
INROADS Real Analysis Exchange
Vol. 36(2), 2010/2011, pp. 499–506

Monika Lindner, Center of Mathematics and Physics, Technical University of
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CHARACTERIZATIONS OF SOME
SUBCLASSES OF THE FIRST CLASS OF

BAIRE

Abstract

In the paper [3] the authors have examined functions of the Baire
class 1, where the domain and the range were metric spaces. The ε− δ
characterization of such functions has been proved. In this note we
examine, if replacing of the condition from [3] by it’s stronger version
can lead us to the characterization of some subclass of B1 on the interval
[0, 1].

1 Definition of the class BA. Basic properties

In 2000 year Lee, Tang and Zhao published the following theorem:
Theorem ([3]) Suppose that f : X → R is a real valued function

on a complete separable metric space X. Then the following statements are
equivalent:

(1) For every ε > 0 there exists a positive function δ on X such that

|f(x1)− f(x2)| < ε

whenever
dX(x1, x2) < min(δ(x1), δ(x2)).
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(2) The function f is of Baire class one.

Following Atok, Tang and Zhao ([4]) we call the positive function δ in (1)
an ε-gauge of f.

We restrict our considerations to the case of real functions defined on [0, 1]
interval. The question is: If we use only gauges δ meeting some extra con-
ditions, are we supposed to obtain the class smaller then B1? The answer is
positive. To express it more precisely consider the following definition :

Definition 1 Let A be an arbitrary family of real valued functions defined on
the interval [0, 1], f : [0, 1] → R. We say that f ∈ BA, iff for every ε > 0
there exists δ : [0, 1]→ (0,∞) such that δ ∈ A and for every x1, x2 ∈ [0, 1] the
following implication holds

|x1 − x2| < min(δ(x1), δ(x2)) =⇒ |f(x1)− f(x2)| < ε.

In the sequel let B1, C, lsc, usc, D, app, ls-app, B1∗ denote respectively
classes of Baire 1, continuous, lower semicontinuous, upper semicontinuous,
Darboux continuous, approximately continuous, lower semi approximately
continuous functions and Baire* one functions defined on [0, 1].

(Function f : [0, 1] → R is lower semi approximately continuous iff for
each a ∈ R the set f−1 ((a,∞)) is open with respect to the density topology
on [0, 1].

Function f : [0, 1] → R belongs to B1∗ iff for every closed set F ⊂ [0, 1]
there exists the interval (a, b) such that (a, b) ∩ F 6= ∅ and the function f
restricted to (a, b) ∩ F is continuous.)

Proposition 1 The operator A → BA has the following properties:

1. If A1 ⊂ A2 ⊂ R[0,1] then BA1
⊂ BA2

⊂ B1,

2. For every family A ⊂ R[0,1] the family BA is closed under uniform con-
vergence,

3. If the family A ⊂ R[0,1] satisfies the following condition:

min(f, g) ∈ A for every f, g ∈ A,

then the family BA forms a linear subspace of the space R[0,1].
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Proof.

1. The first inclusion follows directly from the definition of the family BA.
The second inclusion follows from the Lee, Tang and Zao theorem.

2. Let fn ∈ BA for n ∈ N, and the sequence (fn) converges uniformly to
the function f. Take ε > 0. Let n ∈ N be large enough to get

|f(x)− fn(x)| < ε

3

for every x ∈ [0, 1]. Let δ ∈ A be an ε
3 -gauge of the function fn. Take

arbitrary a, b ∈ [0, 1] such that |a− b| < min(δ(a), δ(b)). Then

|f(a)− f(b)| ≤ |f(a)− fn(a)|+ |fn(a)− fn(b)|+ |fn(b)− f(b)| < ε.

So the function δ is an ε-gauge of f. Hence f ∈ BA.

