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LEAST SQUARES AND APPROXIMATE
DIFFERENTIATION

Abstract

The least squares derivative and the approximate derivative are both
generalizations of the ordinary derivative. The existence of either of
these generalized derivatives does not guarantee the existence of the
other and it is even possible for both generalized derivatives to exist at
a point but have different values. Several examples of such functions are
presented in this paper. In addition, conditions for which the existence
of the approximate derivative implies the existence (and equality) of the
least squares derivative are stated and proved. These conditions involve
the notion of Hölder continuity and a stronger version of approximate
differentiability.

The least squares derivative, a relatively recent concept that will be fully
defined in a moment, is a generalization of the ordinary derivative. This means
that every function with an ordinary derivative at a point has a least squares
derivative at that point and the values are the same and, in addition, there
are functions that have a least squares derivative at a point but do not have
an ordinary derivative at that point. In this same sense, the approximate
derivative is also a generalization of the ordinary derivative. Since these two
generalizations are radically different, there appears to be little hope for any
relationship between them. However, it turns out that some positive comments
can be made on this subject. In this paper, we explore a few connections
between the least squares derivative and the approximate derivative as well as
present some examples to illustrate these two derivatives.

Although it is possible to develop the ideas presented here in a more general
context, we restrict ourselves to continuous functions. The interested reader
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may wish to consider the modifications that are needed when this restriction is
removed. However, in what follows, we consider a function f that is continuous
on a neighborhood of a point c.

We begin with a definition of the least squares derivative. This derivative is
motivated by taking a number of points on a curve and using linear regression
to find the slope of the least squares line of best fit for these points. By taking
a limit of this slope as all the points move toward a given fixed point, we obtain
(assuming a limit exists) a method for determining the slope of the curve at the
given point. The reader interested in the full details of this process can consult
[1] or [2]. The result is a somewhat intriguing definition of a derivative that
involves an integral. For the record, the two integral expressions that appear
in the following definition are equivalent via a simple change of variables.

Definition 1. Suppose that f is a continuous function defined on a neighbor-
hood of a point c. The least squares derivative of f at c, denoted by f ′`(c), is
given by

f ′`(c) = lim
h→0+

3

2h3

∫ h

−h
t f(c+ t) dt or f ′`(c) = lim

h→0+

3

2h

∫ 1

−1
t f(c+ ht) dt,

provided that the limit exists.

It is easy to verify that the least squares derivative satisfies the usual prop-
erty of linearity. This version of a derivative has its roots in a textbook written
by Lanczos [6]. Lanczos was interested in estimating derivatives of functions
represented only as a table of values; such representations often occur as nu-
merical data obtained from experiments. For practical reasons, he considered
the case in which there were only a small number of data points, simply men-
tioning as an aside that an integral appears if the number of data points
increases indefinitely, thus resulting in a somewhat ironic “differentiation by
integration” process. Several authors (see [1], [4], and [5]) have recently done
some work with this derivative, primarily with a focus on numerical analysis
and statistics. For a study of the least squares derivative from the point of
view of analysis, see [2].

For the reader interested in seeing how this derivative works, two helpful
functions to consider are (i) the function f defined by f(x) = xn, where n is
a positive integer, and (ii) the function f defined by f(x) = ax for x ≤ 0 and
f(x) = bx for x > 0, where a and b are distinct real numbers. For the first
function, any point c will do; the second function has interesting behavior at
0. In general, it is not difficult to prove that the least squares derivative exists
(and has the same value) whenever the symmetric derivative exists. The proof
(a simple application of L’Hôpital’s Rule and the Fundamental Theorem of
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Calculus) is left to the reader. Examples of functions that have a least squares
derivative but not a symmetric derivative are not too difficult to construct; an
example presenting a class of such functions will be presented shortly.

As an aside (and with thanks to one of the referees), we make an obser-
vation that links the least squares derivative and the symmetric derivative.
With f and c as above, for some sufficiently small δ > 0, define functions F
and G on [0, δ] by

F (x) =

∫ x

−x
t f(c+ t) dt and G(x) =

2

3
x3.

For each h ∈ (0, δ), the Cauchy Mean Value Theorem guarantees the existence
of a point vh ∈ (0, h) such that

F (h)− F (0)

G(h)−G(0)
=
F ′(vh)

G′(vh)
.

Performing the elementary computations yields

3

2h3

∫ h

−h
t f(c+ t) dt =

f(c+ vh)− f(c− vh)

2vh
.

