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UNIFORM CONTINUITY OF A PRODUCT
OF REAL FUNCTIONS

Abstract

We produce necessary and sufficient conditions for the pointwise
product of two uniformly continuous real-valued functions defined on
a metric space to be uniformly continuous.

1 Introduction

Let 〈X, d〉 be a metric space and let f, g be uniformly continuous real-valued
functions on X. The sum of f and g is again uniformly continuous, but their
(pointwise) product need not be, even if one of the functions is bounded [1].
While it is a standard exercise in advanced calculus texts to show that uniform
continuity of the product holds provided f and g are both bounded, conditions
that are necessary as well as sufficient seem elusive. It is the purpose of this
note to present such conditions. There are other related problems of interest,
e.g., determining conditions on a metric space that guarantee that the product
of each pair of real-valued uniformly continuous functions remains uniformly
conditions, on which some progress has been made [4, 6, 7].

As we shall see, our conditions prove sufficient without assuming anything
whatsoever about the factors. On the other hand, necessity holds for a class
of pairs ∆ that is much broader than the class of all pairs of functions that
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are both uniformly continuous. Seemingly, one must put some restriction on
the class of pairs of functions under consideration for uniform continuity of
their product, in that given any strictly positive function f no matter how
pathological it may be, f · 1f will be uniformly continuous.

Our distinguished class of function pairs ∆ is characterized by a uniform
joint oscillation condition. Let us write RX for the family of all real-valued
functions on X. For {f, g} ⊆ RX and δ > 0 put

λ(f, g, δ) := sup{|(f(x)− f(p))(g(x)− g(p))| : {x, p} ⊆ X and d(x, p) < δ}.

Notice that when δ1 < δ2 then λ(f, g, δ1) ≤ λ(f, g, δ2). We now define ∆ by

∆ := {(f, g) ∈ RX × RX : limn→∞ λ(f, g,
1

n
) = infn∈N λ(f, g,

1

n
) = 0}.

Evidently, ∆ contains all pairs (f, g) where both functions are uniformly
continuous. It also contains all (f, g) where one function is uniformly contin-
uous and the other function is bounded.

Example 1.1. As an example of (f, g) in ∆ where neither function is uniformly
continuous nor bounded, let X = {1, 32 , 2,

7
3 , 3,

13
4 , 4, . . .}, and let f ∈ RX and

g ∈ RX be defined by

f(x) =


n if x = n and n is even

2n if x = n+ 1
n+1 and n is even

0 otherwise

,

g(x) =


n if x = n and n is odd

2n if x = n+ 1
n+1 and n is odd

0 otherwise

.

This example shows that we can have (f, g) ∈ ∆ while for each n ∈ N,

sup {|f(x)− f(p)| : d(x, p) <
1

n
} = sup {|g(x)− g(p)| : d(x, p) <

1

n
} =∞,

because large local variability in one function is corrected by small local vari-
ability in the other.



Uniform Continuity of a Product of Real Functions 215

The reader might expect that we will produce a condition on a function
pair that combined with uniform continuity of each function yields uniform
continuity of the product. Instead, we introduce a continuity notion for a pair
(f, g) that is properly stronger than uniform continuity of their product, and
which for uniformly continuous factors, reduces to uniform continuity of their
product. We call this condition on a function pair emphatic uniform continuity
of the product.

Definition 1.2. Let f, g be real-valued functions on a metric space 〈X, d〉. We
say the pair (f, g) has an emphatically uniformly continuous product provided
∀ε > 0, ∃δ > 0 such that ∀x ∈ X, ∀p ∈ X, d(x, p) < δ implies

|1
2

(f(x)g(p) + f(p)g(x))− f(x)g(x)| < ε.

We deliberately avoid the usage ”strong uniform continuity” here, as this
language already has an established meaning in the literature (see, e.g., [2, 3]).

2 The Main Results

To be worthy of its name, emphatic uniform continuity of fg for a pair (f, g)
ought to force uniform continuity of fg, and it does. In fact, emphatic uniform
continuity is equivalent to uniform continuity of fg plus membership of (f, g)
to our distinguished family ∆.

