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CONVERGENCE OF AUTOMORPHISMS
AND SEMICONTINUITY OF
AUTOMORPHISM GROUPS

Abstract

We study the compactness of the automorphism group of a domain
in C", and in particular the convergence properties of mappings. We
supply an application to the semicontinuity of automorphism groups
under perturbation of the underlying domain. Relevant examples are
provided.

1 Introduction

A domain € in C™ is a connected, open set. An automorphism of Q is a
biholomorphic self-map. The collection of automorphisms forms a group under
the binary operation of composition of mappings. The standard topology
on this group is uniform convergence on compact sets, or the compact-open
topology. We denote the automorphism group by Aut(2). When Q is a
bounded domain, the group Aut(f?) is a real (never a complex) Lie group.
Although domains with transitive automorphism group are of some interest,
they are relatively rare (see [9, Section I11.3]). A geometrically more natural
condition to consider, and one that gives rise to a more robust and broader
class of domains, is that of having non-compact automorphism group. Clearly
a domain has non-compact automorphism group if there are automorphisms
{¢;} which have no subsequence that converges to an automorphism. The
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following proposition of Henri Cartan is of particular utility in the study of
these domains:

Proposition 1.1. Let Q@ C C™ be a bounded domain. Then ) has non-
compact automorphism group if and only if there are a point X € ), a point
P € 09, and automorphisms ¢; of 2 such that ¢;(X) — P as j — oo.

We refer the reader to [14, p. 65] for discussion and proof of Cartan’s result.

We say that a domain  C C™ has C* boundary, k > 1 an integer, if it is
possible to write

Q={zeC":p(z) <0}
for a function p that is C* and which satisfies Vp # 0 on 9. This definition
is equivalent to a number of other natural definitions of C* boundary for a
domain (see the Appendices in [11]). Below we shall define a topology on the
collection of domains with C* boundary.

Domains with compact automorphism group exhibit certain rigidities which
are of interest for our studies. We begin this paper by showing that, for certain
smoothly bounded domains with compact automorphism group, the conver-
gence of automorphisms will take place in a much stronger topology than the
standard one specified in the first paragraph. This fact has intrinsic interest,
but is also of considerable use for further studies in complex function theory.
It is even new in the context of one complex variable.

As an application of the ideas in the last paragraph, we offer a new result
about the semicontinuity of the automorphism group under perturbation of
the underlying domain. This generalizes results of [7]. We also offer a direct
generalization of the result of [7, Theorem 0.1] to finite type domains. Some
of the proof techniques presented here are new.

It is a pleasure to thank the referee for many useful suggestions.

2 Convergence of holomorphic mappings

Throughout this section, and in subsequent parts of the paper, we shall use
the concept of finite type as developed by Kohn/Catlin/D’Angelo. See [11,
Section 11.5] for an explication of these ideas. For completeness we supply the
relevant definitions here.

Definition 2.1. Let Q = {z € C?: p(z) < 0} be a smoothly bounded domain
and P € 0. Let m be a non-negative integer. We say that 0f) is of finite
type m at P if the following condition holds: there is a non-singular complex
analytic disc ¢ tangent to 9Q at P (with ¢(0) = P and ¢’(0) # 0) such that,
for small ¢,

lpe¢(Q) < CI¢I™.
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But there is no non-singular disc ¢ tangent to 9Q at P such that (0) = P,
¥'(0) # 0, and, for small ¢,

lpod(¢)] < CJ¢|m Y,

We note that the definition just given, which is sometimes called geometric
finite type, is equivalent to another definition involving commutators of vector
fields (and which is called analytic finite type). Details may be found in [11,
Section 11.5].

The definition of finite type in higher dimensions (due to J. P. D’Angelo)
is more complex. We give it in three steps.

Definition 2.2. Let f be a scalar-valued holomorphic function of a complex
variable and P a point of its domain. The multiplicity of f at P is defined to
be the least positive integer k such that the k** derivative of f does not vanish
at P. If m is that multiplicity then we write vp(f) = v(f) = m.

If ¢ is instead a vector-valued holomorphic function of a complex variable
then its multiplicity at P is defined to be the minimum of the multiplicities of
its entries. If that minimum is m then we write vp(¢) = v(¢) = m.

Definition 2.3. Let ¢ : D — C" be a holomorphic curve and p the defining
function for a smoothly bounded domain 2. Then the pullback of p under ¢

is the function ¢*p(¢) = po ¢(C).

Definition 2.4. Let € be a smoothly bounded domain in C™ and 02 its
boundary. Let P € 0. Let p be a defining function for €2 in a neighborhood
of P. We say that P is a point of finite type (or finite 1-type) if there is a
constant C' > 0 such that

v(¢*p)

v(¢)

whenever ¢ is a non-constant (possibly singular) one-dimensional holomorphic
curve through P such that ¢(0) = P.

The infimum of all such constants C' is called the type (or I- type) of P. It
is denoted by A(M, P) = A1(M, P).

