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CONTINUOUS FUNCTIONS IN
I(J)–DENSITY TOPOLOGIES

Abstract

This paper contains the properties of continuous functions equipped
with the I(J)–density topology or natural topology in the domain or
the range.

Let R be the set of reals and N stand for the set of natural numbers. Let
I be the σ–ideal of first category sets in R, S be the σ–algebra of sets having
the Baire property in R, and Tnat be the natural topology in R.

According to paper [4], we shall say that 0 is a density point with respect to
category of a set A ∈ S if the sequence {fn}n∈N = {χnA∩[−1,1]}n∈N converges
with respect to the σ–ideal I to the characteristic function χ[−1,1]. It means
that every subsequence of the sequence {fn}n∈N contains a subsequence con-
verging to the function χ[−1,1] everywhere except for a set of the first category.
For J = [a, b] let us put

s(J) =
1

2
(a+ b),

h(A, J)(x) = χ 2
|J| (A−s(J))∩[−1,1](x),

where A + z = {a + z : a ∈ A}, αA = {αa : a ∈ A} for z, α ∈ R, A ⊂ R.
By J = {Jn}n∈N we shall denote a non–degenerate sequence of intervals
tending to zero, that means

lim
n→∞

s(Jn) = 0 ∧ lim
n→∞

|Jn| = 0.
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If a sequence of intervals J = {Jn}n∈N is tending to zero and Jn ⊂ [0,∞)
(Jn ⊂ (−∞, 0]) for n ∈ N, then we say that the sequence J is tending to
zero from the right (left) side.

The point 0 is called an I(J)–density point of a set A ∈ S if

h(A, Jn)(x)
I−→

n→∞
χ[−1,1](x).

It means that

∀
{nk}k∈N

∃
{nkm}m∈N

∃
Θ∈I

∀
x/∈Θ

h(A, Jnkm
)(x) −→

m→∞
χ[−1,1](x).

It is obvious that 0 is an I(J)–density point of a set A ∈ S if and only if

∀
{nk}k∈N

∃
{nkm}m∈N

lim sup
m→∞

(
[−1, 1] \ (A− s(Jnkm

))
2

|Jnkm
|

)
∈ I.

We shall say that a point x0 ∈ R is an I(J)–density point of a set A ∈ S
if and only if 0 is an I(J)–density point of the set A− x0.

A point x0 ∈ R is an I(J)–dispersion point of a set A ∈ S if and only if x0

is an I(J)–density point of the complementary set A′.
It is easy to see that if Jn =

[
− 1

n ,
1
n

]
for n ∈ N, then x0 is an I(J)–density

point of a set A ∈ S if and only if x0 is an I–density point of A (see [4]).

When Jn =
[
− 1

sn
, 1
sn

]
for n ∈ N, where 〈s〉 = {sn}n∈N is an unbounded and

nondecreasing sequence of positive real numbers, then the notion of the I(J)–
density point of a set A ∈ S is equivalent to the notion of the 〈s〉–density point
of A (see [2]).

If A ∈ S, then we denote

ΦI(J)(A) = {x ∈ R : x is an I(J)–density point of A}.

Theorem 1. (cf [5]) If J = {Jn}n∈N is a sequence of intervals tending to zero,
then the operator ΦI(J) : S → S is the lower density operator on (R,S, I) and
the family

TI(J) = {A ∈ S : A ⊂ ΦI(J)(A)}.
is a topology on R, which will be called an I(J)–density topology, such that
Tnat ⊂ TI(J).

If J = {Jn}n∈N, where Jn = [an, bn], is a sequence of intervals tending to
zero and m ∈ R \ {0}, then mJ = {mJn}n∈N, where mJn = [man,mbn] for
m > 0 and mJn = [mbn,man] for m < 0, is the sequence of intervals tending
to zero as well.

From the definition of an I(J)–density point and an I(J)–density topology
it is easy to conclude the following property.
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Property 2. If J = {Jn}n∈N is a sequence of intervals tending to zero, then
for every set A ∈ S the following properties holds:

(i) ∀
x∈R

∀
a∈R

x ∈ ΦI(J)(A)⇔ (x+ a) ∈ ΦI(J)(A+ a);

(ii) ∀
x∈R

∀
m 6=0

x ∈ ΦI(J)(A)⇔ mx ∈ ΦI(mJ)(mA);

(iii) ∀
a∈R

A ∈ TI(J) ⇔ (A+ a) ∈ TI(J);

(iv) ∀
m 6=0

A ∈ TI(J) ⇔ mA ∈ TI(mJ).

Also the next property is a consequence of an I(J)–density point.

Property 3. (cf [5]) If J = {Jn}n∈N is a sequence of intervals tending to
zero, then the point 0 is an I(J)–density point of the set

Ak = {0} ∪
⋃
n≥k

int(Jn),

for every k ∈ N. Moreover Ak ∈ TI(J).

