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PERIODIC Lp FUNCTIONS WITH Lq
DIFFERENCE FUNCTIONS†

Abstract

Let 0 < p < q < ∞. We investigate the following question: For
which subsets H of the circle group T = R/Z is it true that if f ∈ Lp

and ∆hf(x) = f(x + h) − f(x) ∈ Lq for any h ∈ H, then f ∈ Lq? We
prove that this is not true for pseudo-Dirichlet sets. Evidence is gathered
for the conjecture that the class of counter-examples is precisely the class
of N -sets.

1 Introduction

In [7] the following notion was introduced. Let F esG be classes of functions
on the circle group T = R/Z with F ⊃ G. We denote by H(F ,G) the class of
those subsets H of T, for which a function f ∈ F can have difference functions
∆hf(x) = f(x + h) − f(x) in G for every h ∈ H without f belonging to G.
That is,

H(F ,G) =
{
H ⊂ T : (∃f ∈ F \ G) (∀h ∈ H) ∆hf ∈ G

}
.

We denote by L0 the class of measurable real functions on T, and Lp
denotes the class of those measurable real functions f on T for which ‖f‖p =(∫
T
|f |p

)1/p
< ∞. It was proved in [7] (Theorem 4.10) that for any 0 ≤ p <

q <∞ we have H(Lp, Lq) ⊂ Fσ where Fσ denotes the family of those subsets
of T that can be covered by a proper Fσ subgroup of T.

The classes H(F ,G) are often related to some classes of thin sets in har-
monic analysis. Now we define those classes that will arise in our results.
Detailed explanation of this topic can be found in the monographs [2], [10], in
the recent research papers [4] and [5] or in the recent topical survey [3].
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• A set H ⊂ T is called a Dirichlet set if there exists an increasing sequence
of integers (qn) and a sequence (εn) converging to zero such that for any
x ∈ H we have | sin qnπx| < εn for every n ∈ N.

• A set H ⊂ T is called a pseudo-Dirichlet set if there exist an increasing
sequence of integers (qn) and a sequence (εn) converging to zero such
that for any x ∈ H there exists a k(x) such that | sin qnπx| < εn if
n ≥ k(x).

• A set H ⊂ T is called an N-set if there exists a trigonometric series on
T that is absolutely convergent on H but is not absolutely convergent
everywhere.

The family of Dirichlet sets, pseudo-Dirichlet sets and N-sets are denoted
by D, pD and N, respectively. It is known ([5],[9]) that

D ( pD ( N ( Fσ.

In this paper we prove that for and 0 < p < q we have pD ⊂ H(Lp, Lq). We
also investigate the possible improvement of the earlier mentioned inclusion
H(Lp, Lq) ⊂ Fσ of [7].

2 The Main Result

Lemma 2.1. Suppose that 0 < p < q <∞ and (an) is a sequence of positive
reals such that

∞∑
j=1

aj <∞ and

∞∑
j=k

aj ≥ C/kN for fixed C > 0 and N ≥ 2.

Then there exists sequence of positive reals (cj) such that

∞∑
j=1

ajc
p
j <∞, (A)

∞∑
j=1

ajc
q
j =∞, (B)

and

∞∑
j=2

aj
(

max(|cj − cj−1|, |cj+1 − cj |)
)q
<∞. (C)
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Proof. First we define a sequence of integers 0 = n0 < n1 < n2 < . . . such
that

(i)

∞∑
j=nk

aj ≥ C ′/kN for infinitely many k for a fixed C ′ > 0 and

(ii)

∞∑
j=nk+1

aj < C/kN for every k ∈ N.

Let k ∈ N and suppose that nk−1 is already defined. If
∑∞
j=nk−1+1 aj ≥ C/kN ,

then let nk = max
{
i :
∑∞
j=i aj ≥ C/kN

}
. Otherwise let nk = nk−1 + 1.

Then clearly nk > nk−1 and (ii) holds. If
∑∞
j=nk−1+1 aj ≥ C/kN for infinitely

many k, then (i) clearly holds with C ′ = C. Otherwise, there exists an m ∈ N
such that nk = nm + (k −m) for every k ≥ m. Then for every k ≥ m,

∞∑
j=nk

aj =

∞∑
j=nm+k−m

aj ≥
C

(nm + k −m)N
≥ C

((nm + 1−m)k)N
.