In particular, letting wn be the point corresponding to h = 1/n, we find that

f ′`(c) = lim
n→∞

f(c+ wn)− f(c− wn)

2wn
,

assuming that f has a least squares derivative at c. It may prove interesting
to examine the size and properties of the set {vh : 0 < h < δ} as well as to
consider what properties of the symmetric derivative (see [7] and some of its
references) carry over to the least squares derivative.

We next present a brief review of the approximate derivative. Let E be a
measurable set and let c be a real number. The density of E at c is defined
by (using µ(E) to denote the measure of E)

dcE = lim
h→0+

µ(E ∩ (c− h, c+ h))

2h
,

provided the limit exists. It is clear that 0 ≤ dcE ≤ 1 when it exists. The
point c is a point of density of E if dcE = 1 and a point of dispersion of E
if dcE = 0. Some simple properties of this concept include the following (the
set E is assumed to be measurable and CE is its complement).
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1. A point c is a point of density of E if and only if c is a point of dispersion
of CE.

2. Almost all the points of E are points of density of E.

3. If c is a point of dispersion of both E andH, then c is a point of dispersion
of E ∪H.

4. If c is a point of density of both E and H, then c is a point of density of
E ∩H.

5. If c is a point of density of E and µ(H) = 0, then c is a point of density
of E \H.

Using this concept, we can define the approximate derivative of a function.
(The assumption that f be continuous is not required for this definition.)

Definition 2. Suppose that f is a continuous function defined on a neighbor-
hood of a point c. The function f is approximately differentiable at c if there
exists a measurable set E such that 0 is a point of density of E and the limit

lim
x→0
x∈E

f(c+ x)− f(c)

x

exists. The approximate derivative of f at c will be denoted by f ′ap(c).

Property (4) of points of density indicates that the number f ′ap(c) is unique.
It is immediately obvious that the approximate derivative is a generalization
of the ordinary derivative. The basic idea is that the approximate derivative
ignores some of the difference quotients. In spite of this reduced number
of difference quotients, approximate derivatives share many of the properties
of ordinary derivatives. For instance, if a function f has an approximate
derivative on an interval I, then f ′ap is a Darboux Baire class one function on
I; the textbook [3] is one of several sources for proofs of these facts. A literature
search will reveal many other facts about the approximate derivative and some
of its generalizations.

It is easy to see that the existence of the least squares derivative does not
imply the existence of the approximate derivative; the absolute value function
at 0 is a simple example. There are also functions that have an approximate
derivative at a point but do not have a least squares derivative at that point.
Furthermore, even when both derivatives exist at a point, the values are not
necessarily equal. We turn to examples of these last two cases now.

Before presenting these examples, we make two computational observa-
tions, leaving their proofs to the reader. Verification of the first observation is
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related to the proof of the integral test for series, while the second observation
follows most easily from Simpson’s Rule (which gives the exact value of an
integral for quadratic functions) using n = 4.

A. If λ > 1, then lim
n→∞

nλ−1
∞∑
k=n

1

kλ
=

1

λ− 1
.

B. Let c be the midpoint of the interval [a, b] and let v be a real number.
Define a function f on [a, b] by setting f(a) = 0 = f(b) and f(c) = v,
then making f linear on the intervals [a, c] and [c, b]. To be specific, the
function f is defined by

f(x) = v
(

1− |x− c|
c− a

)
on the interval [a, b]. Then

∫ b

a

tf(t) dt =
v

4
(b2 − a2).

Example 3. There exist functions that are approximately differentiable but
not least squares differentiable at a given point and there are functions which
are differentiable in both senses but the values of the derivatives are unequal.

For each positive integer n, let

an =
1

n2
, bn =

1

n2
− 1

4n4
, and cn =

an + bn
2

.

It is easy to verify that an+1 < bn < an for all n. Let A be the set defined

by A =
∞⋃
k=1

(bk, ak) and let E = [−1, 1] \ A. We claim that 0 is a point of

dispersion of A and thus a point of density of E. To see this, take any h that
satisfies an+1 < h ≤ an and note that

µ
(
A ∩ (−h, h)

)
2h

≤
µ
(
A ∩ (−an, an)

)
2an+1

=
(n+ 1)2

2

∞∑
k=n

(ak − bk)

=
(n+ 1)2

8n3

(
n3
∞∑
k=n

1

k4

)
.