Proposition 2.1. Let 〈X, d〉 be a metric space and let {f, g} ⊆ RX . Then
(f, g) has an emphatically uniformly continuous product if and only if fg is
uniformly continuous and (f, g) ∈ ∆

Proof. For necessity, let ε > 0 and choose δ > 0 such ∀x ∈ X,∀p ∈ X,
d(x, p) < δ ⇒ |12 (f(x)g(p) + f(p)g(x)) − f(x)g(x)| < ε

2 . By symmetry, it
is clear that also |f(p)g(p) − 1

2 (f(x)g(p) + f(p)g(x))| < ε
2 . Let us put α =

1
2 (f(x)g(p)+f(p)g(x))−f(x)g(x) and β = f(p)g(p)− 1

2 (f(x)g(p)+f(p)g(x)).
Then the inequality |α+ β| ≤ |α|+ |β| gives

sup{|f(p)g(p)− f(x)g(x)| : d(x, p) < δ} ≤ ε,

while the inequality |β − α| ≤ |β|+ |α| gives

sup{|(f(x)− f(p))(g(x)− g(p))| : d(x, p) < δ} ≤ ε.
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For sufficiency, let ε > 0, and choose n ∈ N so large that both

(1) d(x, p) < 1
n ⇒ |f(p)g(p)− f(x)g(x)| < ε, and

(2) λ(f, g, 1
n ) < ε.

We compute for d(x, p) < 1
n

|(f(x)g(p)+f(p)g(x))−2f(x)g(x)| = |f(x)(g(p)−g(x))+g(x)(f(p)−f(x))|

≤ |f(x)(g(p)−g(x))+g(p)(f(p)−f(x))|+|(g(x)−g(p))(f(p)−f(x))|

≤ |f(x)(g(p)− g(x)) + g(p)(f(p)− f(x))|+ λ(f, g, 1
n )

= |f(p)g(p)− f(x)g(x)|+ λ(f, g, 1
n ) < 2ε.

It now follows that | 12 (f(x)g(p) + f(p)g(x))− f(x)g(x)| < ε as required.

It is illustrative to present some examples showing how fg can be uniformly
continuous yet not emphatically uniformly continuous, equivalently (f, g) /∈ ∆.

Example 2.2. Let f and g be two functions defined on (0,∞) by f(x) = 1
x and

g(x) = x. To show emphatic uniform continuity fails, we show that for each
δ > 0, we can find x > 0 and p > 0 with d(x, p) < δ yet

|1
2

(f(x)g(p) + f(p)g(x))− f(x)g(x)| = |1
2

(
1

x
p+

1

p
x)− 1| > 1.

Take p = δ and x = p
5 ; we compute

1

x
p+

1

p
x =

p2 + x2

xp
>

p2

1
5p

2
= 5,

from which the desired estimate follows.

In the last example, one function is uniformly continuous and the other is
continuous and unbounded. In fact, it is not possible to have a counterexample
where one function is uniformly continuous and the other is bounded. In the
next example, we give a pair of continuous bounded functions whose product
is uniformly continuous but not emphatically uniformly continuous.

Example 2.3. Let X be the metric subspace of the line introduced in Example
1.1. Note that each real-valued function on X is continuous as X has no limit
points. Define f ∈ RX by



Uniform Continuity of a Product of Real Functions 217

f(x) =

{
1 if x = n for some n ∈ N
−1 if x = n+ 1

n+1 for some n ∈ N
,

and let g(x) = −f(x) for all x. As in the previous example, the product fg
is constant. For variety, we show that the uniform joint oscillation condition
fails. For each n ∈ N put xn = n and pn = n+ 1

n+1 . We compute

(f(xn)− f(pn))(g(pn)− g(xn)) = 4

while limn→∞d(xn, pn) = 0. This shows that (f, g) /∈ ∆.

We next state our main result which is an immediate consequence of Propo-
sition 2.1.

Theorem 2.4. Let 〈X, d〉 be a metric space and let (f, g) ∈ ∆. Then (f, g) has
an emphatically uniformly continuous product if and only if fg is uniformly
continuous.

Our main result produces these corollaries.

Corollary 2.5. Let 〈X, d〉 be a metric space and let f and g be uniformly
continuous real functions on X. Then (f, g) has an emphatically uniformly
continuous product if and only if fg is uniformly continuous.

Corollary 2.6. Let 〈X, d〉 be a metric space and let f ∈ RX be uniformly
continuous. Then f2 is uniformly continuous if and only if for each ε >
0,∃δ > 0 such that whenever d(x, p) < δ, we have |f(x)(f(p)− f(x))| < ε.

Proof. This follows from 1
2 (2f(x)f(p))− (f(x))2 = f(x)(f(p)− f(x)).

Corollary 2.7. Let 〈X, d〉 be a metric space and let f : X → R be uniformly
continuous and let g : X → R be bounded. Then (f, g) has an emphatically
uniformly continuous product if and only if fg is uniformly continuous.

Uniform continuity of real functions can be considered of course for real
functions defined on a topological space equipped with a diagonal uniformity
(see, e.g., [8]). The class ∆ and emphatic uniform continuity of a product are
defined in the obvious ways in this setting, and all of the results listed above
extend without difficulty. We also note that R can be replaced by the complex
field C and all of our terminology and arguments go through verbatim.

