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Abstract

In this note we introduce three problems related to the topic of finite
Hausdorff moments. Generally speaking, given the first n+ 1 (n ∈ N ∪
{0}) moments, α0, α1,..., αn, of a real-valued continuously differentiable
function f defined on [0, 1], what can be said about the size of the image
of df

dx
? We make the questions more precise and we give answers in the

cases of three or fewer moments and in some cases for four moments. In
the general situation of n + 1 moments, we show that the range of the
derivative should contain the convex hull of a set of n numbers calculated
in terms of the Bernstein polynomials, xk(1 − x)n+1−k, k = 1, 2, ..., n,
which turn out to involve expressions just in terms of the given moments
αi, i = 0, 1, 2, ...n. In the end we make some conjectures about what
may be true in terms of the sharpness of the interval range mentioned
before.

1 Introduction

We are studying here a problem from real analysis which can be roughly stated
in the following way:

Given a continuously differentiable function whose first n moments
are prescribed, what can be said about the image of the derivative
of this function?
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One of the tools that we will use is the following classical so called first
mean value theorem for integrals (see Section 30.9 in [1]).

Theorem 1. Let h be a continuous function on [a, b] and g a non-negative
Riemann integrable function. Then there exists a value c ∈ (a, b) such that∫ b

a

h(x)g(x)dx = h(c)

∫ b

a

g(x)dx.

Moreover, if h(x) ≥ h(c) (or h(x) ≤ h(c)) for all x ∈ [a, b], then h(x) = h(c)
for every x point of continuity of g and g(x) > 0.

To introduce our hypothesis we let n ∈ N∪{0} and let f be a continuously
differentiable function which satisfies the following Hausdorff moment type
interpolation conditions:∫ 1

0

xkf(x)dx = αk, k = 0, 1, 2, ..., n, αk ∈ R. (1)

Let us observe that given arbitrary moments αk the system (1) leads to
a linear one if f is a polynomial function. The main matrix of the resulting
system is a Hilbert matrix. This type of matrix is well know (see [2], for
instance) and has a non-zero determinant.

Our investigation was motivated by a proposed problem in the College
Mathematics Journal ([8]) which requires one to show that if n = 2 and αk =
k + 1, there exist c1, c2 ∈ [0, 1] such that f ′(c1) = −24 and f ′(c2) = 60. It
turns out that this problem was inspired by a problem of C. Lupu (see [6])
which referred to only two moments, α0 = α1 = 1, and asked for a point
c where f ′(c) = 6. We wondered if these numbers were, in a certain sense
which will be defined next, sharp. We will show that this is indeed the case
in the next section (Theorem 2). Similar optimization questions, given the
first n Hausdorff moments on [0, 1] or [−1, 1], are customary subjects in the
literature (see [5], [7]) We are going to formulate the following very general
questions that are our main interest in this paper.

Problem 1. For a fixed n and αk as before, what is the largest range [A,B]
such that [A,B] ⊆ Range(f ′) for every f a continuously differentiable function
on [0, 1] satisfying (1)?

Problem 2. For a fixed n and αk as before, what is the biggest number L such
that for every f a continuously differentiable function on [0, 1] satisfying (1)
there exists some interval [a, b] with b−a = L that satisfies [a, b] ⊆ Range(f ′)?
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We observe that in order to prove that [A,B] is the answer for Problem 1,
it is necessary to show that [A,B] ⊆ Range(f ′) for every f a continuously
differentiable function on [0, 1] satisfying (1) and that for every ε > 0 there
exists fl and fr continuously differentiable functions on [0, 1] satisfying (1)
and

Range(f ′l ) ⊆ (A− ε,∞) and Range(f ′r) ⊆ (−∞, B + ε). (2)

It is clear that if A and B give the answer in Problem 1, then in trying to
answer Problem 2 we must have L ≥ B − A. If for every ε > 0, one can find
a function (fl = fr) that satisfies both conditions in (2), then the answer to
Problem 2 is simply L = B −A.