Likewise in the case of an I–density topology (see [1], [7]) the following
property of an I(J)–density topology holds.

Property 4. A set A is compact with respect to an I(J)–density topology if
and only if A is finite.

Much more interesting properties of I(J)–density topologies can be found
in the papers [5], [6]. We recall those of them which are necessary in further
considerations.

Theorem 5. (cf [6]) If J = {Jn}n∈N is a sequence of intervals tending to zero
from the right (left) side, then every set [a, b) ((a, b]), for a, b ∈ R and a < b,
belongs to the topology TI(J) whereas every set (a, b] ([a, b)) is not the member
of the I(J)–density topology.

Theorem 6. (cf [5]) Let J = {Jn}n∈N, where Jn = [an, bn] for n ∈ N, be a
sequence of intervals tending to zero and

Ki
n =

[
an +

i− 1

l0
(bn − an), an +

i

l0
(bn − an)

]
,

for n ∈ N, l0 ∈ N, i ∈ {1, . . . , l0}. Then the family
{
Ki

n

}
i∈{1,...,l0},n∈N

ordered

in the sequence

K =
{
K1

1 ,K
2
1 , . . .K

l0
1 ,K

1
2 ,K

2
2 , . . . ,K

l0
2 , . . .

}
is tending to zero and TI(J) = TI(K).
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Let J = {Jn}n∈N be a sequence of intervals tending to zero. Then we
obtain four families of continuous functions defined as follows:

Cnat,nat ={f : (R, Tnat)→ (R, Tnat)}
Cnat,I(J) ={f : (R, Tnat)→ (R, TI(J))}
CI(J),nat ={f : (R, TI(J))→ (R, Tnat)}
CI(J),I(J) ={f : (R, TI(J))→ (R, TI(J))}.

Functions of the family CI(J),nat will be called I(J)–approximately contin-
uous functions and functions of CI(J),I(J) will be called I(J)–continuous.

Property 7. The family Cnat,I(J) consists of constant functions.

Proof. Let f ∈ Cnat,I(J) and a, b ∈ R such that a < b. Then f([a, b]) is
nonempty, compact and connected set with respect to the topology TI(J). By
Property 4 this compact set is finite. Moreover the set f([a, b]) is connected
and as a result f(a) = f(b). For that reason the function f is constant and
the proof is completed.

The next property is an easy consequence of the inclusion Tnat ⊂ TI(J).

Property 8. For every sequence of intervals J the following inclusions holds:

(i) Cnat,I(J) ⊂ Cnat,nat ⊂ CI(J),nat

(ii) Cnat,I(J) ⊂ CI(J),I(J) ⊂ CI(J),nat.

Moreover inclusions Cnat,I(J) ⊂ Cnat,nat and Cnat,I(J) ⊂ CI(J),I(J) are
proper. Indeed, the identical function is the member of Cnat,nat and CI(J),I(J)

but not Cnat,I(J).

Property 9. If J = {Jn}n∈N is a sequence of intervals tending to zero from
the right or left side, then:

(i) Cnat,nat \ CI(J),I(J) 6= ∅;

(ii) CI(J),I(J) \ Cnat,nat 6= ∅.

Proof. Let us suppose that the sequence J is tending to zero from the right
side. To show the first inclusion we consider the function f(x) = −x2. Ob-
viously f ∈ Cnat,nat. This and inclusion Cnat,nat ⊂ CI(J),nat imply that
f ∈ CI(J),nat. Further the set A = [−1, 1) ∈ TI(J) (by Theorem 5), whereas
f−1(A) = [−1, 1] /∈ TI(J). It means that f /∈ CI(J),I(J).
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To prove the second inclusion we define the function

h(x) = x− k for x ∈ [k, k + 1), k ∈ Z.

It is easy to see that for every set B ⊂ R holds

h−1(B) =
⋃
k∈Z

(
(B ∩ [0, 1)) + k

)
.

Thus for every set B ∈ TI(J) we have that h−1(B) ∈ TI(J) (by Theorem 5
and Property 2). Therefore h ∈ CI(J),I(J). Moreover inclusion CI(J),I(J) ⊂
CI(J),nat implies that f ∈ CI(J),nat. Simultaneously

h−1

((
−1,

1

2

))
=
⋃
k∈Z

[
k, k +

1

2

)
/∈ Tnat.

Hence h /∈ Cnat,nat and inclusion (ii) is proper.
If J is tending to zero from the left side, then we consider the sets A =

(−1, 1], B =
(

1
2 , 2
)

and the functions f(x) = x2, h(x) = x−k for x ∈ (k, k+1],
k ∈ Z.

An immediate consequence of this proof is the following corollary.

Corollary 10. Let J = {Jn}n∈N be a sequence of intervals tending to zero
from the right or left side. Then the inclusions

(i) CI(J),I(J) ⊂ CI(J),nat

(ii) Cnat,nat ⊂ CI(J),nat

are proper.