<C

Again, the reference [11, Section 11.5] provides a thorough treatment, with
examples, of the concept of point of finite type.

It is a basic fact—see, for instance, [2, Main Theorem, p. 103] and the dis-
cussion in [11, Section 11.5]—that any automorphism of a smoothly bounded,
finite type domain  extends to be a C*° diffeomorphism of the closure of
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the domain € to itself.! Thus it is natural in the present context to equip
the automorphism group with a different topology which we shall call the C*
topology. Fix k a positive integer. Let € > 0. If ¢y € Aut(£2) then a subbasic
neighborhood of ¢ is one of the form

[e%

U, (po) = {ap € Aut(Q) : ’({ia (p — o) (2)| < eforall ze€

and all multi-indices o with |o| < k} .

It is easy to see that, with this topology, Aut(2) is still a real Lie group (see
[10, Section V.2]) when € is a bounded domain.
Our first result of this section is as follows:

Proposition 2.5. Let Q) C C" be a bounded finite type domain with compact
automorphism group in the C* topology, k > 0 an integer. Let o be a multi-
index such that |a| < k. Then there is a positive, finite constant K, such
that

aa

sup
Z€EQ

for all p € Aut(2).

The point here is that we have a uniform bound on the ath derivative of
all automorphisms of 2, that bound being valid up to the boundary. A result
of this kind was proved in [7, Proposition 5.1] for the automorphism group
of a strongly pseudoconver domain considered in the compact-open topology.
That proof was rather complicated, using Fefferman’s asymptotic expansion
for the Bergman kernel of a strongly pseudoconvex domain [4, Theorem 2]
as well as the concept of Bergman representative coordinates [6, Section 4.2].
The proof presented here—for the C* topology—is much simpler, and works
in considerably greater generality.

PROOF. Suppose to the contrary that, for some fixed multi-index «, there is

no bound K,. Then there are a sequence ¢; of automorphisms of €2 and points
P; € ) such that

80&

’azasﬁj(Pj) — +00.

n fact the standard condition to guarantee such an extension to a diffeomorphism of
the closures is Bell’s Condition R—see [11, Section 11.5]. Condition R is guaranteed by a
subelliptic estimate for the d-Neumann problem, and that condition is known to hold on
domains of finite type.
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But Aut(Q) is compact, so there is a subsequence ¢;, that converges in the
C* topology to a limit automorphism ¢g. Let

(6%
Lo = —
=238 g ol

b

which is finite because 2 is finite type.
Let € > 0. Choose K so large that

604
for k£ > K. Choose M so large that

o o
i (e) — s <

for all m > M, z € Q. It then follows that, for ¢ > max(K, M),

> Lo+e.

aa
‘M%(sz)

This is impossible. O

The next result relates our different topologies on the automorphism group
in an important new way.

Proposition 2.6. Let k be a positive integer. Let §) be a smoothly bounded
domain on which

@@ S

for all p € Aut(Q), all z € 2, and all multi-indices o such that |«| < k. Then
any sequence ; of automorphisms that converges uniformly on compact sets
to a limit automorphism g in fact converges in the C*~! topology to .

o (z)’ < Ka (1.6.1)

Remark 2.7. As the previous result shows, the converse of this proposition
is true as well for finite type domains.

PROOF OF THE PROPOSITION. From (1.6.1), there is a constant K; so that
Vi (2)] < Kq

for all ¢ € Aut(f2), all j, and all z € Q. Let ¢ > 0. Choose a compact set
K C Q so large that if w € Q\ K then there is a line segment ¢,, connecting
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w to an element k,, € K (and parametrized by 7, (t) = (1 — t)w + tk,,) which
has length less than e/ K.
Now choose j so large that

lpi(2) — po(z)] <€ (1.6.2)
for all z € K. Choose a point w € Q\ K. Then

lpj(w) —po(w)| < pj(w) = pj(kw)l + [0j(kw) = po(kw)] + |¢o(kw) — o(w)]
= T4+ IT+IIT.

Now we know that I < e by (1.6.2). For I, notice that

lj(w) — ;i (kw)l

1
| oot a

K -
VR
= e.

A similar estimate obtains for I11.

In summary,

i (w) = @o(w)] < 3e.

This gives the uniform convergence estimate that we want for all points of 2.
That proves the result for k£ = 1.

Of course similar estimates may be applied to | (0% /02%)p;(w)—(0%/0z%)po(w)|
for any |a| < k. Thus we get convergence in the C*~! topology. O

Corollary 2.8. Let Q C C™ be a smoothly bounded domain on which au-
tomorphisms satisfy uniform bounds on derivatives as in (1.6.1). Let ¢; €
Aut(Q) be a sequence of automorphisms that converges uniformly on compact
sets to a limit automorphism ¢g. Then in fact ¢; — o uniformly on .

