INROADS

Jacek Hejduk, Faculty of Mathematics and Computer Science, University of Lódź, Banacha 22, PL-90-238 Łódź, Poland. email: hejduk@math.uni.lodz.pl Renata Wiertelak, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, PL-90-238 Łódź, Poland. email:

wiertelak@math.uni.lodz.pl

CONTINUOUS FUNCTIONS IN $\mathcal{I}(J)$ -DENSITY TOPOLOGIES

Abstract

This paper contains the properties of continuous functions equipped with the $\mathcal{I}(J)$ -density topology or natural topology in the domain or the range.

Let \mathbb{R} be the set of reals and \mathbb{N} stand for the set of natural numbers. Let \mathcal{I} be the σ -ideal of first category sets in \mathbb{R} , \mathcal{S} be the σ -algebra of sets having the Baire property in \mathbb{R} , and \mathcal{T}_{nat} be the natural topology in \mathbb{R} .

According to paper [4], we shall say that 0 is a density point with respect to category of a set $A \in S$ if the sequence $\{f_n\}_{n \in \mathbb{N}} = \{\chi_{nA \cap [-1,1]}\}_{n \in \mathbb{N}}$ converges with respect to the σ -ideal \mathcal{I} to the characteristic function $\chi_{[-1,1]}$. It means that every subsequence of the sequence $\{f_n\}_{n \in \mathbb{N}}$ contains a subsequence converging to the function $\chi_{[-1,1]}$ everywhere except for a set of the first category. For J = [a, b] let us put

$$s(J) = \frac{1}{2}(a+b),$$

$$h(A,J)(x) = \chi_{\frac{2}{|J|}(A-s(J))\cap[-1,1]}(x)$$

where $A + z = \{a + z : a \in A\}$, $\alpha A = \{\alpha a : a \in A\}$ for $z, \alpha \in \mathbb{R}, A \subset \mathbb{R}$. By $J = \{J_n\}_{n \in \mathbb{N}}$ we shall denote a non-degenerate sequence of intervals tending to zero, that means

$$\lim_{n \to \infty} s(J_n) = 0 \qquad \land \qquad \lim_{n \to \infty} |J_n| = 0.$$

Mathematical Reviews subject classification: Primary: 26A15; Secondary: 58C05 Key words: real functions, continuity, approximate continuity Received by the editors April 13, 2010

Communicated by: Udayan B. Darji

If a sequence of intervals $J = \{J_n\}_{n \in \mathbb{N}}$ is tending to zero and $J_n \subset [0, \infty)$ $(J_n \subset (-\infty, 0])$ for $n \in \mathbb{N}$, then we say that the sequence J is **tending to** zero from the right (left) side.

The point 0 is called an $\mathcal{I}(J)$ -density point of a set $A \in S$ if

$$h(A, J_n)(x) \xrightarrow[n \to \infty]{\mathcal{I}} \chi_{[-1,1]}(x).$$

It means that

$$\begin{array}{cccc} \forall & \exists & \exists & \forall & h(A, J_{n_{k_m}})(x) \xrightarrow[m \to \infty]{} \chi_{[-1,1]}(x). \end{array} \\ {}^{\{n_k\}_{k \in \mathbb{N}}} & {}^{\{n_k\}_{m \in \mathbb{N}}} & \Theta \in \mathcal{I} & {}^{x \notin \Theta} \end{array}$$

It is obvious that 0 is an $\mathcal{I}(J)$ -density point of a set $A \in \mathcal{S}$ if and only if

$$\begin{array}{ccc} \forall & \exists & \limsup_{\{n_k\}_{k\in\mathbb{N}}} & \{n_{k_m}\}_{m\in\mathbb{N}} & m\rightarrow\infty \end{array} \left([-1,1] \setminus (A-s(J_{n_{k_m}})) \frac{2}{|J_{n_{k_m}}|} \right) \in \mathcal{I}. \end{array}$$

We shall say that a point $x_0 \in \mathbb{R}$ is an $\mathcal{I}(J)$ -density point of a set $A \in S$ if and only if 0 is an $\mathcal{I}(J)$ -density point of the set $A - x_0$.