Thus (i) holds for C ′ = C
(nm+1−m)N

.

Let bk = ank+1 + ank+2 + . . .+ ank+1
(k = 0, 1, 2, . . .), and α = sup

{
β :∑∞

k=1 bkk
β <∞

}
. We claim that 1 ≤ α ≤ N .

1 ≤ α: By (ii),

∞∑
k=1

bkk =

∞∑
k=1

∞∑
n=k

bn =

∞∑
k=1

∞∑
j=nk+1

aj <

∞∑
k=1

C/kN <∞.

α ≤ N : Let ε > 0 arbitrary. If (i) holds for k ≥ 2, then

∞∑
n=1

bnn
N+ε ≥

∞∑
n=k−1

bnn
N+ε ≥

∞∑
n=k−1

bn(k − 1)N+ε

= (k − 1)N+ε
∞∑

j=nk−1+1

aj ≥ (k − 1)N+ε
∞∑

j=nk

aj

≥ (k − 1)N+ε C ′

kN
.

Since k can be arbitrarily big this implies that
∑∞
n=1 bnn

N+ε = ∞. Thus
α ≤ N .
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Choose γ such that α/q < γ < min(α/p, (α/q) + 1), and let cn = kγ for
any nk < n ≤ nk+1 (k = 0, 1, . . .). Then

∑∞
j=1 ajc

p
j =

∑∞
k=0 bk(kγ)p < ∞,

since γp < α. We also have
∑∞
j=1 ajc

q
j =

∑∞
k=0 bk(kγ)q =∞, since γq > α. If

γ ≤ 1, then |cj+1 − cj | ≤ 1 for any j ∈ N; so we have

∞∑
j=2

aj
(

max(|cj − cj−1|, |cj+1 − cj |)
)q ≤ ∞∑

j=2

aj <∞.

If γ > 1, then, applying the mean value theorem, we have

max(|kγ − (k − 1)γ |, |(k + 1)γ − kγ |) ≤ γ(k + 1)γ−1 ≤ γ(2k)γ−1

for any k ∈ N. Thus

∞∑
j=n1+1

aj
(

max(|cj − cj−1|, |cj+1 − cj |)
)q

≤
∞∑
k=1

bk
(

max(|kγ − (k − 1)γ |, |(k + 1)γ − kγ |)
)q

≤
∞∑
k=1

bk
(
γ(2k)γ−1

)q
= (2γ−1γ)q

∞∑
k=1

bkk
q(γ−1) <∞,

since q(γ − 1) < α.

Notation 2.2. If A,B ⊂ T, then we put A+B = {a+ b : a ∈ A, b ∈ B}. The
sets A−B and −A are defined similarly. If k ∈ N, the k-fold sum A+ . . .+A is
denoted by kA. The Lebesgue outer measure of H is denoted by |H|. By the
measure of a set we mean its outer Lebesgue measure. Sometimes we identify
T with [0, 1). If x ∈ T, then by |x| we mean min(x, 1− x).

Lemma 2.3. Suppose that A and H are closed subsets of T, A = −A, 0 ∈ A,
H has positive measure and there exist constants C > 0 and N ≥ 2 such that

(1)
∣∣H + kA

∣∣ ≤ 1− C/kN (∀k ∈ N).

Then A ∈ H(Lp, Lq) for any 0 < p < q <∞.

Proof. For given 0 < p < q < ∞ we construct a function g ∈ Lp \ Lq
such that ∆hg ∈ Lq for any h ∈ A. The construction is a modification of
the construction of Balcerzak, Buczolich and Laczkovich ([1], proof of the
(i)⇒(ii) part of Theorem 1.1). Using the same notation, we let Hj = H + jA,
H∞ = ∪j∈NHj . If A is a finite subset of Q ∩ T, then an arbitrary periodic
function g ∈ Lp \ Lq with period 1/m (where m is a common denominator of
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the elements of A) satisfies the conditions. Otherwise, since A = −A, H∞ has
infinitely many periods; thus |H| > 0 implies |H∞| = 1.