3. Let f, g ∈ BA, let α ∈ R, ε > 0. Let δ ∈ A be an
(ε · (max(|α|, 1))−1)-gauge of f. Then δ is an ε-gauge of αf.
Let δ1 be the ( ε2 )-gauge of f and δ2 be the ( ε2 )-gauge of g. Then the
function min(δ1, δ2) is an ε-gauge of f + g. 2

2 Results

Theorem 1 Bconst = BC = Blsc = C.

Proof. We have Bconst ⊂ BC ⊂ Blsc because const ⊂ C ⊂ lsc.
Let f ∈ Blsc, ε > 0. Let δ ∈ lsc be an ε-gauge of f. As the function δ is

positive and lower semicontinuous, it has the positive lower bound η on [0, 1].
Hence, for every a, b ∈ [0, 1], the condition |a−b| < η implies |f(a)−f(b)| < ε.
Therefore the function f is uniformly continuous on [0, 1].

Let f ∈ C. Then f is uniformly continuous. For every ε > 0 there exists
η > 0 such that |f(a)−f(b)| < ε if |a− b| < η. Defining δ(x) = η for x ∈ [0, 1],
we obtain a constatnt ε-gauge of f. 2

Let x0 be a right hand side accumulation point of the set E ⊂ R. By
Limx→x0+f(x) we shall denote the set of all limits of sequences of the form
f(xn), where (xn) is the sequence of points belonging to E∩(x0,∞) converging
to x0. The set Limx→x0+f(x) is always closed. The definition of Limx→x0−f(x)
is analogous.
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Let us recall the characterization of Darboux continuous functions among
the Baire one functions:

Theorem ([1], chap. 2, th. 1.1) Let f : [0, 1] → R be of Baire class one.
Then the following conditions are equivalent

(1) f has the Darboux property;

(2) f(x0) ∈ Limx→x0−f(x) ∩ Limx→x0+f(x) for every x0 ∈ [0, 1].

(In case when x0 ∈ {0, 1} the second condition has its unilateral version.)

Theorem 2 BD ⊂ D.

Proof. Let f ∈ BD. Of course f ∈ B1. Suppose that f 6∈ D. From the last
theorem we have existence of x0 ∈ [0, 1], such that f(x0) 6∈ Limx→x0−f(x) ∩
Limx→x0+f(x) For instance let the distance between f(x0) and Limx→x0−f(x)
equals 2ε for some positive number ε. Let δ be an ε-gauge of f. We shall
show, that δ cannot be Darboux continuous. Let (xn)n∈N be an arbitrary
choosen sequence of points belonging to [0, x0) converging to x0. There exists
N1 such that |xn − x0| < δ(x0) for n > N1. And there exists N2 such that
|f(xn)− f(x0)| > ε for n > N2.

Therefore for n > max(N1, N2) we have |xn−x0| ≥ δ(xn).Hence limx→x0− δ(x) =
0. But δ(x0) > 0, so δ is not Darboux continuous. 2

Problem 1 Does the opposite inclusion hold : B1 ∩D ⊂ BD?

Theorem 3 Bls-app ⊂ app.

Proof. Let f ∈ Bls-app, ε > 0, x0 ∈ [0, 1]. We shall demonstrate, that x0

is a density point of the set Z(x0, ε) = f−1
(

(f(x0)− ε, f(x0) + ε)
)
. Let δ be

an approximately lower semicontinuous ε-gauge of f. Then x0 is the density
point of the set

T (x0) = δ(−1)
(

(
δ(x0)

2
,∞)

)
Let x be an arbitrary point of T (x0) such that |x−x0| < δ(x0)

2 . Then |x−x0| <
min(δ(x), δ(x0)), so |f(x)− f(x0)| < ε. Hence x ∈ Z(x0, ε). Therefore

T (x0) ∩
(
x0 −

δ(x0)

2
, x0 +

δ(x0)

2

)
⊂ Z(x0, ε).
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But x0 is a density point of T (x0) ∩
(
x0 − δ(x0)

2 , x0 + δ(x0)
2

)
, hence it is also

the density point of Z(x0, ε). 2

Let us recall the notion of oscillation index of function. Let f : [0, 1]→ R
and ε > 0. For each A ⊂ [0, 1] let

Pε,f (A) =
{
x ∈ A : osc(f, x,A) ≥ ε

}
.