A point $x_0 \in \mathbb{R}$ is an $\mathcal{I}(J)$ -dispersion point of a set $A \in \mathcal{S}$ if and only if x_0 is an $\mathcal{I}(J)$ -density point of the complementary set A'.

It is easy to see that if $J_n = \left[-\frac{1}{n}, \frac{1}{n}\right]$ for $n \in \mathbb{N}$, then x_0 is an $\mathcal{I}(J)$ -density point of a set $A \in \mathcal{S}$ if and only if x_0 is an \mathcal{I} -density point of A (see [4]). When $J_n = \left[-\frac{1}{s_n}, \frac{1}{s_n}\right]$ for $n \in \mathbb{N}$, where $\langle s \rangle = \{s_n\}_{n \in \mathbb{N}}$ is an unbounded and nondecreasing sequence of positive real numbers, then the notion of the $\mathcal{I}(J)$ density point of a set $A \in \mathcal{S}$ is equivalent to the notion of the $\langle s \rangle$ -density point of A (see [2]).

If $A \in \mathcal{S}$, then we denote

$$\Phi_{\mathcal{I}(J)}(A) = \{ x \in \mathbb{R} \colon x \text{ is an } \mathcal{I}(J) \text{-density point of } A \}.$$

Theorem 1. (cf [5]) If $J = \{J_n\}_{n \in \mathbb{N}}$ is a sequence of intervals tending to zero, then the operator $\Phi_{\mathcal{I}(J)} \colon S \to S$ is the lower density operator on $(\mathbb{R}, S, \mathcal{I})$ and the family

$$\mathcal{T}_{\mathcal{I}(J)} = \{ A \in \mathcal{S} \colon A \subset \Phi_{\mathcal{I}(J)}(A) \}.$$

is a topology on \mathbb{R} , which will be called an $\mathcal{I}(J)$ -density topology, such that $\mathcal{T}_{nat} \subset \mathcal{T}_{\mathcal{I}(J)}$.

If $J = \{J_n\}_{n \in \mathbb{N}}$, where $J_n = [a_n, b_n]$, is a sequence of intervals tending to zero and $m \in \mathbb{R} \setminus \{0\}$, then $mJ = \{mJ_n\}_{n \in \mathbb{N}}$, where $mJ_n = [ma_n, mb_n]$ for m > 0 and $mJ_n = [mb_n, ma_n]$ for m < 0, is the sequence of intervals tending to zero as well.

From the definition of an $\mathcal{I}(J)$ -density point and an $\mathcal{I}(J)$ -density topology it is easy to conclude the following property.

464

Property 2. If $J = \{J_n\}_{n \in \mathbb{N}}$ is a sequence of intervals tending to zero, then for every set $A \in S$ the following properties holds:

$$(i) \ \ \forall \ \ x \in \mathbb{R} \quad \forall \ \ x \in \Phi_{\mathcal{I}(J)}(A) \Leftrightarrow (x+a) \in \Phi_{\mathcal{I}(J)}(A+a) = \Phi_{\mathcal{I}($$

$$(ii) \begin{array}{c} \forall \quad \forall \quad \forall \quad x \in \Phi_{\mathcal{I}(J)}(A) \Leftrightarrow mx \in \Phi_{\mathcal{I}(mJ)}(mA); \\ x \in \mathbb{R} \quad m \neq 0 \end{array}$$

(*iii*)
$$\underset{a \in \mathbb{R}}{\forall} \quad A \in \mathcal{T}_{\mathcal{I}(J)} \Leftrightarrow (A+a) \in \mathcal{T}_{\mathcal{I}(J)};$$

$$(iv) \; \underset{m \neq 0}{\forall} \; A \in \mathcal{T}_{\mathcal{I}(J)} \Leftrightarrow mA \in \mathcal{T}_{\mathcal{I}(mJ)}$$

Also the next property is a consequence of an $\mathcal{I}(J)$ -density point.

Property 3. (cf [5]) If $J = \{J_n\}_{n \in \mathbb{N}}$ is a sequence of intervals tending to zero, then the point 0 is an $\mathcal{I}(J)$ -density point of the set

$$A_k = \{0\} \cup \bigcup_{n \ge k} int(J_n),$$

for every $k \in \mathbb{N}$. Moreover $A_k \in \mathcal{T}_{\mathcal{I}(J)}$.