Another related problem here is to characterize the case L > B − A and
calculate L in this case in terms of the αk’s. Perhaps Problem 2 may be
easier if one restricts the class of functions in consideration to something more
manageable like polynomials of a certain degree.

If we want to make the range of the derivative as small as possible, we just
have to take moments that satisfy the necessary and sufficient condition for
having a solution to the system that results from having a linear function, say
f(x) = u+ vx, x ∈ [0, 1], satisfying (1):

u

k + 1
+

v

k + 2
= αk, k = 0, 1, 2, ....n.

This is equivalent to

rank
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1
n+2 αn

 = 2.

On the other hand, if we want to make the range of f ′ as big as possible, it
makes sense to restrict our moments to a finite range, say [−1, 1]. We observe
that the problem is homogeneous under dilations, so let us formulate a third
problem.

Problem 3. For a fixed n, what is the maximum of B−A such that [A,B] ⊆
Range(f ′) for every f a continuously differentiable function on [0, 1] satisfying
(1), the maximum being taken over all possible moments αk ∈ [−1, 1]?

We will show in Section 2 that the answer to Problem 3 is 156 if n = 2, for
the moments α0 = 1, α1 = −1 and α2 = 1. We observe that if the answer to
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Problem 2 is zero, then the answer to Problem 3 is also zero. As suggested by
one of the referees of our paper, one can ask similar questions about the range
of f ′′ or higher derivatives, assuming these exist. We will make some remarks
about these questions and see how the results for the first derivative could be
applied for higher derivatives.

2 Small values of n

We have a few complete answers to Problem 1 for small values of n (n ≤ 3).
First, let us study what happens with n = 0. If we take g(x) = 1 − x and
h = f ′ in Theorem 1, using integration by parts, we get

f ′(c1)
1

2
=

∫ 1

0

f ′(x)(1−x)dx = −f(0)−
∫ 1

0

f(x)(−1)dx = α0−f(0), c1 ∈ (0, 1),

or
f ′(c1) = 2(α0 − f(0)), c1 ∈ (0, 1).

If f(0) = a, then we can take f(x) = a + (2α0 − 2a)x and observe that in

case n = 0, there exists a function such that
∫ 1

0
f(x)dx = α0 and Range(f ′) =

{2α0 − 2f(0)}. This gives us the following simple answers to Problem 1 and
Problem 2.

Proposition 1. For n = 0, there is no A and B that satisfy the requirements
of Problem 1. The answer for Problem 2 (n = 0) is L = 0.

Let us continue the analysis in the case n = 1. We can apply Theorem 1
to g(x) = x(1 − x) and h = f ′, x ∈ [0, 1]. Then, a similar calculation gives
that for some c2 ∈ (0, 1),

f ′(c2)
1

6
= −

∫ 1

0

f(x)(1− 2x)dx = 2α1 − α0,⇒ f ′(c2) = 6(2α1 − α0).

If we apply Theorem 1 to h = f ′ and g(x) = (1− x)2 instead,

f ′(c3)
1

3
=

∫ 1

0

f ′(x)(1− x)2dx = −f(0)−
∫ 1

0

f(x)(2x− 2)dx

= 2(α0 − α1)− f(0), c3 ∈ (0, 1),

or
f ′(c3) = 6(α0 − α1)− 3f(0), for some c3 ∈ (0, 1).

So, if we take a = 2(2α0− 3α1) and f(x) = a+mx where m = 6(2α1−α0) =
6(α0 − α1) − 3a, we get a function which will give us what we need in this
case, and therefore provide a similar answers to our problems.
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Proposition 2. For n = 1, we can take A = B = 12α1 − 6α0 to satisfy the
requirements of Problem 1. The answer for Problem 2 (n = 1) is L = 0.

The case n = 2 is getting a little more interesting; it is essentially non-
trivial and at the same time pretty surprising. We have a definite answer to
Problem 1 and Problem 3 and we show some inequality for L in Problem 2.