Let aj = |Hj \Hj−1| (j ∈ N). Then, using |H∞| = 1 and (1), we get

∞∑
n=k

an =
∣∣H∞ \Hk−1| =

∣∣T \Hk−1| ≥
∣∣T \Hk| ≥ C/kN .

Then, according to Lemma 2.1, there exists a sequence of positive reals (cj)
such that (A), (B) and (C) hold.

Let g(x) = cj . If x ∈ Hj \ Hj−1 (j ∈ N), and g(x) = 0 for x ∈ T \ H∞,
then, using (A) and (B), we get∫

T
|g|p =

∞∑
j=1

ajc
p
j <∞ and

∫
T
|g|q =

∞∑
j=1

ajc
q
j =∞.

Therefore g ∈ Lp \ Lq.
On the other hand, if h ∈ A, x ∈ Hjx \Hjx−1 and y = x+h ∈ Hjy \Hjy−1,

then |jy − jx| ≤ 1. Thus |f(x+ h)− f(x)| ≤ max(|cjx − cjx−1|, |cjx+1 − cjx |).
Hence, using (C), for any h ∈ A, we have∫

T
|∆hg|q ≤

∞∑
j=1

aj
(

max(|cj − cj−1|, |cj+1 − cj |)
)q
<∞.

Therefore ∆hg ∈ Lq.

The following lemma was proved by Géza Kós ([8]).

Lemma 2.4. For any pseudo-Dirichlet set H ⊂ T there exists a Dirichlet set
Λ ⊂ T such that the group generated by Λ contains H.

Proof. Take sequences q1 < q2 < . . . and εn → 0 and a function k :
H → N according to the pseudo-Dirichlet property of H. Taking a suitable
subsequence we can assume that εn = 1

n . Then, denoting | sinπx| by ‖x‖, we
have ‖qnx‖ < 1

n for any x ∈ H and n > k(x).
First we show that the sequence q1, q2, ... can be replaced by a sequence

r1, r2, ... such that (i) for n > k(x) we still have ‖rnx‖ < 1
n , (ii) each rn divides

rn+1, and (iii) rn+1 ≥ 2(n + 1)rn (n ∈ N). We define the sequence (rn) by
induction. Let r1 = q1 and rn+1 = 2(n + 1)rnq2(n+1)2rn . Then clearly rn
divides rn+1 and rn+1 ≥ 2(n+ 1)rn (n ∈ N). For n+ 1 > k(x) we have

‖rn+1x‖ = ‖2(n+ 1)rnq2(n+1)2rnx‖

≤ 2(n+ 1)rn‖q2(n+1)2rnx‖ < 2(n+ 1)rn
1

2(n+ 1)2rn
=

1

n+ 1
.
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Now we can define Λ. Let Λ =
{
x ∈ T : ∀n ‖rnx‖ < 1

n

}
. It is clear that

Λ is a Dirichlet set. We need to show that any element of H can be written
as a finite sum of elements in Λ.

Let x ∈ H and m > k(x). Clearly x can be written in the form of x =
a
rm

+ y, where a ∈ Z and ‖y‖ ≤ π
2rm

. We have y ∈ Λ, since if n ≥ m, then

‖rny‖ =

∥∥∥∥rn(x− a

rm

)∥∥∥∥ ≤ ‖rnx‖+

∥∥∥∥a rnrm
∥∥∥∥ = ‖rnx‖ <

1

n
,

and if n < m, then

‖rny‖ ≤ rn‖y‖ ≤ rm−1
π

2rm
≤ rm−1

π

4mrm−1
=

π

4m
<

1

n
.

On the other hand 1
rm
∈ Λ, as well, since if n ≥ m, then

∥∥∥rn 1
rm

∥∥∥ = 0, and if

n < m, then 0 < rn
1
rm
≤ rm−1

rm
≤ 1

2m < 1
n . Thus x is indeed in the subgroup

generated by Λ.

Theorem 2.5. For any 0 < p < q <∞,

H(Lp, Lq) ⊃ pD.