Likewise in the case of an \mathcal{I} -density topology (see [1], [7]) the following property of an $\mathcal{I}(J)$ -density topology holds.

Property 4. A set A is compact with respect to an $\mathcal{I}(J)$ -density topology if and only if A is finite.

Much more interesting properties of $\mathcal{I}(J)$ -density topologies can be found in the papers [5], [6]. We recall those of them which are necessary in further considerations.

Theorem 5. (cf [6]) If $J = \{J_n\}_{n \in \mathbb{N}}$ is a sequence of intervals tending to zero from the right (left) side, then every set [a, b) ((a, b]), for $a, b \in \mathbb{R}$ and a < b, belongs to the topology $\mathcal{T}_{\mathcal{I}(J)}$ whereas every set (a, b] ([a, b)) is not the member of the $\mathcal{I}(J)$ -density topology.

Theorem 6. (cf [5]) Let $J = \{J_n\}_{n \in \mathbb{N}}$, where $J_n = [a_n, b_n]$ for $n \in \mathbb{N}$, be a sequence of intervals tending to zero and

$$K_n^i = \left[a_n + \frac{i-1}{l_0}(b_n - a_n), a_n + \frac{i}{l_0}(b_n - a_n)\right],$$

for $n \in \mathbb{N}$, $l_0 \in \mathbb{N}$, $i \in \{1, \ldots, l_0\}$. Then the family $\{K_n^i\}_{i \in \{1, \ldots, l_0\}, n \in \mathbb{N}}$ ordered in the sequence

$$K = \left\{ K_1^1, K_1^2, \dots, K_1^{l_0}, K_2^1, K_2^2, \dots, K_2^{l_0}, \dots \right\}$$

is tending to zero and $\mathcal{T}_{\mathcal{I}(J)} = \mathcal{T}_{\mathcal{I}(K)}$.

Let $J = \{J_n\}_{n \in \mathbb{N}}$ be a sequence of intervals tending to zero. Then we obtain four families of continuous functions defined as follows:

$$C_{nat,nat} = \{f : (\mathbb{R}, \mathcal{T}_{nat}) \to (\mathbb{R}, \mathcal{T}_{nat})\}$$

$$C_{nat,\mathcal{I}(J)} = \{f : (\mathbb{R}, \mathcal{T}_{nat}) \to (\mathbb{R}, \mathcal{T}_{\mathcal{I}(J)})\}$$

$$C_{\mathcal{I}(J),nat} = \{f : (\mathbb{R}, \mathcal{T}_{\mathcal{I}(J)}) \to (\mathbb{R}, \mathcal{T}_{nat})\}$$

$$C_{\mathcal{I}(J),\mathcal{I}(J)} = \{f : (\mathbb{R}, \mathcal{T}_{\mathcal{I}(J)}) \to (\mathbb{R}, \mathcal{T}_{\mathcal{I}(J)})\}$$

Functions of the family $\mathcal{C}_{\mathcal{I}(J),nat}$ will be called $\mathcal{I}(J)$ -approximately continuous functions and functions of $\mathcal{C}_{\mathcal{I}(J),\mathcal{I}(J)}$ will be called $\mathcal{I}(J)$ -continuous.

Property 7. The family $C_{nat,\mathcal{I}(J)}$ consists of constant functions.

PROOF. Let $f \in C_{nat,\mathcal{I}(J)}$ and $a, b \in \mathbb{R}$ such that a < b. Then f([a, b]) is nonempty, compact and connected set with respect to the topology $\mathcal{T}_{\mathcal{I}(J)}$. By Property 4 this compact set is finite. Moreover the set f([a, b]) is connected and as a result f(a) = f(b). For that reason the function f is constant and the proof is completed.

The next property is an easy consequence of the inclusion $\mathcal{T}_{nat} \subset \mathcal{T}_{\mathcal{I}(J)}$.

Property 8. For every sequence of intervals J the following inclusions holds:

- (i) $\mathcal{C}_{nat,\mathcal{I}(J)} \subset \mathcal{C}_{nat,nat} \subset \mathcal{C}_{\mathcal{I}(J),nat}$
- (*ii*) $\mathcal{C}_{nat,\mathcal{I}(J)} \subset \mathcal{C}_{\mathcal{I}(J),\mathcal{I}(J)} \subset \mathcal{C}_{\mathcal{I}(J),nat}$.