Theorem 2. For n = 2, if ∆0 := 6α2 − 6α1 + α0 > 0, the values

A := 12(4α1 − α0 − 3α2) and B := 12(3α2 − 2α1)

satisfy the requirements of Problem 1 and if ∆0 < 0 then one needs to switch
the values of A and B above in order to solve Problem 1. If ∆0 = 0, the values
A = B = 12(3α2 − 2α1) answer Problem 1 and L = 0 answers Problem 2.

Proof. First, let us show that A and B are always in the range of the deriva-
tive. This is done as we have seen before by setting in the Theorem 1, h = f ′,

and g(x) = x(1− x)2 ≥ 0 (x ∈ [0, 1]). Indeed, we have
∫ 1

0
g(x)dx = 1

12 and

∫ 1

0

f ′(x)g(x)dx = f(x)g(x)|10 −
∫ 1

0

f(x)(1− 4x+ 3x2)dx = 4α1 − α0 − 3α2.

Hence, for some c4 we must have f ′(c4)
∫ 1

0
g(x)dx = 4α1−α0− 3α2 which

in turn gives f ′(c4) = 12(4α1−α0−3α2) = A. Similarly, for g(x) = x2(1−x),

(x ∈ [0, 1]), one finds that
∫ 1

0
g(x)dx = 1

12 still holds true and∫ 1

0

f ′(x)g(x)dx =

∫ 1

0

f(x)(2x− 3x2)dx = 3α2 − 2α1.

This insures that B = 12(3α2 − 2α1) is also in the range of f ′. Because f ′

is assumed to be continuous we get that the whole interval [A,B] or [B,A] is
contained in the range of f ′.

From here on, we are going to work under the first assumption (∆0 > 0)
which is equivalent to A < B (B − A = 12∆0). To show that A and B
are sharp bounds we begin with B by constructing a spline function st for
t ∈ (0, 1), defined by

st(x) =


a+ bx+ cx2 for x ∈ [0, t]

m+ nx if x ∈ [t, 1],
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Figure 1: Case n = 2 and αk = k + 1

where a, b, c, m and n are determined by the conditions
∫ 1

0
st(x)dx = α0,∫ 1

0
xst(x)dx = α1,

∫ 1

0
x2st(x)dx = α2 and the restrictions necessary to insure

that st is continuously differentiable at x = t.

In order to add an intuition element we included here the graphs of s1/10
and its derivative for α0 = 1, α1 = 1 and α2 = 2.

It is easy to see that st is continuously differentiable at x = t if and only if
m = a− ct2 and n = b+ 2ct. This gives the new expression of st just in terms
of a, b and c:

st(x) =


a+ bx+ cx2 for x ∈ [0, t]

(a− ct2) + (b+ 2ct)x if x ∈ [t, 1].

(3)

One can check that the moment restrictions reduce to the following 3 × 3
relatively simple linear system of equations in a, b and c:
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a+
b

2
+

(
t3

3
− t2 + t

)
c = α0

a

2
+
b

3
+

(
t4

12
+

2t

3
− t2

2

)
c = α1

a

3
+
b

4
+

(
t5

30
+
t

2
− t2

3

)
c = α2.

(4)

It is clear that we have a unique solution for this system at least for infinitely
many values of t since the main determinant of the system is a polynomial in
t of degree at most 5. Let us observe that

d

dx
(st)(x) =


b+ 2cx for x ∈ [0, t]

b+ 2ct if x ∈ [t, 1].

(5)

We observe that if c > 0, the maximum of this function is b + 2ct. With a
little work one solves the system (4) and finds that

c =
30∆0

t3(6t2 − 15t+ 10)
,

b+ 2ct =
12(6t2α1 − 3t2α0 − 20α1 + 30α2 + 5tα0 − 15tα2)

6t2 − 15t+ 10
.

It is clear from these expressions that under our hypothesis c > 0 for every
t > 0 and that B = 12(3α2−2α1) = lim

t→0
(b+2ct) which proves that B is sharp.

In a similar way one can prove that A is sharp by taking a spline s̃t which is
first a linear piece on [0, t] and a quadratic piece on [t, 1]. It turns out that the
calculations are very much similar to the ones above with the only difference
that this time we let t approach 1.

