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BOX DIMENSION OF THE GRAPH OF THE
LIMIT OF A SEQUENCE OF HÖLDER

FUNCTIONS

Abstract

In this note a theorem to determine the box dimension of the graph
of the limit of a sequence of α-Hölder functions is established. By ap-
plication of such a theorem the box dimensions of the graphs of some
functions that are generalizations of Weierstrass-type functions are de-
termined.

1 Introduction and prerequisites

In this paper the box-dimension of the graph G of a real function f that is
the limit of a sequence of Hölder continuous functions is determined under
suitable hypotheses. Recall that the graph of a function f defined in the real
interval [a, b] is the set:

G = Gf = {(x, y) ∈ R2 : x ∈ [a, b], y = f(x)}.

In order to introduce the box-dimension of G recall that in general a 2−n−
mesh is a closed interval of Rk of the form:

{x ∈ Rk : hi2
−n ≤ xi ≤ (hi + 1)2−n, i = 1, 2, ..., k},

where hi are arbitrary integers. Let E ⊆ Rk; the number of 2−n-meshes
meeting E is denoted by N2−n(E). Consider the following indexes:

limn→∞
logN2−n(E)

log2n
.
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and

limn→∞
logN2−n(E)

log2n
.

They are called respectively the lower box dimension and the upper box
dimension of E; if they agree their common value is called box dimension of E
and is denoted by ∆(E) (see [7] and [11]). It is possible to consider δ−meshes
in place of 2−n −meshes, that is intervals of the form

{x ∈ Rk : hiδ ≤ xi ≤ (hi + 1)δ, i = 1, 2, ...k},

where hi are integers and (see [7]) it is obvious that:

∆(E) = limδ→0
logNδ(E)

−logδ
,

if the limit on the right exists. In general for the graph G of a continuous
function in an interval [a, b] it is:

dimB(G) ≥ 1;

recall that a function f defined in an interval [a, b] is α-Hölder continuous in
[a, b] (0 < α ≤ 1), if there exists a constant C > 0 such that for every x and
y ∈ [a, b] it is:

|f(x)− f(y)| ≤ C|x− y|α.

It is easy to see that if f is α-Hölder continuous in [a, b] then we have:

dimB(G) ≤ 2− α;

(see [7] and [8]).
As far as I know, besides the considerations that can be found in [13] or in
[6], no general treatment has been developed up to now for the determination
of the box-dimension (and Hausdorff dimension) of the graph of a continuous
function, but there are several partial results valid for particular classes of
functions, as one can find for example in [1], [2], [9], [10], [12] and [14].
In particular T. Bousch and Y. Heurteaux in [2] and Heurteaux in [9] and [10]
consider Weierstrass-type functions

f(x) =
∑
n∈N

b−nαg(bnx) (1)

where g is almost periodic in R, Lipschitz continuous and 1 < b < +∞. They
claim that if 0 < α < 1 then f is α–Hölder continuous and for every interval
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I it is ∆(G) = 2− α. Other considerations about Weierstrass- type functions
have been recently developed by S.P. Zhou and G. L. He in [14]. In [3], [4]
and [5] I try to study general properties of the functions that can be useful
in this framework. Moreover, the following definition can be introduced: an
α-Hölder continuous function f : [a, b]→ R is said to be uniformly essentially
α-Hölder continuous in [a, b] if there exists a positive number C > 0, such
that, for every interval I ⊆ [a, b], it is:

ω(f, I) ≥ C |I|α,

where, ω(f, I) is the oscillation of f in I and |I| denotes the length of I. If
f is uniformly essentially α−Hölder continuous in [a, b] or in a subinterval of
[a, b], then it is easy to see that the graph of f has the greatest upper box
dimension a graph of such a function can achieve, namely 2-α.
However if the upper box dimension of G is equal to 2 − α it may be that
in no subinterval of [a, b] f satisfies the previous condition, as is possible to
see with examples (see Example 3.1 of [3]). In [4] I show that some functions
that are generalizations of Weierstrass-type functions such as (1), where a
δ-Hölder continuous function g with exponent δ greater than α and less or
equal to 1 instead of a Lipschitz function appears are uniformly essentially
α−Hölder continuous in [0, 1] (Theorem 2.2 of [4]). The previous theorem
does not hold in the case that α = δ. In order to consider also this case, in
this paper a theorem about the upper box dimension of the graph of the limit
of a uniformly convergent sequence of functions that are uniformly essentially
Hölder continuous is given and it is immediately applied to determine the box
dimension of the graph of a Weierstrass generalized function like (1), where g
is Hölder continuous with an exponent equal to the limit value α (0 < α ≤ 1).