Let us define the transfinite sequence of sets (Fαf,ε)α<ω1
in the following way:

Fαf,ε =


[0, 1] for α = 0
Pε,f (F γf,ε) for α = γ + 1⋂
γ<α F

γ
f,ε if α is a limit ordinal.

If there exist α < ω1 such that Fαf,ε = ∅ then let β(f, ε) = min{α : Fαf,ε = ∅}.
In case that for every α < ω1 F

α
f,ε 6= ∅ let β(f, ε) = ω1. Finally let β(f) =

supε>0 β(f, ε).

Let us recall the following
Theorem ([2]) Let f : [0, 1]→ R. Then

(1) β(f) = 1 iff f is continuous,

(2) β(f) < ω1 iff f ∈ B1.

The next theorem shows the connection between the oscillation index of
the function f and the oscillation index of its gauge:

Theorem 4 Let f : [0, 1] → R, β(f) = α < ω1. Then for every ε > 0 there
exists an ε-gauge δ of f such that δ ∈ usc ∩B1∗ and β(δ) ≤ α.

Proof. Let ε > 0. We shall construct a gauge δ using the sequence {F γf,ε}γ≤α
defined in the definition of the oscillation index. Notice that

[0, 1] =
⋃
γ<α

(F γf,ε \ F
γ+1
f,ε ).

Suppose that γ < α and the value δ(x) has been already defined for x ∈⋃
ξ<γ(F ξf,ε \ F

ξ+1
f,ε ) = [0, 1] \ F γf,ε. Now we define the function δ on the set

F γf,ε \ F
γ+1
f,ε .
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Let t ∈ F γf,ε \F
γ+1
f,ε . According to the definition of the sequence {F γf,ε}γ≤α

the oscillation of the function f restricted to the set F γf,ε at the point t is less
than ε. So there exists an open neighbourhood Vt of t, such that diam(f(Vt ∩
F γf,ε)) < ε. Let us define the function δt(x) = 1

2d(x, [0, 1] \ Vt), where d(x,A)

stands for the distance between the point x and the set A. The function δt

satisfies the Lipschitz condition with the constant 1.

Let

δ(x) = sup
t∈Fγf,ε\F

γ+1
f,ε

δt(x)

for x ∈ F γf,ε \ F
γ+1
f,ε . Observe that the function δ is strictly positive. It is also

continuous on the set F γf,ε \ F
γ+1
f,ε as an upper bound of an equi-continuous

family of functions.

In this way we have defined the gauge δ on the whole interval [0, 1].

Now we shall examine the properties of δ.

(1) Let x ∈ [0, 1], x ∈ F γf,ε\F
γ+1
f,ε , γ < α. Then (x− δ(x), x+ δ(x)) ∩ F γ+1

f,ε = ∅.
In fact, by the definition of δ, there exists t ∈ F γf,ε \ F

γ+1
f,ε , such that δt(x) >

3
4δ(x). Therefore there exists a set Vt such that diam(f(Vt ∩ F γf,ε)) < ε and

d(x, [0, 1] \ Vt) = 2δt(x) > 3
2δ(x). Hence (x − δ(x), x + δ(x)) ⊂ Vt and Vt ∩

F γ+1
f,ε = ∅.

(2) If two points x, y ∈ [0, 1] fullfill the condition |x− y| < min(δ(x), δ(y))
then for some ordinal γ we have x, y ∈ F γf,ε \ F

γ+1
f,ε and |f(x) − f(y)| < ε.

Hence δ is an ε-gauge of f.