However, we are going to show that the lower bound A is sharp by using
an invariance principle here by doing a “change of variable” so to speak and
considering how the Problem 1 changes from f to g where g(x) = f(1 − x),
x ∈ [0, 1]. Let us denote by αk(f) the kth moment for the function f . One
can see that

α0(g) = α0(f), α1(g) = α0(f)− α1(f) and α2(g) = α0(f)− 2α1(f) + α2(f),
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and of course, the relations are symmetric with respect to interchanging f and
g , i.e.

α0(f) = α0(g), α1(f) = α0(g)− α1(g) and α2(f) = α0(g)− 2α1(g) + α2(g).

Let us observe that the hypothesis that ∆0(f) > 0 is in fact invariant under
this change:

6α2(f)− 6α1(f) + α0(f) = 6α2(g)− 6α1(g) + α0(g) > 0.

By the first part of our proof, we see that

B(g) = 12(3α2(g)−2α1(g)) = 12[3(α0(f)−2α1(f)+α2(f))−2(α0(f)−α1(f)),

or

B(g) = 12(3α2(f)− 4α1(f) + α0(f),

is a sharp bound for the range of g′. Since g′(x) = −f ′(1− x) we see that the
range of g is just the range of f reflected into the origin and vice versa. Hence,
A(f) = −B(g) = 12[4α1(f) − 3α2(f) − α0(f)] is a sharp lower bound for f .
The rest of the statements of the theorem follow from what we have shown so
far. �

Corollary 1. In the case n = 2, in respect to Problem 2, we have

12|∆0| ≤ L ≤ 32|∆0|.

The maximum required in Problem 3 is 156.

Proof. The first part is a simple consequence of the fact B − A = 12∆0

and the last part follows from the fact that |∆0| = |6α2 − 6α1 + α0| ≤ 13 if
αi ∈ [−1, 1], i = 0, 1, 2. To show the inequality L ≤ 32|∆0| we employ the
same idea by constructing spline which is symmetric around 1/2:

ŝt(x) =



a+ bx+ c(x− 2tx− t2 + t− 1/4) for x ∈ [0, 12 − t]

a+ bx+ cx2 if x ∈ [ 12 − t,
1
2 + t]

a+ bx+ c(x+ 2tx− t2 − t− 1/4).

(6)
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This spline is continuously differentiable on [0, 1] and depends on three pa-
rameters which if determined from the constraints given by the moments we
get

c =
120∆0

t(15− 40t+ 48t2)
> 0, for all t ∈ [0, 1],

and which shows that the minimum and the maximum of the derivative of ŝt
is attained on the linear pieces. One can see that the difference between these
two values is actually 4ct and so letting t→ 0 we get that

L ≤ lim
t→0

4ct = 32|∆0|.

�

One can use the same techniques to show that for three moments, assuming
the second derivative exists, the range of the second derivative should contain
30δ0 and this is sharp because a polynomial of degree two exists solving the
moments problem.

The case n = 3 is even more interesting and a lot more complicated. First
of all we have at least three new possible values that we need to add to the
range of f ′:

C = 20(4α3−3α2), D = 60(3α2−2α3−α1), and E = 20(4α3−9α2+6α1−α0)
(7)

obtained from Bernstein polynomials, g1(x) = x3(1 − x), g2(x) = x2(1 − x)2

and g3(x) = x(1− x)3 respectively.

Proposition 3. Given A and B as defined in Theorem 2, we have the inclu-
sion

[min(A,B),max(A,B)] ⊂ [min(D,C,E),max(D,C,E)].

Proof. Let us observe that g1(x) + g2(x) = x2(1 − x) and g2(x) + g3(x) =
x(1 − x)2. Differentiating and integrating against f(x) we get the relations
1
30D + 1

20E = 1
12A or A = 2

5D + 3
5E and similarly B = 3

5C + 2
5D. These two

convex linear combinations are enough to conclude the desired statement. �

Of course, this proposition can be generalized to an arbitrary n. So we
expect that the interval that answers Problem 1 contains the convex hull of
the numbers constructed as usual, i.e.