2 A theorem about the box dimension of the graph of
the limit of a sequence of Hölder functions

The following theorem yields a sufficient condition in order to determine the
box dimension of the graph of the limit of a uniformly convergent sequence of
Hölder continuous functions.

Theorem 2.1. Let, for every n ∈ N , fn : [0, 1]→ R be a continuous function,
let 0 < α ≤ 1 and let (αn)n∈N be a sequence such that 0 < αn ≤ 1, αn → α.
Let d ∈ N , d > 1, x = p

dr , r ∈ N , p = 1, 2, ..., dr − 1. Let (sn)n∈N , sn ∈ N , be
a sequence such that, for every r ∈ N , putting m = sn + r and h = 1

2dm , we
have, for enough large n ∈ N :

|fn(x+ h)− fn(x)|
hαn

> λ. (2)
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If there exists an increasing sequence (g(k))k∈N of natural numbers, such that
for enough large k and for every x ∈ [0, 1] it is:

|f(x)− fg(k)(x)| < 1

dk
(3)

and if

limk→∞
sg(k)

k
= 0 (4)

then, if G is the graph of f, it is:

dimB(G) ≥ 2− α.

Proof. By (3) for enough large k and for every x ∈ [0, 1] it is:

f(x)− 1

dk
< fg(k) < f(x) +

1

dk
.

Let δ > 0 and let k ∈ N be such that 2d−k ≤ δ < 2d1−k. If Gfg(k) denotes as
usual the graph of the function fg(k) then, since f(x)− δ < fg(k) < f(x) + δ,

it is: Nδ(G) + 2
δ ≥ Nδ(Gfg(k)). It follows:

limδ→0

logNδ(G)

−logδ
= limδ→0

log[Nδ(G) + 2
δ ]

−logδ
≥ limn→∞

logNδ(Gfg(k))

−logδ
. (5)

By (2) written with n = g(k) and r = k it is:

Nδ(Gfg(k)) ≥
λ

δ22αg(k)d(k+sg(k))αg(k)
≥ λδ−2+αg(k)

dαg(k)22αg(k)dsg(k)αg(k)
.

and therefore, for every δ > 0, since 2d−k ≤ δ < 2d1−k :

logNδ(Gfg(k))

−logδ
≥ 2− αg(k) +

log λ

d
αg(k)2

2αg(k)

−logδ
−

αg(k)sg(k)logd

(k − 1)logd− log2
.

By this inequality and (5) it follows:

limδ→0

logNδ(G)

−logδ
≥ 2− α− αlimk→∞

sg(k)logd

(k − 1)logd− log2
,

whence by (4), it is: limδ→0
logNδ(G)
−logδ ≥ 2 − α and the theorem is completely

proven.

Remark 2.2. It is possible to prove Theorem 2.1 even if (2) holds only for
r = ku, where u > 1 is a fractional number. Indeed in the previous proof,
given δ > 0 it is possible to choose k ∈ N such that 2d−ku ≤ δ < 2d(1−k)u.
Then we have that f(x)− δ < fg(ku) < f(x) + δ, whence, proceeding as before,
by (2), written with n = g(ku) and r = ku, the thesis follows.
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3 An application

It is possible to apply immediately Theorem 2.1 in order to determine the box
dimension of the graph of a Weierstrass generalized function like (1), where g
is Hölder continuous with exponent equal to the limit value α.

Theorem 3.1. Let ϕ : R→ R be an α-Hölder continuous function, (0 < α ≤
1), periodic with period 1, such that ϕ(0) = ϕ(1) = 0, 0 ≤ ϕ(x) ≤ ϕ(1/2) = 1
for every x ∈ R. Let

f(x) = Σn∈Nd
−nαϕ(dnx),

where d > 1 is a natural number. Then f is (α-ε)-Hölder continuous for every
ε ∈]0, α[ and ∆(G) = 2− α.