Since n goes to infinity as h → 0+, observation (A) tells us that the limit of
the last expression in the displayed equation is 0 · (1/3) = 0, as desired.
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Define a function f on [−1, 1] by setting f(x) = 0 for x ∈ E and letting
the graph of f on each of the intervals [bn, an] consist of a triangular spike
with peak at the ordered pair (cn, 16crn), where r is a fixed positive number.
A portion of the graph of f is shown (not to scale) in Figure 1.

an+1 bn cn an

16 crn

....................................................................................................................................................................................................................
................
................
................
................
................
................
................
................
................
................
................
.................................................................................................................................................................................................................................................................

y = f(x)

Figure 1: A portion of the graph of f .
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Since 0 is a point of density of E, it is clear that f ′ap(0) = 0, regardless of the
value of r. For the record, note that f is not differentiable at 0 (and also not
symmetrically differentiable at 0) for any r that satisfies 0 < r ≤ 1.

To compute the least squares derivative of f at 0, we need to examine the
limit

lim
h→0+

3

2h3

∫ h

−h
t f(0 + t) dt = lim

h→0+

3

2h3

∫ h

0

t f(t) dt.

For an+1 < h ≤ an, over and under estimates show that

3

2h3

∫ h

0

tf(t) dt ≤ 3

2a3n+1

∞∑
k=n

∫ ak

bk

tf(t) dt =
3a3n

2a3n+1

( 1

a3n

∞∑
k=n

∫ ak

bk

tf(t) dt
)

;

3

2h3

∫ h

0

tf(t) dt ≥ 3

2a3n

∞∑
k=n+1

∫ ak

bk

tf(t) dt =
3a3n+1

2a3n

( 1

a3n+1

∞∑
k=n+1

∫ ak

bk

tf(t) dt
)
.

Since the ratio an/an+1 converges to 1 as n goes to infinity, the problem
reduces to evaluating

lim
n→∞

3

2a3n

∞∑
k=n

∫ ak

bk

tf(t) dt.

By observation (B), we find that
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3

2a3n

∞∑
k=n

∫ ak

bk

tf(t) dt =
3

2
n6
∞∑
k=n

16 crk
4

(a2k − b2k)

= 6n6
∞∑
k=n

crk(ak + bk)(ak − bk)

= 3n6
∞∑
k=n

cr+1
k

k4
.

From the definition of ck, we know that

ck =
1

k2
− 1

8k4
=

1

k2

(
1− 1

8k2

)
.

Since the graph of y = (1 + x)1+r is concave up on the interval [−1, 1], the
graph lies above its tangent lines. In particular, using the tangent line at the
point (0, 1),

(1 + x)1+r ≥ 1 + (1 + r)x

for all x ∈ [−1, 1]. It follows that( 1

k2

)1+r(
1− 1 + r

8k2

)
≤ c1+rk <

( 1

k2

)1+r
for each positive integer k and hence

3n6
∞∑
k=n

( 1

k6+2r
− 1 + r

8k8+2r

)
≤ 3n6

∞∑
k=n

cr+1
k

k4
≤ 3n6

∞∑
k=n

1

k6+2r
.

Noting that

3n6
∞∑
k=n

1 + r

8k8+2r
≤ 3(1 + r)

8n

(
n7
∞∑
k=n

1

k8

)
,

which goes to 0 as n goes to infinity (observation (A)), we see that

f ′`(0) = lim
n→∞

3n6
∞∑
k=n

1

k6+2r
= lim
n→∞

3n1−2r
(
n5+2r

∞∑
k=n

1

k6+2r

)
.

Appealing to observation (A) again, the term in parentheses has a nonzero
limit (namely, (5 + 2r)−1) as n goes to infinity. Therefore,

f ′`(0) =


0, if r > 1/2;

1/2, if r = 1/2;

does not exist, if 0 < r < 1/2.
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In other words, it is possible for the least squares derivative to fail to exist
even when the approximate derivative exists (which is not a real surprise) and,
more interestingly, it is possible for both derivatives to exist but have different
values (the r = 1/2 case).

Functions such as the absolute value function and those presented in Ex-
ample 3 indicate that, in general, there is no relationship between the least
squares derivative and the approximate derivative. However, we next present
a result that gives conditions for the existence of the approximate derivative
to imply the existence (and equality) of the least squares derivative. To do so,
we need to introduce two concepts, one familiar and one not so familiar.

Definition 4. Suppose that f is defined on a neighborhood of a point c and
let α be a nonnegative number. The function f is α-Hölder continuous at c if
there exists a constant M such that |f(c + x) − f(c)| ≤ M |x|α for all values
of x in some neighborhood of 0.