Dk := −
∫ 1

0
f(x) d

dx (xk(1− x)n+1−k)dx∫ 1

0
xk(1− x)n+1−kdx

, k = 1, 2, ..., n, (8)
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given by the highest degree Bernstein basis polynomials possible.
We observe that if we define ∆1 := 10α3 − 12α2 + 3α1, then

C = E + 20∆0 and D = C − 20∆1.

Hence, we observe that if we have ∆0 > 0 and ∆1 < 0 for instance, then
D > C > E. Therefore, in light of Proposition 3, the candidates for the two
values needed to answer Problem 1 are Ã = E and B̃ = D under the given
assumption. In fact, for various other situations we believe that the values A
and B that answer Problem 1 are given for each case in the following table

No Hypothesis A B

(i) ∆0 ≥ 0,∆1 ≤ 0 20(4α3 − 9α2 + 6α1 − α0) 60(3α2 − 2α3 − α1)
(ii) 0 ≤ ∆0 ≤ ∆1 60(3α2 − 2α3 − α1) 20(4α3 − 3α2)
(iii) 0 ≤ ∆1 ≤ ∆0 20(4α3 − 9α2 + 6α1 − α0) 20(4α3 − 3α2)
(iv) ∆0 ≤ 0,∆1 ≥ 0 60(3α2 − 2α3 − α1) 20(4α3 − 9α2 + 6α1 − α0)
(v) ∆1 ≤ ∆0 ≤ 0 20(4α3 − 3α2) 60(3α2 − 2α3 − α1)
(vi) ∆0 ≤ ∆1 ≤ 0 20(4α3 − 3α2) 20(4α3 − 9α2 + 6α1 − α0)

where ∆0 = 72

∣∣∣∣∣∣
1 1

2
α0

1
2

1
3

α1
1
3

1
4

α2

∣∣∣∣∣∣ and ∆1 = 720

∣∣∣∣∣∣
1
2

1
3

α1
1
3

1
4

α2
1
4

1
5

α3

∣∣∣∣∣∣ .
We have the following partial result along these lines.

Theorem 3. For n = 3, the upper bound of (i) and the lower bound of (ii),
in the table above, are correct. If ∆0 = ∆1 = 0 then A = B = 20(4α3 − 3α2)
and L = 0 solves Problem 1 and Problem 2.

Proof. First of all let us observe that the cases (iv), (v) and (vi) follow
from (i), (ii) and (iii) respectively by simply changing f into −f . This simple
transformation changes basically the order of A and B. It is easy to see that
∆0 = ∆1 = 0 implies the existence of a linear map that has the given moments
and so A = B and L = 0. Hence in what follows we will assume that ∆0 6= 0
or ∆1 6= 0.

Based on the invariance principle that we used in the proof of Theorem 2 we
need to show the sharpness of only the upper bound in (i). Indeed we observe
that if g(x) = f(1 − x), x ∈ [0, 1] then one can check that the hypothesis
∆1(f) ≤ 0 changes into ∆0(g) ≤ ∆1(g). Also, the hypothesis 0 ≤ ∆1 ≤ ∆0, is
actually invariant under this change. One also needs to take into account that
the bound D is invariant under this transformation but C and E interchange:

D(f) = D(g), C(f) = E(g), and E(f) = C(g).
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So, let us begin with case (i) and show that B = 60(3α2 − 2α3 − α1) is
sharp. For every t ∈ (0, 1/2), consider a spline function s1,t which is quadratic
on [0, t], linear on [t, 1− t] and another quadratic on [1− t, 1]. The constraints
of having this spline a continuous and differentiable function give us a similar
form for s1,t to the one constructed in the proof of Theorem 2 in equality (3),
in terms of four free parameters a, b, c and d:

s1,t(x) =



a+ bx+ cx2 for x ∈ [0, t]

(a− ct2) + (b+ 2ct)x if x ∈ [t, 1− t]

d(1− t)2 + a− ct2 + [b+ 2ct− 2d(1− t)]x+ dx2 if x ∈ [1− t, 1].