That is, for any pseudo-Dirichlet set H0 there exists a function g ∈ Lp \ Lq
such that ∆hg ∈ Lq for any h ∈ H0.

Proof. By Lemma 2.4, there exists a Dirichlet set Λ ⊂ T such that the
group generated by Λ contains H0. Then clearly it is enough to prove that
Λ ∈ H(Lp, Lq).

Take a sequence q1 < q2 < . . . and a sequence εn → 0 according to the
Dirichlet property of Λ. Taking a suitable subsequence of (qn, εn) we can
assume that εn < C/2n3, where C < 1/(

∑∞
n=1 2/n2) (= 3/π2) is fixed.

Let
A =

{
α ∈ T : (∀n ∈ N) | sin qnπα| ≤ εn

}
.

Then clearly 0 ∈ A, A = −A, A is closed and Λ ⊂ A. Thus, according to
Lemma 2.3, it is enough to find a closed set H ⊂ T with positive measure
having property (1). Denoting Z/mZ by Zm, we let

Bn =
⋃

j∈Zqn

S

(
j

qn
,
C

n2qn

)
(n ∈ N),

where S(x, r) denotes the open neighborhood of x with radius r. Let

B =

∞⋃
n=1

Bn and H = T \B.



Periodic Lp Functions with Lq Difference Functions 437

Then H is clearly closed. In addition,

|B| ≤
∞∑
n=1

|Bn| ≤
∞∑
n=1

qn2
C

n2qn
= C

∞∑
n=1

2/n2 < 1,

thus |H| > 0. Therefore we only need to prove (1).

We claim that if |qnβ| < ε, then

(2) Bn + β ⊃
⋃

j∈Zqn

S

(
j

qn
,
C

n2qn
− ε

qn

)
.

Indeed, since (on T) β = pn,β/qn + (qnβ)/qn (for a proper pn,β ∈ Zqn),

S

(
j

qn
,
C

n2qn
− ε

qn

)
⊂ S

(
j − pn,β
qn

,
C

n2qn

)
+ β.

For any α ∈ A we have |qkα| ≤ | sin(πqkα)| ≤ εk < C/2k3. Hence, if
α1, . . . , αk ∈ A, then |qk(α1 + . . . + αk)| ≤ kC/2k3 = C/2k2. Therefore, by
(2), for any β ∈ kA,

B + β ⊃ Bk + β ⊃
⋃

j∈Zqk

S

(
j

qk
,
C

k2qk
− (C/2k2)

qk

)
=

⋃
j∈Zqk

S

(
j

qk
,

C

2k2qk

)
.

Thus, for any β ∈ kA, H+β ⊂ T\
⋃
j∈Zqk

S
(
j
qk
, C
2k2qk

)
. Therefore H+kA ⊂

T \
⋃
j∈Zqk

S
(
j
qk
, C
2k2qk

)
; so

|H + kA| ≤ 1− qk2
C

2k2qk
= 1− C/k2.

Combining the previous theorem with the result of [7] mentioned in the
Introduction, we get the following.

Corollary 2.6. For any 0 < p < q <∞, pD ⊂ H(Lp, Lq) ⊂ Fσ.

3 Evidence for a Conjecture

Notation 3.1. A Borel set F ⊂ T is called a weak Dirichlet set (see e.g. in
[4] p. 48), if for every probability measure µ supported by F ,

lim sup
|n|→∞

|µ̂(n)| = 1, where µ̂(n) =

∫
T
e2πintdµ(t).
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Theorem 3.2. If H ⊂ T is not an N -set, f : T→ R is a measurable function,
and ∆hf ∈ L∞ for any h ∈ H, then f ∈ Lp for any p > 0.

Proof. Let Km =
{
h : |∆hf | ≤ m a. e.

}
(m ∈ N). Then clearly H ⊂

∪m∈NKm; so H 6∈ N implies ∪m∈NKm 6∈ N. It is easy to prove (see e.g.
[7], proof of Proposition 4.2) that Km is closed. Thus (Km) is an increasing
sequence of compact sets.