Moreover inclusions $C_{nat,\mathcal{I}(J)} \subset C_{nat,nat}$ and $C_{nat,\mathcal{I}(J)} \subset C_{\mathcal{I}(J),\mathcal{I}(J)}$ are proper. Indeed, the identical function is the member of $C_{nat,nat}$ and $C_{\mathcal{I}(J),\mathcal{I}(J)}$ but not $C_{nat,\mathcal{I}(J)}$.

Property 9. If $J = \{J_n\}_{n \in \mathbb{N}}$ is a sequence of intervals tending to zero from the right or left side, then:

- (i) $C_{nat,nat} \setminus C_{\mathcal{I}(J),\mathcal{I}(J)} \neq \emptyset$;
- (*ii*) $C_{\mathcal{I}(J),\mathcal{I}(J)} \setminus C_{nat,nat} \neq \emptyset$.

PROOF. Let us suppose that the sequence J is tending to zero from the right side. To show the first inclusion we consider the function $f(x) = -x^2$. Obviously $f \in C_{nat,nat}$. This and inclusion $C_{nat,nat} \subset C_{\mathcal{I}(J),nat}$ imply that $f \in C_{\mathcal{I}(J),nat}$. Further the set $A = [-1,1) \in \mathcal{T}_{\mathcal{I}(J)}$ (by Theorem 5), whereas $f^{-1}(A) = [-1,1] \notin \mathcal{T}_{\mathcal{I}(J)}$. It means that $f \notin C_{\mathcal{I}(J),\mathcal{I}(J)}$. To prove the second inclusion we define the function

$$h(x) = x - k$$
 for $x \in [k, k+1), k \in \mathbb{Z}$

It is easy to see that for every set $B \subset \mathbb{R}$ holds

$$h^{-1}(B) = \bigcup_{k \in \mathbb{Z}} \left((B \cap [0,1)) + k \right).$$

Thus for every set $B \in \mathcal{T}_{\mathcal{I}(J)}$ we have that $h^{-1}(B) \in \mathcal{T}_{\mathcal{I}(J)}$ (by Theorem 5 and Property 2). Therefore $h \in \mathcal{C}_{\mathcal{I}(J),\mathcal{I}(J)}$. Moreover inclusion $\mathcal{C}_{\mathcal{I}(J),\mathcal{I}(J)} \subset \mathcal{C}_{\mathcal{I}(J),nat}$ implies that $f \in \mathcal{C}_{\mathcal{I}(J),nat}$. Simultaneously

$$h^{-1}\left(\left(-1,\frac{1}{2}\right)\right) = \bigcup_{k\in\mathbb{Z}} \left[k,k+\frac{1}{2}\right) \notin \mathcal{T}_{nat}.$$

Hence $h \notin C_{nat,nat}$ and inclusion (*ii*) is proper.

If J is tending to zero from the left side, then we consider the sets $A = (-1, 1], B = (\frac{1}{2}, 2)$ and the functions $f(x) = x^2, h(x) = x - k$ for $x \in (k, k+1], k \in \mathbb{Z}$.

An immediate consequence of this proof is the following corollary.

Corollary 10. Let $J = \{J_n\}_{n \in \mathbb{N}}$ be a sequence of intervals tending to zero from the right or left side. Then the inclusions

- (i) $\mathcal{C}_{\mathcal{I}(J),\mathcal{I}(J)} \subset \mathcal{C}_{\mathcal{I}(J),nat}$
- (*ii*) $C_{nat,nat} \subset C_{\mathcal{I}(J),nat}$

are proper.

Let $J = \{J_n\}_{n \in \mathbb{N}}$ and $K = \{K_n\}_{n \in \mathbb{N}}$ be sequences of intervals. Then the sequence ordered in an arbitrary fashion containing all intervals of the sequences J and K, denoted by $J \cup K$, is called **the union of sequences** Jand K.

Remark 11. If J and K are sequences tending to zero, then the sequence $J \cup K$ is also tending to zero. It is evident from the definition of an $\mathcal{I}(J)$ -density point that an $\mathcal{I}(J \cup K)$ -density topology is independent of the ordering of intervals in the sequence $J \cup K$.