Proof. We first prove that f is (α-ε)-Hölder continuous for every ε > 0,
ε < α. Let x ∈ R and let ν ∈ N be such that 1

dν+1 ≤ h < 1
dν . Then

f(x+h)−f(x) = Σn=νn=1

ϕ(dnx+ dnh)− ϕ(dnx)

dnα
+Σn=∞n=ν+1

ϕ(dnx+ dnh)− ϕ(dnx)

dnα

whence:
|f(x+ h)− f(x)| ≤ I1 + I2,

where

I1 ≤ Σn=νn=1

c(dnh)α

dnα
= chαν,

c being the Hölder coefficient of ϕ. Since, for every ε > 0, hεν < ν
dνε is

infinitesimal for diverging ν, we have that there exists Mε > 0 such that
chεν < Mε and therefore

I1 ≤Mεh
α−ε;

since it is also:

I2 ≤ 2Σn=∞n=ν+1

1

dnα
≤ 2(hd)α

dα − 1
,

f is (α-ε)-Hölder continuous. Since ε > 0 is arbitrary, we have that dimB(G) ≤
2−α and the proof ends here for α = 1. In order to prove the converse relation
for 0 < α < 1, it is enough to prove that there exists a sequence of functions
uniformly convergent to f such that the conditions of Theorem 2.1 are satisfied.
To this end observe that it is possible to choose ε ∈]0, 1[ in such a way that
it is αε = 1

u , with a rational u > 1 and consider for every k ∈ N , such that
ku ∈ N, the function:

fk(x) =

n=ku−1∑
n=1

1

dnα
ϕ(dnx) +

∑
n≥ku

(
γk
dα

)nϕ(dnx), (6)
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where γk = 1+ak, (ak)k∈N being a decreasing infinitesimal sequence of positive
numbers less than 1 to be fixed in the sequel. For every k ∈ N fk is αk−Hölder
continuous, with αk = α− logdγk (see [4]). Obviously αk < α for every k ∈ N
and αk → α, increasingly. Moreover:

|f(x)− fk(x)| ≤ Σn≥ku
(1 + ak)n − 1

dnα
=

= Σn≥ku
ak
dnα

[(1 + ak)n−1 + (1 + ak)n−2 + ...+ 1] < akΣn≥kun(
1 + ak
dα

)n;

since ak is infinitesimal, there exists ν ∈ N such that, for every k ≥ ν it is
1 + ak ≤ 1 + aν < dα and therefore:

|f(x)− fk(x)| ≤ akΣn≥kun(
1 + aν
dα

)n.

Since the series on the right converges we have that (fk)k∈N converges uni-
formly to f . Moreover observe that:

|f(x)− fk(x)| < ak(
1

dαε
)ku

∑
n≥ku

n(
1 + aν
d(1−ε)α

)n;

then, if ν is such that 1 + aν < d(1−ε)α, then also the series on the right of
this inequality is convergent and infinitesimal when k diverges; therefore it is
possible to assume that for enough large k it is

∑
n≥ku n( 1+aν

d(1−ε)α
)n < 1. Then

we obtain for every x ∈ [0, 1] :

|f(x)− fk(x)| < 1

dk
. (7)

Since ϕ is periodic with period 1, if x = p
dr with p = 0, 1, 2, ..., dr − 1, then