Let J = {Jn}n∈N and K = {Kn}n∈N be sequences of intervals. Then
the sequence ordered in an arbitrary fashion containing all intervals of the
sequences J and K, denoted by J ∪K, is called the union of sequences J
and K.

Remark 11. If J and K are sequences tending to zero, then the sequence
J ∪ K is also tending to zero. It is evident from the definition of an I(J)–
density point that an I(J ∪K)–density topology is independent of the ordering
of intervals in the sequence J ∪K.

Property 12. If J = {Jn}n∈N and K = {Kn}n∈N are sequences of intervals
tending to zero, then

TI(J∪K) = TI(J) ∩ TI(K).
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Properties 12 and 7 yields to the following property.

Property 13. Let J = {Jn}n∈N and K = {Kn}n∈N be sequences of intervals
tending to zero. Then

(i) CI(J),nat ∩ CI(K),nat = CI(J∪K),nat;

(ii) Cnat,I(J) ∩ Cnat,I(K) = Cnat,I(J∪K);

(iii) CI(J),I(J) ∩ CI(K),I(K) ⊂ CI(J∪K),I(J∪K).

Moreover there are sequences J and K for which

CI(J∪K),I(J∪K) \
(
CI(J),I(J) ∩ CI(K),I(K)

)
6= ∅.

Proof. The conditions (i), (ii) and the inclusion (iii) are evident. We prove
that CI(J∪K),I(J∪K) \

(
CI(J),I(J) ∩ CI(K),I(K)

)
is non–empty. Putting Jn =[

0, 1
n

]
, Kn =

[
− 1

n , 0
]

for n ∈ N we obtain the sequences J = {Jn}n∈N and K =
{Kn}n∈N of intervals tending to zero. By Theorem 6 the topology TI(J∪K)

is the I–density topology. Hence the function f(x) = −x belongs to the
family CI(J∪K),I(J∪K). Since the sequence J is tending to zero from the right
side, thus [0, 1) ∈ TI(J), whereas f−1([0, 1)) = (−1, 0] /∈ TI(J) (by Theorem
5). It implies that f /∈ CI(J),I(J). Using similar argument we can show that
f /∈ CI(K),I(K).

Now we will investigate I(J)–continuity of a function f(x) = ax.

Theorem 14. A function f(x) = ax is I(J)–continuous for every sequence
of intervals J = {Jn}n∈N tending to zero if and only if a ∈ {0, 1}.

Proof. Sufficiency is obvious because the constant function and the identity
function are I(J)–continuous for every sequence J tending to zero.

Necessity. If a < 0, then for every sequence J tending to zero from the
right side the function f is not I(J)–continuous. Indeed, if we consider the
set A = [0, 1), then A ∈ TI(J) and f−1(A) = (−a, 0] /∈ TI(J) by Theorem 5.
Thus the function f is not I(J)–continuous.

If a > 0 and a 6= 1, then we define Jn = [b2n+1, b2n], where b = min{a, a−1},
and put J = {Jn}n∈N. The sequence J is tending to zero and by Property 3
the set

A = {0} ∪
⋃
n∈N

(
b2n+1, b2n

)
belongs to the topology TI(J), whereas

f−1(A) = {0} ∪
⋃
n∈N

(
a−1b2n+1, a−1b2n

)
⊂ R \

⋃
n∈N

Jn.
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It shows that 0 is the I(J)–density point of the set
(
R \ f−1(A)

)
⊃
⋃

n∈N Jn.
It implies that 0 is not the I(J)–density point of the set f−1(A). Therefore
f−1(A) /∈ TI(J). It follows that f is not the I(J)–continuous function.

The following corollary is an immediate consequence of the last proof.

Corollary 15. For an arbitrary number a ∈ R \ {0, 1} there exists a sequence
of intervals J = {Jn}n∈N tending to zero and a set A such that A ∈ TI(J) and
a−1A /∈ TI(J).

Theorem 16. For any sequence of intervals J = {Jn}n∈N tending to zero and
any number a 6= 0 the function f(x) = ax is I(J)–continuous if and only if
TI(J) ⊂ TI(aJ).

Proof. Necessity. Let A ∈ TI(J). By the I(J)–density continuity we have
that

f−1(A) = a−1A ∈ TI(J).

Theorem 2 implies that A ∈ TI(aJ). Hence TI(J) ⊂ TI(aJ).
Sufficiency. Let A ∈ TI(J) and a 6= 0. Then A ∈ TI(aJ) and by Property

2 (iv) we have that a−1A ∈ TI(J). Since f−1(A) = a−1A, therefore f−1(A) ∈
TI(J). It follows that the function f is I(J)–continuous.
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analogue of the density topology, Fund. Math., 125 (1985), 167-173.

[5] R. Wiertelak, A generalization of density topology with respect to category,
Real Anal. Exchange, 32(1) (2006/2007), 273–286.

[6] R. Wiertelak, About I(J)–approximately continuous functions, Period.
Math. Hungar., (submitted).
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