Property 12. If $J = \{J_n\}_{n \in \mathbb{N}}$ and $K = \{K_n\}_{n \in \mathbb{N}}$ are sequences of intervals tending to zero, then

$$\mathcal{T}_{\mathcal{I}(J\cup K)} = \mathcal{T}_{\mathcal{I}(J)} \cap \mathcal{T}_{\mathcal{I}(K)}.$$

Properties 12 and 7 yields to the following property.

Property 13. Let $J = \{J_n\}_{n \in \mathbb{N}}$ and $K = \{K_n\}_{n \in \mathbb{N}}$ be sequences of intervals tending to zero. Then

- (i) $\mathcal{C}_{\mathcal{I}(J),nat} \cap \mathcal{C}_{\mathcal{I}(K),nat} = \mathcal{C}_{\mathcal{I}(J\cup K),nat};$
- (*ii*) $C_{nat,\mathcal{I}(J)} \cap C_{nat,\mathcal{I}(K)} = C_{nat,\mathcal{I}(J\cup K)};$
- (*iii*) $C_{\mathcal{I}(J),\mathcal{I}(J)} \cap C_{\mathcal{I}(K),\mathcal{I}(K)} \subset C_{\mathcal{I}(J\cup K),\mathcal{I}(J\cup K)}$.

Moreover there are sequences J and K for which

$$\mathcal{C}_{\mathcal{I}(J\cup K),\mathcal{I}(J\cup K)}\setminus \left(\mathcal{C}_{\mathcal{I}(J),\mathcal{I}(J)}\cap \mathcal{C}_{\mathcal{I}(K),\mathcal{I}(K)}
ight)
eq \emptyset.$$

PROOF. The conditions (i), (ii) and the inclusion (iii) are evident. We prove that $\mathcal{C}_{\mathcal{I}(J\cup K),\mathcal{I}(J\cup K)} \setminus (\mathcal{C}_{\mathcal{I}(J),\mathcal{I}(J)} \cap \mathcal{C}_{\mathcal{I}(K),\mathcal{I}(K)})$ is non-empty. Putting $J_n = [0, \frac{1}{n}], K_n = [-\frac{1}{n}, 0]$ for $n \in \mathbb{N}$ we obtain the sequences $J = \{J_n\}_{n \in \mathbb{N}}$ and $K = \{K_n\}_{n \in \mathbb{N}}$ of intervals tending to zero. By Theorem 6 the topology $\mathcal{T}_{\mathcal{I}(J\cup K)}$ is the \mathcal{I} -density topology. Hence the function f(x) = -x belongs to the family $\mathcal{C}_{\mathcal{I}(J\cup K),\mathcal{I}(J\cup K)}$. Since the sequence J is tending to zero from the right side, thus $[0,1) \in \mathcal{T}_{\mathcal{I}(J)}$, whereas $f^{-1}([0,1)) = (-1,0] \notin \mathcal{T}_{\mathcal{I}(J)}$ (by Theorem 5). It implies that $f \notin \mathcal{C}_{\mathcal{I}(J),\mathcal{I}(J)}$. Using similar argument we can show that $f \notin \mathcal{C}_{\mathcal{I}(K),\mathcal{I}(K)}$.

Now we will investigate $\mathcal{I}(J)$ -continuity of a function f(x) = ax.

Theorem 14. A function f(x) = ax is $\mathcal{I}(J)$ -continuous for every sequence of intervals $J = \{J_n\}_{n \in \mathbb{N}}$ tending to zero if and only if $a \in \{0, 1\}$.

PROOF. Sufficiency is obvious because the constant function and the identity function are $\mathcal{I}(J)$ -continuous for every sequence J tending to zero.

Necessity. If a < 0, then for every sequence J tending to zero from the right side the function f is not $\mathcal{I}(J)$ -continuous. Indeed, if we consider the set A = [0, 1), then $A \in \mathcal{T}_{\mathcal{I}(J)}$ and $f^{-1}(A) = (-a, 0] \notin \mathcal{T}_{\mathcal{I}(J)}$ by Theorem 5. Thus the function f is not $\mathcal{I}(J)$ -continuous.