If f is α-Hölder continuous at c for any α > 0, then f is continuous
at c, while f is merely bounded in a neighborhood of c when f is 0-Hölder
continuous at c. If f is 1-Hölder continuous at c, then f has bounded difference
quotients at c. If f is α-Hölder continuous at c for some α > 1, then f is
differentiable at c with f ′(c) = 0. When 0 ≤ α < β, it is easy to see that
f is α-Hölder continuous at c if f is β-Hölder continuous at c. A simple
collection of functions that illustrate the full range of α-Hölder continuity at
0 are functions of the form f(x) = xα sin(π/x) for x 6= 0 and f(0) = 0. (For
the record, a function that is continuous at zero and satisfies f(1/nn) = 1/n
for each positive integer n is not α-Hölder continuous at 0 for any α > 0.)

Definition 5. Suppose that f is a continuous function defined on a neighbor-
hood of a point c and that f has an approximate derivative at c. Let β ≥ 1
be a real number. The function f has a β-thick approximate derivative at c if
there exists a measurable set E such that

f ′ap(c) = lim
x→0
x∈E

f(c+ x)− f(c)

x
and lim

h→0+

µ(CE ∩ (−h, h))

2hβ
= 0.

The usual approximate derivative corresponds to the case β = 1.

The essential idea behind this concept is that more difference quotients
are considered because the set E is “bigger” in some specific sense. In other
words, the measure of the set where the difference quotients are ill-behaved
must be smaller (when β > 1) than in the case of the approximate derivative.
A simple example of this concept is presented below; the interested reader can
create further examples.
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Example 6. There exist functions that do not have an ordinary derivative at
a point but do have a β-thick approximate derivative at that point for various
values of β.

Let λ > 2 be a fixed real number. For each positive integer n, let

an =
1

n
and bn =

1

n
− w

nλ
,

where w is chosen so that an+1 < bn < an for all n. (Note that any w that
satisfies 0 < w < 1/2 will do the job.) Let A be the set defined by

A =

∞⋃
k=1

(−ak,−bk) ∪
∞⋃
k=1

(bk, ak)

and let E = [−1, 1] \A (so that A = CE). For an+1 < h ≤ an, we find that

µ
(
A ∩ (−h, h)

)
2hβ

≤
µ
(
A ∩ (−an, an)

)
2aβn+1

= (n+ 1)β
∞∑
k=n

(ak − bk)

=
w(n+ 1)β

nλ−1

(
nλ−1

∞∑
k=n

1

kλ

)
.

By observation (A), the limit as n goes to infinity (which occurs as h → 0+)
of the last expression is 0 for any β that satisfies the inequality 1 ≤ β < λ− 1.
Suppose that f is defined on [−1, 1] by setting f(x) = 0 for x ∈ E and letting
the graph of f on the intervals [bn, an] and [−an,−bn] consist of triangular
spikes in such a way that f is continuous at 0 but not differentiable at 0.
Then the function f has a β-thick approximate derivative at the point 0 for
each 1 ≤ β < λ − 1, but f does not have an ordinary derivative at 0. For
the record, if bn = (1/n)− (w/2n), then it is possible to construct a function
f such that f has a β-thick approximate derivative at 0 for any β ≥ 1 even
though f does not have an ordinary derivative at 0.

With these two concepts at our disposal, we can state and prove conditions
for which the existence of the approximate derivative implies the existence of
the least squares derivative. These same conditions also imply that the two
derivatives are equal.
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Theorem 7. Let f be a continuous function defined on a neighborhood of a
point c. Suppose that f is α-Hölder continuous at c and that f has a β-thick
approximate derivative at c. If α+β ≥ 2, then f is least squares differentiable
at c and f ′`(c) = f ′ap(c).

Proof. Since f is α-Hölder continuous at c, there exists M > 0 so that

|f(c+ x)− f(c)| ≤M |x|α

for all values of x in a neighborhood of 0. Since f has a β-thick approximate
derivative at c, there exists a measurable set E such that

f ′ap(c) = lim
x→0
x∈E

f(c+ x)− f(c)

x
and lim

h→0+

µ(CE ∩ (−h, h))

2hβ
= 0.

For ease of writing, let Eh = E ∩ (−h, h) and Ah = (−h, h)\E for each h > 0,
and let v = f ′ap(c). Since f has an approximate derivative at c, there exists a
function ε such that

lim
x→0
x∈E

ε(x) = 0 and f(c+ x) = f(c) + vx+ ε(x)x

for all x ∈ E. In order to show that

lim
h→0+

3

2h3

∫ h

−h
t f(c+ t) dt = v,

we begin by noting that

3

2h3

∫ h

−h
t f(c+ t) dt =

3

2h3

∫ h

−h
t
(
f(c+ t)− f(c)

)
dt

=
3

2h3

∫
Eh

t
(
f(c+ t)− f(c)

)
dt+

3

2h3

∫
Ah

t
(
f(c+ t)− f(c)

)
dt

=
3

2h3

∫
Eh

vt2 dt+
3

2h3

∫
Eh

ε(t) t2 dt+
3

2h3

∫
Ah

t
(
f(c+ t)− f(c)

)
dt.