Proof. Let x ∈ F γf,ε \ F
γ+1
f,ε and y ∈ F ξf,ε \ F

ξ+1
f,ε for γ, ξ < α. Assume that

|x− y| < min(δ(x), δ(y)) and suppose that γ < ξ. Since

y ∈ (x− δ(x), x+ δ(x)) ⊂ [0, 1] \ F γ+1
f,ε ,

we get y /∈ F γ+1
f,ε , which contradicts F ξf,ε ⊂ F

γ+1
f,ε . So γ = ξ.

Again from the definition of δ, there exists t ∈ F γf,ε \ F
γ+1
f,ε , such that

δt(x) > 3
4δ(x). So d(x, [0, 1] \ Vt) > 3

2δ(x) > |x− y|. Hence x, y ∈ Vt. From the
definition of Vt it follows that |f(x)− f(y)| < ε.

(3) The function δ restricted to the set F γf,ε is continuous on the set F γf,ε \
F γ+1
f,ε .

Proof. The function δ is defined on the set F γf,ε \ F
γ+1
f,ε as an upper bound

of the family of functions that fullfill the Lipschitz condition with common
constant 1. Moreover the set F γf,ε \ F

γ+1
f,ε is open with respect to F γf,ε.

(4) β(δ) ≤ α.
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Proof. For a given η > 0 let us consider the sequence of sets {F γδ,η}γ<ω1 . We
shall show by the transfinite induction that for every γ < ω1 we have

F γδ,η ⊂ F
γ
f,ε.

The inclusion is obvious for γ = 0 because [0, 1] ⊂ [0, 1]. Suppose that for
γ < ω1 the above inclusion holds. From (3) it follows that the oscillation
of the function δ is equal to 0 in each point of the set F γf,ε \ F

γ+1
f,ε Hence

F γ+1
δ,η ⊂ F

γ+1
f,ε . So β(δ, η) ≤ β(f, ε) ≤ α, and, as the number η is arbitrary, we

have β(δ) ≤ α.
(5) The function δ is upper semicontinuous.

Consider x0 ∈ [0, 1] and a sequence (xn)n∈N convergent to x0 such that
limn→∞ δ(xn) = g. We shall show that g ≤ δ(x0). There exists the ordinal
γ < α, such that x0 ∈ F γf,ε \ F

γ+1
f,ε . As x0 6∈ F γ+1

f,ε and the set F γ+1
f,ε is closed

we can assume that no term of the sequence (xn) belongs to F γ+1
f,ε . There are

two possibilities:

1◦ almost every term of the sequence (xn) belongs to F γf,ε \ F
γ+1
f,ε ;

2◦ infinitely many terms of that sequence belongs to [0, 1] \ F γf,ε.

In the first case we have g = limn→∞ δ(xn) = δ(x0) as the function δ is
continuous on F γf,ε \ F

γ+1
f,ε .

In the second case we can assume that all terms of (xn) belong to [0, 1]\F γf,ε.
For a given n in virtue of (1) we obtain

x0 6∈ (xn − δ(xn), xn + δ(xn)),

hence
|x0 − xn| ≥ δ(xn) > 0,

and
g = lim

n→∞
δ(xn) = 0 < δ(x0).

As a result δ is upper semicontinuous.

(6) The function δ belongs to B1∗.
Let F ⊂ [0, 1] be an arbitrary nonempty closed set. We shall show exis-
tence of the interval (a, b) such that (a, b) ∩ F 6= ∅ and δ|F is continuous on
(a, b) ∩ F. Let γ be the least ordinal such that F ⊂ F γf,ε but F 6⊂ F γ+1

f,ε .

Let x0 ∈ F ∩ (F γf,ε \ F
γ+1
f,ε ). From (1) and (3), the function δ is continuous

on the set (x0 − δ(x0), x0 + δ(x0)) ∩ F γf,ε, and hence continuous on the set
(x0 − δ(x0), x0 + δ(x0)) ∩ F. As a consequence δ ∈ B1∗. 2
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Remark 1 The last result is similar (but not comparable) to the main re-
sult of Atok, Tang and Zhao ([4], Theorem 2). Nevertheless we decided to
demonstrate our theorem because the proof is completely different.
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