If a > 0 and $a \neq 1$, then we define $J_n = [b^{2n+1}, b^{2n}]$, where $b = min\{a, a^{-1}\}$, and put $J = \{J_n\}_{n \in \mathbb{N}}$. The sequence J is tending to zero and by Property 3 the set

$$A = \{0\} \cup \bigcup_{n \in \mathbb{N}} \left(b^{2n+1}, b^{2n} \right)$$

belongs to the topology $\mathcal{T}_{\mathcal{I}(J)}$, whereas

$$f^{-1}(A) = \{0\} \cup \bigcup_{n \in \mathbb{N}} \left(a^{-1}b^{2n+1}, a^{-1}b^{2n}\right) \subset \mathbb{R} \setminus \bigcup_{n \in \mathbb{N}} J_n.$$

468

It shows that 0 is the $\mathcal{I}(J)$ -density point of the set $(\mathbb{R} \setminus f^{-1}(A)) \supset \bigcup_{n \in \mathbb{N}} J_n$. It implies that 0 is not the $\mathcal{I}(J)$ -density point of the set $f^{-1}(A)$. Therefore $f^{-1}(A) \notin \mathcal{T}_{\mathcal{I}(J)}$. It follows that f is not the $\mathcal{I}(J)$ -continuous function. \square

The following corollary is an immediate consequence of the last proof.

Corollary 15. For an arbitrary number $a \in \mathbb{R} \setminus \{0, 1\}$ there exists a sequence of intervals $J = \{J_n\}_{n \in \mathbb{N}}$ tending to zero and a set A such that $A \in \mathcal{T}_{\mathcal{I}(J)}$ and $a^{-1}A \notin \mathcal{T}_{\mathcal{I}(J)}.$

Theorem 16. For any sequence of intervals $J = \{J_n\}_{n \in \mathbb{N}}$ tending to zero and any number $a \neq 0$ the function f(x) = ax is $\mathcal{I}(J)$ -continuous if and only if $\mathcal{T}_{\mathcal{I}(J)} \subset \mathcal{T}_{\mathcal{I}(aJ)}.$

PROOF. Necessity. Let $A \in \mathcal{T}_{\mathcal{I}(J)}$. By the $\mathcal{I}(J)$ -density continuity we have that

$$f^{-1}(A) = a^{-1}A \in \mathcal{T}_{\mathcal{I}(J)}.$$

Theorem 2 implies that $A \in \mathcal{T}_{\mathcal{I}(aJ)}$. Hence $\mathcal{T}_{\mathcal{I}(J)} \subset \mathcal{T}_{\mathcal{I}(aJ)}$. Sufficiency. Let $A \in \mathcal{T}_{\mathcal{I}(J)}$ and $a \neq 0$. Then $A \in \mathcal{T}_{\mathcal{I}(aJ)}$ and by Property 2 (iv) we have that $a^{-1}A \in \mathcal{T}_{\mathcal{I}(J)}$. Since $f^{-1}(A) = a^{-1}A$, therefore $f^{-1}(A) \in$ $\mathcal{T}_{\mathcal{I}(J)}$. It follows that the function f is $\mathcal{I}(J)$ -continuous.

References

- [1] K. Ciesielski, L. Larson, and K. Ostaszewski, *I-Density Continuus* Functions, Mem. Amer. Math. Soc. 107, 515, 1994.
- [2] J. Hejdukand G. Horbaczewska, On \mathcal{I} -density topologies with respect to a fixed sequence, Reports on Real Analysis, Conference at Rowy, (2003), 78 - 85.
- [3] G. Horbaczewska, The family of \mathcal{I} -density type topologies, Comment. Math. Univ. Carolinae, **46(4)** (2005), 735–745.
- [4] W. Poreda, E. Wagner-Bojakowska, and W. Wilczyński, A category analogue of the density topology, Fund. Math., 125 (1985), 167-173.
- [5] R. Wiertelak, A generalization of density topology with respect to category, Real Anal. Exchange, **32(1)** (2006/2007), 273–286.
- [6] R. Wiertelak, About $\mathcal{I}(J)$ -approximately continuous functions, Period. Math. Hungar., (submitted).
- [7] W. Wilczyński, A generalization of density topology, Real Anal. Exchange, **8(1)** (1982-83), 16–20.

Jacek Hejduk, Renata Wiertelak