The four parameters are then determined by imposing the four linear con-
straints given by the moments. The resulting system is



a+
b

2
+ (

t3

3
− t2 + t)c+

t3

3
d = α0

a

2
+
b

3
+

(
t4

12
+

2t

3
− t2

2

)
c+

(
t3

3
− t4

4

)
d = α1

a

3
+
b

4
+

(
t

2
− t2

3
+
t5

30

)
c+

(
t3

3
− t4

6
+
t5

30

)
d = α2

a

4
+
b

5
+

(
2t

5
− t2

4
+
t6

60

)
c+

(
t3

3
− t4

4
+
t5

10
− t6

60

)
d = α3.

(9)

As we have observed before, the system has a unique solution for infinitely
many values of t ∈ (0, 1/2), since the main determinant of the system is a
polynomial in t of degree at most 11. Because the derivative of s1,t is given
by

s′1,t(x) =



b(t) + 2c(t)x for x ∈ [0, t]

b(t) + 2c(t)t if x ∈ [t, 1− t]

b(t) + 2c(t)t− 2d(t)(1− t− x) if x ∈ [1− t, 1].
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One can use a symbolic calculator and check that

lim
t→0

b(t) + 2c(t)t = 60(3α2 − 2α3 − α1),

which is one necessary fact to prove the sharpness of B. Also, we need to check
that for most of the values of t, b(t) + 2c(t)t is a maximum of the derivative
of s1,t. For this end, it is enough to check that c(t) > 0 and d(t) < 0 for small
values of t. Again, one can compute limt→0 c(t)t

3 = ∆0 −∆1 > 0 under our
assumption in case (i) (unless both numbers ∆0, ∆1 are zero). Also, the limit
of d(t)t3 as t→ 0 turns out to be equal to 3∆1 ≤ 0. If ∆1 = 0 we know that
∆0 > 0. In this case we have limt→0 d(t)t2 = − 9

4∆0 < 0.
Using the duality via g(x) = f(1−x), we see that A = 60(3α2− 2α3−α1)

is a sharp lower bound in the case (ii). �

In the case n = 3, assuming the table before Theorem 3 is correct, with
respect to Problem 2, we have either L ≥ 20|∆0|, L ≥ 20|∆1|, or L ≥ 20|∆0−
∆1|, depending upon the hypothesis in which the moments fall into as classified
in Theorem 3. The maximum required in Problem 3 is 760 which is attained
for α0 = 1, α1 = −1, α2 = 1, and α3 = −1. We wonder if alternating the signs
of the moments and setting them αk = (−1)k will always give the maximum
in Problem 3.

For higher derivatives we can show that U := 120(3α1− 12α2 + 10α3) and
V := 120(α0 − 9α1 + 18α2 − 10α3) are in the range of the second derivative.
It does not seem to follow from our Theorem 2 applied to f ′ that these values
are sharp, although the same idea of using a spline formed by a a cubic and a
quadratic may work.

3 Higher values of n

We have noted the following statement after the proof of Proposition 3.

Theorem 4. Given a continuously differentiable function satisfying the Haus-
dorff moments constraints (1) (n ≥ 2), then the range of the derivative con-
tains the interval [An, Bn], where An = min{Dk|k = 1, 2, ..., n} and Bn =
max{Dk|k = 1, 2, ..., n}, with Dk given by (8). Moreover, for all n ≥ 2
[An, Bn] ⊂ [An+1, Bn+1].

Proof. The first part follows with the same technique we have employed over
and over here using Theorem 1. For the second part we are observing that the
integrals which appear in the denominators of (8), are actually the well known

values of the beta function, i.e. B(k + 1, n + 2 − k) =
∫ 1

0
xk(1 − x)n+1−kdx.

Using the established formula for B( , ), we see that
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B(k+ 1, n+ 2− k) =
Γ(k + 1)Γ(n+ 2− k)

Γ(n+ 3)
=
k!(n+ 1− k)!

