0, 1],

Ck(z) > nx(1 —z), where (x(z) = inf sup |[(A+h)\ Al
|Al=z he K

Therefore in our case (x(x) > nz(l — x). Thus

(3) sup |[(A+h)\ Al =7 [A] (1—|A])
heK

for any A C T with |A] > 0.
Now we define a sequence A,,, Any+1,--. of subsets of T by induction.
Since f is measurable there exists an ng € N such that

Apy ={z €T:|f(x) <no}

has positive measure. Assume that A, is already defined (n > ng). By (3),
there exists a h,, € K such that

(4) [(An -+ Ra) \ Al 2 3 14a] (1= |4q)).
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Then let A,11 = A, U (A, + hy). Let C), = {x eT:|f(x)] > n} and ¢, =
|Cn] (n=0,1,...). By the definition of K, it is easy to see by induction that
|f(z)| < n for a. e. x € A, which means that ¢, < |T\ 4,| (n > ng). Using
the notation b, = |T \ A,|, we use (4) to get

by — byt > 2(1—1) Yo > (1= byy )b (> np).

I\D\:

Thus
n
bt <bu (1= 5(1=ba))) (0= no).

Therefore, denoting 1 — (1 — by,,) by A, we have
by < bp g AT (n > ngp).

Since n > 0 and 1 — by, = |A4,,| > 0 we have A < 1. Let p > 0. Then

bwi/

S 1_Cn

:i ((m+1)P —mP)
Zb ((m+1)P —mP)

<O()+ D bp A" "0 (m+ 1)

m=ng

<0o0. O

Remark 3.3. This proof is based on the “ejectivity” property of a compact
non-N-set (see [9]). On the other hand, the proof of Theorem 2.5 uses the
“non-ejectivity” of a pseudo-Dirichlet set: the argument of the proof of Theo-
rem 3.2 shows that the condition (1) of Lemma 2.3 cannot be satisfied if H is
ejective. Since a set is non-ejective if and only if its closure is an N-sets (see
[9] p. 162), this motivates the following conjecture.

Conjecture 3.4. For any 0 < p < ¢ < 00, H(Lp, Ly) =N
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