It is known (see e.g. in [5] p. 190) that for each increasing sequence (Km)
of compact weak Dirichlet sets, ∪m∈NKm ∈ N. Therefore, in our case, there
exists an m ∈ N such that Km is not a weak Dirichlet set. Dividing f by m,
we can assume that m = 1. Then, denoting K1 by K, we have

K =
{
h : |∆hf | ≤ 1 a. e.

}
and there exists a probability measure µ supported by K such that

lim sup
|n|→∞

|µ̂(n)| < 1.

Thus there exists an η > 0 such that Re µ̂(n) ≤ 1− η for every n ∈ Z with at
most finitely many exceptions. If, for any n 6= 0, Re µ̂(n) = 1, then e2πint = 1
µ-a.e.; so for any k ∈ Z also e2πinkt = 1 µ-a.e., which is impossible, since
lim sup|n|→∞ |µ̂(n)| < 1. Therefore we can assume, with a suitable η > 0, that

Re µ̂(n) ≤ 1− η (∀n ∈ Z \ {0}).

It is proved in [9] that if there exists a probability measure µ supported
on K such that Re µ̂(n) ≤ 1− η for every n ∈ Z \ {0}, then K is “essentially
ejective”, which means that for every x ∈ (0, 1],

ζK(x) ≥ ηx(1− x), where ζK(x) = inf
|A|=x

sup
h∈K
|(A+ h) \A|.

Therefore in our case ζK(x) ≥ ηx(1− x). Thus

(3) sup
h∈K
|(A+ h) \A| ≥ η |A| (1− |A|)

for any A ⊂ T with |A| > 0.
Now we define a sequence An0

, An0+1, . . . of subsets of T by induction.
Since f is measurable there exists an n0 ∈ N such that

An0 =
{
x ∈ T : |f(x)| < n0

}
has positive measure. Assume that An is already defined (n ≥ n0). By (3),
there exists a hn ∈ K such that

(4) |(An + hn) \An| ≥
η

2
|An| (1− |An|).
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Then let An+1 = An ∪ (An + hn). Let Cn =
{
x ∈ T : |f(x)| ≥ n

}
and cn =

|Cn| (n = 0, 1, . . .). By the definition of K, it is easy to see by induction that
|f(x)| < n for a. e. x ∈ An, which means that cn ≤ |T \ An| (n ≥ n0). Using
the notation bn = |T \An|, we use (4) to get

bn − bn+1 ≥
η

2
(1− bn)bn ≥

η

2
(1− bn0)bn (n ≥ n0).

Thus

bn+1 ≤ bn
(

1− η

2
(1− bn0

)
)

(n ≥ n0).

Therefore, denoting 1− η
2 (1− bn0

) by λ, we have

bn ≤ bn0
λn−n0 (n ≥ n0).

Since η > 0 and 1− bn0 = |An0 | > 0 we have λ < 1. Let p > 0. Then

∫
T
|f |p =

∞∑
n=1

∫
Cn−1\Cn

|f |p

≤
∞∑
n=1

(cn−1 − cn)np

=

∞∑
m=0

cm ((m+ 1)p −mp)

≤O(1) +

∞∑
m=n0

bm ((m+ 1)p −mp)

≤O(1) +

∞∑
m=n0

bn0λ
m−n0(m+ 1)p

<∞.

Remark 3.3. This proof is based on the “ejectivity” property of a compact
non-N -set (see [9]). On the other hand, the proof of Theorem 2.5 uses the
“non-ejectivity” of a pseudo-Dirichlet set: the argument of the proof of Theo-
rem 3.2 shows that the condition (1) of Lemma 2.3 cannot be satisfied if H is
ejective. Since a set is non-ejective if and only if its closure is an N -sets (see
[9] p. 162), this motivates the following conjecture.

Conjecture 3.4. For any 0 < p < q <∞, H(Lp, Lq) = N.
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[4] B. Host, J-F. Méla and F. Parreau, Non singular transformations and
spectral analysis of measures, Bull. Soc. Math. France, 119 (1991), 33–
90.

[5] S. Kahane, Antistable classes of thin sets in harmonic analysis, Illinois J.
Math. 37 (1993), 186–223.

[6] T. Keleti, Difference functions of periodic measurable func-
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