(n+ 2)!
=

1

(n+ 2)
(
n+1
k

) .
This gives us a new expression of the Dk,n which is basically in terms of
the genuine Bernstein basis polynomials, i.e. bν,n =

(
n
ν

)
xν(1 − x)n−ν , ν =

0, 1, ..., n:

Dk,n := −(n+ 2)

∫ 1

0

f(x)
d

dx
(bk,n+1)dx, k = 1, 2, ..., n. (10)

It is easy to check that xk(1−x)n+1−k+xk+1(1−x)n−k = xk(1−x)n−k which
basically gives the convex combination formula

Dk,n =
n+ 2− k
n+ 3

Dk,n+1 +
k + 1

n+ 3
Dk+1,n+1, k = 1, 2, ..., n, n ≥ 1.

These expressions imply the second claim of the theorem. �

Let us observe that (11) implies the following form for Dk,n

Dk,n := (n+ 1)(n+ 2)

∫ 1

0

f(x)(bk,n − bk−1,n)dx, k = 1, 2, ..., n. (11)

which provides a simple way of computing D′ks in terms of the moments α0,
α1,..., αn. In what follows we will describe yet another way of doing these
computations, and for that purpose we generalize first the definitions of ∆0

and ∆1 in the following way

∆k =
(k + 1)(k + 2)2(k + 3)2(k + 4)

2

∣∣∣∣∣∣
1
k+1

1
k+2 αk

1
k+2

1
k+3 αk+1

1
k+3

1
k+4 αk+2

∣∣∣∣∣∣ , k = 0, 1, 2, ....

or simply

∆k =
(k + 3)(k + 4)

2
αk+2 − (k + 2)(k + 3)αk+1 +

(k + 1)(k + 2)

2
αk, k ≥ 0.

There are some relations between the D′ks and ∆′ks in general which we will
include in the next proposition.
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Proposition 4. For k ≥ 0 and n ≥ 2, we have in general

∆k =
Dk+2,k+2 −Dk+1,k+1

2(k + 3)
, k ≥ 0. (12)

Dn,n = 6(2α1 − α0) + 2

n−2∑
k=0

(k + 3)∆k. (13)

Moreover, with the definitions of An and Bn from Theorem 4, An = Bn if and
only if ∆i = 0 for all i = 0, 1, 2, ..., n − 2, if and only if there exists a linear
function with moments αk.

Proof. Let us observe that we can simply write

xk = xk+1 + xk(1− x) = xk+1 +
1

k + 1
bk,k+1 ⇒

kαk−1 = (k + 1)αk −
1

(k + 1)(k + 2)
Dk,k.

Using this last formula we can calculate the expression of ∆k:

c∆k =

∣∣∣∣∣∣∣
1
k+1

1
k+2

k+2
k+1αk+1 − Dk+1,k+1

(k+1)(k+2)(k+3)
1
k+2

1
k+3 αk+1

1
k+3

1
k+4

k+2
k+3αk+1 +

Dk+2,k+2

(k+3)2(k+4)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1
k+1

1
k+2 − Dk+1,k+1

(k+1)(k+2)(k+3)
1
k+2

1
k+3 0

1
k+3

1
k+4

Dk+2,k+2

(k+3)2(k+4)

∣∣∣∣∣∣∣ ,
where c = 2

(k+1)(k+2)2(k+3)2(k+4) . This last identity implies the formula (12).

For the second part of our statement we observe that ∆i = 0 for all i =
0, 1, 2, ...n− 2 if and only if there exists a linear function f with moments αk.
In this case the range of the derivative of f consists of only one point and
therefore by Theorem 4 we must have An = Bn. For the converse, again using
Theorem 4 we obtain that all Di,j , 1 ≤ i ≤ j, 1 ≤ j ≤ n, have identical values
and so by (12) we get ∆k = 0 for all k = 0, 1, ..., n− 2.

Finally, let us observe that the equalities in (12) provide a telescopic sum
for Dk,k which allows one to arrive at formula (13). �

The convexity relations can be used to calculate all the D′ks from the Dk,k

and so formulae (13) provide a way of computing all the D′ks in terms of
determinants ∆i.