We close this note by reconciling the class ∆ with oscillation as it is tra-
ditionally understood [1, 5, 8]. Let Bd(x, α) denote the open ball with center
x ∈ X and radius α > 0. For each n ∈ N, f : X → R, and x ∈ X, put
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ωn(f, x) := diam f(Bd(x,
1
n )), where of course the diameter of the image is

taken with respect to the usual metric for R. Then the oscillation of f at x is
defined by the familiar formula

ω(f, x) := limn→∞ ωn(f, x) = infn∈N ωn(f, x).

Continuity of f at x ∈ X is equivalent to ω(f, x) = 0, whereas global uniform
continuity is equivalent to the uniform convergence of 〈ωn(f, ·)〉 to the zero
function. For arbitrary f, x 7→ ω(f, x) is an upper semicontinuous function
with values in [0,∞] (consider f(x) = 1

x if x 6= 0 and f(0) = 0).
We will be looking at products of the form ωn(f, x)ωn(g, x). Since one or

both of the factors may be ∞, we adopt the convention ∞ · 0 = 0 along with
the usual conventions for extended real arithmetic. Note that at least one of
the functions must be continuous at x provided limn→∞ωn(f, x)ωn(g, x) = 0.

A key tool in the proof of our final result is the following elementary in-
equality.

Lemma 2.8. Let α1, α2, α3, β1, β2, β3 be six real numbers, not necessarily dis-
tinct, such that

(♦) µ := |(α1 − α2)(β1 − β3)| > 0.

Then max{|(α1−α2)(β1−β2)|, |(α1−α3)(β1−β3)|, |(α2−α3)(β2−β3)|} > µ
3 .

Proof. Suppose that |(α1−α2)(β1− β2)| ≤ µ
3 and |(α1−α3)(β1− β3)| ≤ µ

3 .
It follows from ♦ that |β1 − β2| ≤ 1

3 |β1 − β3| and |α1 − α3| ≤ 1
3 |α1 − α2|. We

compute

|β2 − β3| ≥ ||β3 − β1| − |β1 − β2|| ≥
2

3
|β3 − β1|,

and

|α2 − α3| ≥ ||α2 − α1| − |α1 − α3|| ≥
2

3
|α1 − α2|.

It follows that

|(α2 − α3)(β2 − β3)| ≥ 4

9
µ >

1

3
µ,

and the proof is complete.
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Theorem 2.9. Let 〈X, d〉 be a metric space and let {f, g} ⊆ RX . Then
(f, g) ∈ ∆ if and only if limn→∞supx∈X ωn(f, x)ωn(g, x) = 0.

Proof. Whenever d(p, x) < 1
n , it is clear that

|(f(x)− f(p))(g(x)− g(p))| ≤ ωn(f, x)ωn(g, x)

so that a function pair satisfying the condition of the theorem must belong to
∆.

The converse is more complicated. Suppose limn→∞supx∈X ωn(f, x)ωn(g, x)
> ρ > 0. Then for each n ∈ N, we have supx∈X ω2n(f, x)ω2n(g, x) > ρ. From
this, we intend to show that for each n, λ(f, g, 1

n ) > ρ
12 .

Fix n ∈ N; ∃p ∈ X such that ω2n(f, p)ω2n(g, p) > ρ. By the definition of
oscillation, we can find {w, x, y, z} ⊆ Bd(p, 1

2n ) (not necessarily distinct) such
that |(f(w)− f(x))(g(y)− g(z))| > ρ. By the triangle inequality,

(|f(w)− f(p)|+ |f(p)− f(x)|)(|g(y)− g(p)|+ |g(p)− g(z)|) > ρ,

so when we distribute out the product, one of the four terms we obtain -
without loss of generality the first term |(f(w) − f(p))(g(y) − g(p))| - must
exceed ρ

4 . The last lemma guarantees that max{|(f(w)− f(p))(g(w)− g(p))|,
|(f(w)− f(y))(g(w)− g(y))|, |(f(y)− f(p))(g(y)− g(p))|} > ρ

12 .
Since all three points lie in a common ball of radius 1

2n , we conclude

max{d(w, p), d(w, y), d(y, p)} < 1

n
,

so that λ(f, g, 1
n ) > ρ

12 . Since n ∈ N is arbitrary, we conclude (f, g) /∈ ∆.

By our final result, whenever (f, g) ∈ ∆, then at each x ∈ X, either f or
g is continuous at x. However, as shown by Example 2.2, global continuity of
both f and g does not guarantee membership of (f, g) to ∆.
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