Referring to the last line of the previous displayed equation, we will show that
the limit of the first integral expression is v and that the limits of the other
two are 0.

For the first integral expression, we note that

3

2h3

∫
Eh

vt2 dt =
3

2h3

∫ h

−h
vt2 dt− 3

2h3

∫
Ah

vt2 dt = v − 3

2h3

∫
Ah

vt2 dt,
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where ∣∣∣ 3

2h3

∫
Ah

vt2 dt
∣∣∣ ≤ 3|v| · µ(Ah)

2h
.

Since 0 is a point of density of E (recall that β ≥ 1), the limit of µ(Ah)/h is
0 as h tends to 0, and it follows that

lim
h→0+

3

2h3

∫
Eh

vt2 dt = v.

Estimating the magnitude of the second integral expression reveals that

∣∣∣ 3

2h3

∫
Eh

ε(t) t2 dt
∣∣∣ ≤ 3

2h

∫
Eh

|ε(t)| dt ≤ 3Mε(h) · µ(Eh)

2h
≤ 3Mε(h),

where Mε(h) = sup{|ε(t)| : t ∈ Eh}. The properties of ε then imply that this
expression goes to 0 with h. It is the third integral expression that is the most
sensitive. We find that

∣∣∣ 3

2h3

∫
Ah

t
(
f(c+ t)− f(c)

)
dt
∣∣∣ ≤ 3

2h3

∫
Ah

|t|
∣∣f(c+ t)− f(c)

∣∣ dt
≤ 3

2h3

∫
Ah

M |t|1+α dt

≤ 3

2h3
M |h|1+αµ(Ah)

= 3M |h|α+β−2 · µ(Ah)

2hβ
.

Given the properties of the set CE (note that Ah = CE ∩ (−h, h)) and the
fact that α + β − 2 ≥ 0, we see that the third integral expression also goes
to 0 with h. Putting all the pieces together, we find that f is least squares
differentiable at c and f ′`(c) = v, that is, f ′`(c) = f ′ap(c).

To get a sense for this theorem, let’s consider the function f from Example
3 and adopt all of the notation from that example. First of all, it is easy to see
that f is r-Hölder continuous at 0. We claim that f has a β-thick approximate
derivative at 0 for any β that satisfies 1 ≤ β < 3/2. To verify this, take any h
that satisfies an+1 < h ≤ an and compute
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µ
(
A ∩ (−h, h)

)
2hβ

≤
µ
(
A ∩ (−an, an)

)
2aβn+1

=
(n+ 1)2β

2

∞∑
k=n

(ak − bk)

=
(n+ 1)2β

8n3

(
n3
∞∑
k=n

1

k4

)
.

Using observation (A), we see that

lim
h→0+

µ
(
A ∩ (−h, h)

)
2hβ

= 0

as long as 2β < 3. This establishes the claim. Theorem 7 then says that f is
least squares differentiable at 0 with f ′`(0) = f ′ap(0) as long as r > 1/2. The
case in which r = 1/2 shows that the inequality α + β ≥ 2 in Theorem 7 is
sharp.

After working with these two derivatives, it is tempting to try to define
a least squares approximate derivative that includes both the least squares
derivative and the approximate derivative. The fact that these two derivatives
can both exist but have different values makes such a definition impossible.
However, we close this paper by stating the following result that indicates how
to obtain approximate derivatives with integration. As the proof uses ideas
very similar to those in the proof of Theorem 7, it will be left for the interested
reader. Note also that the restriction to continuous functions can certainly be
weakened for results of this type.

Theorem 8. Suppose that f is a continuous function defined on a neighbor-
hood of a point c. If f has an approximate derivative at c, then there exists a
measurable set E such that 0 is a point of density of E and

f ′ap(c) = lim
h→0+

3

2h3

∫
Eh

t
(
f(c+ t)− f(c)

)
dt,

where Eh = E ∩ (−h, h).

As a final note, it is possible to construct a measurable set E having c as
a point of density and a continuous function f for which the limit given in the
conclusion of Theorem 8 exists, but f has neither a least squares derivative
nor an approximate derivative at c. One way to construct such a function is
to redefine the function f from Example 3 on the set E.
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