ϕ(dnx) = 0 for n ≥ r. Let h = 1
2dm , where m = r+sk; then if d for example is

an odd number (the proof runs in as similar way if d is even), we have, putting
cnk = 1 if n < ku and cnk = (1 + ak)n if n ≥ ku :

fk(x) = Σn<r
ckn
dnα

ϕ(dnx),

fk(x+ h) =
∑
n>m

cnk
dnα

+
∑

r≤n≤m

cnk
dnα

ϕ(dn
1

2dm
) +

∑
n<r

cnk
dnα

ϕ(dnx+ dn
1

2dm
),

since dnx + dn 1
2dm = 2v+1

2 with v ∈ N for n > m, and therefore ϕ(dnx +
dn 1

2dm ) = 1 for such values of n, while, for r ≤ n ≤ m we have that dn 1
2dm
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differs from dnx+dn 1
2dm by an integer and therefore ϕ assumes the same value

in these points. Thus:
fk(x+ h)− fk(x) =∑

n<r

cnk
dnα

[ϕ(dnx+ dn
1

2dm
)− ϕ(dnx)] +

∑
n>m

cnk
dnα

+
∑

r≤n≤m

cnk
dnα

ϕ(
dn

2dm
)

that we write in the following form:

fk(x+ h)− fk(x) = I1 + I2 + I3. (8)

Now it is easily seen that, if r = ku then:

|I1| ≤ chα
∑
n<ku

cnk ≤ chα(ku− 1), (9)

where c is the Hölder coefficient of ϕ;

I2
hα
≥ 2α

dα − 1
. (10)

Finally, we have that:

I3 =
∑

ku≤n≤m

cnk
dnα

ϕ(
dn

2dm
) ≥ hαγku+skk . (11)

We have, by (8):

|fk(x+ h)− fk(x)|
hα

≥ I2 + I3 − |I1|
hα

,

so that, by (9), (10) and (11), for k ∈ N and r = ku it is:

|fk(x+ h)− fk(x)|
hα

≥ 2α

dα − 1
+ γku+skk − c(ku− 1);

therefore if γku+skk ≥ c(ku− 1), that is if

sk ≥
logc+ log(ku− 1)

log(1 + ak)
− ku

it is:
|fk(x+ h)− fk(x)|

hα
> λ, (12)
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where λ = 1
dα−1 > 0.

Let ak = log(ku−1)
ku for every k ∈ N ; and let

sk = 1− ku+ [
logc+ log(ku− 1)

log(1 + ak)
],

where [v] denotes the integer part of the real number v. Then:

limk→∞
sk
k

= 0. (13)

Consider now (7): it is for every x ∈ [0, 1]:

|f(x)− fk(x)| < 1

dk
.

Moreover, if x = 1
dku

, h = 1
2dku+sk

and u > 1 is a rational number, it is, by
(12):

|fk(x+ h)− fk(x)| > λ

2αd(ku+sk)α
.

Then, by (13), Theorem 2.1 and Remark 2.2 apply giving dimB(G) ≥ 2 − α.
Since the converse inequality holds the theorem is proven.

Remark 3.2. Observe that in particular by Theorem 3.1, if 0 < α ≤ 1 then
the graph of the function:

f(x) =
∑
n∈N

|sin(dnπx)|α

dnα

where d ∈ N , d > 1, has the greatest box dimension it can achieve, that is
2− α.

4 Extensions of previous results

In this Section some larger classes of functions will be considered and the box
dimension of the graphs of such functions will be determined. Namely consider
the function:

f(x) =
∑
n∈N

1

bδn
ϕ(bnx) (14)

where:
a) (bn)n∈N is a sequence of real numbers such that b1 = b > 1, bn+1 ≥ bbn for

every n ∈ N ; bn
bm
∈ N for every n ≥ m; limn→∞

logbn+1

logbn
= 1.

b) ϕ : R → R is an α-Hölder continuous function, (0 < α ≤ 1), periodic with
period 1, such that ϕ(0) = ϕ(1) = 0, 0 ≤ ϕ(x) ≤ ϕ( 1

2 ) = 1 for every x ∈ R.
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Theorem 4.1. The function (14) under the hypotheses a) and b) is, for every
δ ∈]0, α[, δ-Hölder continuous and dimB(G) = dimB(G) = 2− δ.

Proof. Let x ∈ R, h ∈]0, 1[ and let ν ∈ N be such that 1
bν+1

≤ h < 1
bν
. Let c

be the Hölder coefficient of ϕ. Then:

|f(x+ h)− f(x)| ≤ Σn≤ν
c(bnh)α

bδn
+ Σn>ν

2

bδn

≤ chδ bα−δ

bα−δ − 1
+ 2hδ

bδ

bδ − 1

whence f is δ-Hölder continuous and dimB(G) ≤ 2− δ.