For the case αk = k + 1, k = 0, 1, 2, ..., n, we calculate An and Bn in a
more precise way. This generalizes the problem in [?].
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Corollary 2. Let n ∈ N, n ≥ 2, be fixed and f be a continuously differentiable
satisfying (1) with αk = k + 1, k = 0, 1, 2, ..., n. Then, the values of An and
Bn as defined in Theorem 4 are

An = −n(n+ 1)(n+ 2), Bn = (n+ 1)(n+ 2)(2n+ 1).

Proof. Using the formula for ∆k we get

∆k =
(k + 3)2(k + 4)

2
− (k + 2)2(k + 3) +

(k + 1)2(k + 2)

2
= 3k + 7, k ≥ 0.

Then using formula (13) we obtain

Dn,n = 18 + 2

n−2∑
k=0

(k + 3)(3k + 7) = (n+ 1)(n+ 2)(2n+ 1).

Now we can use the convexity relations and compute Dn−1,n:

Dn−1,n =
1

2
((n+ 2)Dn−1,n−1 − nDn,n) = −n(n+ 1)(n+ 2).

Next, if one calculates Dn−2,n, some surprise appears:

Dn−2,n =
1

3
((n+ 2)Dn−2,n−1 − (n− 1)Dn−1,n) = 0.

Because of the convexity relation, it is easy to see that all the other Dk,n,
k ≤ n − 2, are equal to zero. Therefore An = −n(n + 1)(n + 2) and Bn =
(n+ 1)(n+ 2)(2n+ 1). �

Putting together what we did so far we now can say that for αk = k + 1,
the bounds above are sharp if n = 2 and the lower bound is sharp if n = 3.

Theorem 5. For n ≥ 2 fixed, with the definition of An and Bn as in Theo-
rem 4, if An < Bn it is not possible to have L = Bn −An in Problem 2.

Proof. By way of contradiction let us assume that L = Bn − An. Hence,
we can find a sequence of functions fm, continuously differentiable, such that
Range(f ′m) ⊂ [An− 1

m , Bn+ 1
m ] and satisfying (1). Since f ′m can be considered

in L2([0, 1]) we can find a subsequence of f ′m, say f ′mk
, weakly convergent to

a function f ∈ L2([0, 1]). This implies that for every non-negative function
g ∈ L2([0, 1]),

(An −
1

m
)||g||1 ≤

∫ 1

0

f ′m(x)g(x)dx ≤ (Bn +
1

m
)||g||1,
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where ||h||1 =
∫ 1

0
h(x)dx, h ∈ L1([0, 1]). Passing to the limit as mk →∞, we

get

An||g||1 ≤
∫ 1

0

f(x)g(x)dx ≤ Bn||g||1, g ∈ L2([0, 1]), g ≥ 0.

This implies that An ≤ f(x) ≤ Bn for a.e. x ∈ [0, 1], by a standard measure
theory argument. Since Bn = Dk for some k = 1, 2, ..., n, and fm satisfy (1)
we can say that

Bn = −
∫ 1

0
fm(x) d

dx [xk(1− x)n+1−k]dx

||xk(1− x)n+1−k||1
=

∫ 1

0
f ′m(x)xk(1− x)n+1−kdx

||xk(1− x)n+1−k||1
.

Letting mk →∞ we obtain

Bn =

∫ 1

0
f(x)xk(1− x)n+1−kdx

||xk(1− x)n+1−k||1
.

Hence, re-writing this yields∫ 1

0

[Bn − f(x)]xk(1− x)n+1−kdx = 0,

which in turn implies, by what we have shown before about f , that f(x) = Bn
for a.e. x ∈ [0, 1]. Similarly, we arrive at the conclusion f(x) = An for
a.e. x ∈ [0, 1]. Since we assumed An < Bn we clearly get a contradiction.
Therefore, it remains that L > Bn −An. �

This last theorem says that Problem 1 and Problem 2 are completely dif-
ferent in nature. We must admit that we do not have a definite answer to
Problem 2, other than the trivial case L = 0, in any of the particular situa-
tions we have considered. We leave that to the interested reader.
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