Now it is possible to prove that it is also dimB(G) ≥ 2 − δ. Indeed let
x = p

bν
, p = 0, 1, ..., [bν ], and let h = 1

2bm
, with m = ν + s, s ∈ N. Then:

f(x+ h)− f(x) = Σn<ν
1

bδn
[ϕ(bnx+ bnh)− ϕ(bnx)]+

Σν≤n<m
1

bδn
[ϕ(bnx+ bnh)− ϕ(bnx)] + Σn≥m

1

bδn
[ϕ(bnx+ bnh)− ϕ(bnx)],

that we write in the form:

f(x+ h)− f(x) = I1 + I2 + I3. (15)

It is, by hypotheses a) and b):

|I1| ≤
chδ

2α−δb(m−ν)(α−δ)(bα−δ − 1)
, (16)

I2 = Σν≤n<m
ϕ(bnh)

bδn
≥ 0, (17)

I3 = Σn≥m
1

bδn
ϕ(bnh) ≥ 1

bδm
= 2δhδ. (18)

By (15), (16), (17) and (18) it follows:

|f(x+ h)− f(x)| ≥ I3 − |I1| ≥ hδ[2δ −
c

2α−δb(m−ν)(α−δ)(bα−δ − 1)
] ≥ hδ

if:
c

2α−δb(m−ν)(α−δ)(bα−δ − 1)
< 2δ − 1
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that is if:

m− ν > 1

α− δ
logb

c

2α−δ(2δ − 1)(bα−δ − 1)
.

Thus there exists s ∈ N , given by:

s = 1 + [
1

α− δ
logb

c

2α−δ(2δ − 1)(bα−δ − 1)
], (19)

such that:
|f(x+ h)− f(x)| ≥ hδ (20)

if x = p
bν
, p = 0, 1, ..., [bν ], and h = 1

2bm
, with m = ν + s.

By (20) it follows that dimB(G) ≥ 2− δ.

In order to prove that it is also dimB(G) ≥ 2 − δ, consider a cover of

G made of σ-meshes. By a) it is, for s given by (19), limν→∞
logbν+s
logbν

= 1.

Therefore if we fix ε > 0, for enough large ν it is: bν+s < b1+εν−1. Let σ be so
small that 2

bν
< σ ≤ 2

bν−1
where ν verifies previous inequalities and consider

(20) written with x = p
bν
, p = 0, 1, ..., [bν ], and h = 1

2bm
, where m = ν + s. It

is:

Nσ(G) ≥ σδ−2+εδ

23δ
,

and therefore:

limσ→0

logNσ(G)

−logσ
≥ 2− δ − δε;

by this inequality the thesis follows, since ε is arbitrary.

Remark 4.2. Theorem 4.1 proves a result given by Zhou and He in [14], in
the particular case that α = 1: the treatment of these authors is different from
the present one because they do not assume that bn

bm
∈ N for every m ∈ N and

for every n ≥ m as is done here, but their result holds only for enough large
b, while in the present approach nothing is required about b.

Theorem 4.3. The function f(x) = Σn∈N
1
bαn
ϕ(bnx) where ϕ satisfies condi-

tion b) and (bn)n∈N is a sequence of real numbers such that b1 = b > 1, bn+1 ≥
bbn for every n ∈ N, is (α-ε)-Hölder continuous for every ε ∈]0, 1[ and therefore
the upper box dimension of its graph is not greater than 2− α. In particular
if α = 1 then dimB(G) = dimB(G) = 1.

Proof. The proof is similar to that of the analogous property in Theorem
3.1.
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Theorem 3.1 cannot be widely generalized for 0 < α < 1. By the present
approach we can only deduce that the following result holds:

Theorem 4.4. Consider the function f(x) = Σn∈N
1
bαn
ϕ(bnx) where ϕ satisfies

condition b). Assume that (bn)n∈N is a sequence such that: bn = Abn, with
suitable A > 0 and b ∈ N for every n ∈ N. Then it must necessarily be
∆(G) = 2− α.

Proof. See the proof of Theorem 3.1.
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