PRrOOF. This is a special case of the preceding result. O

Remark 2.9. Let © be a strongly pseudoconvex domain with real analytic
boundary which is not biholomorphic to the ball. Then the results on uniform
bounds of derivatives of automorphisms are particularly easy to prove. For
Aut(2) must be compact (see [15, Main Theorem, p. 253]). It is further
known—see [8]—that there is an open neighborhood U of ) such that every
automorphism (and its inverse, of course) analytically continues to U. It then
follows directly from Cauchy estimates that, if a is a multi-index, then

[e%

—_— <
pyes p(2)| < Ka
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for all ¢ € Aut(Q) and all 2z € Q.

It is possible to use Bergman representative coordinates (see [6, Section
4.2]) in a new fashion to obtain the uniform-bounds-on-derivatives result for
finite type domains in C? in the compact-open topology. More precisely,

Theorem 2.10. Let Q C C? be a smoothly bounded, finite type domain in
C? with compact automorphism group in the compact-open topology. Let o
be a multi-index. Then there is a constant K, > 0 so that

aa
— <
o (s) < Ko

for all ¢ € Aut(Q) and all z € Q.

ProOF. For a fixed w € Q, let 4,, denote the Dirac delta mass at w. Then of
course

K(z,w) = P(6,)(2) (1.10.1)

for all z € Q, where K is the Bergman kernel for 2 and P the Bergman
projection.
Now, by a well-known formula of Kohn (see [12, Section 7.9]),

P=1-0 NO.

Here N is the -Neumann operator. It follow that P is hypoelliptic up to the
boundary (again see [12, Sections 7.8, 7.9]).

Let U be a tubular neighborhood of 992. Let L CC 2 be a compact set so
that L C U. Now pick w € OL. So there will be an r» > 0, with r greater
than the radius of U, so that K(-,w) is smooth on QN B(w, 7).

Now assume that w € U N Q. Let w be the point of ) that is nearest
to w. Then, because we are in complex dimension 2, (see [1, Theorem 3.1])
there is a holomorphic peak function? fgz for w. We may replace fgz(z) with
[9 + f&(2)]/10 so that our peak function does not vanish on . Continue to

2The construction of peaking functions in [1, Theorem 3.1] is quite difficult and technical.
It amounts to a delicate scaling procedure. An alternative approach to the matter, using
entire functions that grow at a certain rate at infinity, appears in [5]. The paper [1] proves
the peak point result for domains with real analytic boundary. The paper [5] proves the
result for finite type domains.
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denote the peak function by fz. Then we may write
= P(dw)(2)
- | K08,

1
- /QK(z,C);(aj)- (M) “XB(w,n;) (€ dV ().

K(z,w)

Here xs denotes the characteristic function of the set S. In the right-hand
part of this last sequence of equalities, the a; are positive numbers that sum to
1 and €y is the volume of the unit ball in R* ~ C? (see [11, Section 1.4]). [We
are simply invoking here the mean value property of a holomorphic function
on balls.] Also the n; are an increasing sequence of finitely many positive radii
with the largest of them equalling the distance 7 of w to 9.

Now this last equals

/Q K2, Qe FH(Q) dV(Q) + E(zw) = fi(2) + E(zw),

where ¢ > 0 is a constant, j (interpreted as a power) is a suitably chosen
positive integer, and £(z,w) is an error term. Now we know that the first
term in this last displayed expression does mot vanish on € intersect a ball
about w that has radius larger than 7 and the error term is negligible in
this regard—because the Bergman projection of Zj o (7]4—194) XB(“,mj)(O is,
by inspection, approximated closely in the uniform topology by the dilated
peaking function.

Thus Bergman representative coordinates (see [6, Section 4.2] for this con-
cept), which are given by

9 K(Z,C)’
:Tl
o, PECO

are well defined on 3, N Q with 8,, = B(w, 7’) for some 7/ > 7. And the size
of bj,., may be taken to be uniformly bounded, independent of w, just by the
noted regularity properties of the Bergman kernel. Of course L N &, # 0.
Now fix a multi-index a. Then certainly [(0%/0z%)p(z)| is bounded by
some M, for all ¢ € Aut(2) and all z € L. But then the Bergman repre-
sentative coordinates enable us to realize each automorphism as a linear map
(namely, the Jacobian—again see [6, Section 4.2]) on £, N 2. And the size of
the coefficients of these linear maps depends only on the Jacobian of the au-
tomorphism at the center of the ball. Of course the center of the ball lies in a

bjw(z)
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compact subset of 2, so these Jacobians have uniformly bounded coefficients.
The conclusion then is that |(0%/0z*)¢(z)]| is uniformly bounded on L U f,,.
And the bound is independent of w. Remembering that w is an arbitrary
element of L, we see that |(0%/0z%)p(2)]| is uniformly bounded on all of €,
uniformly for all ¢ € Aut(Q). O

3 Topologies on domains

Let Q = {z € C": p(z) < 0} be a domain with C* boundary. Let ¢ > 0. We
define an e-neighborhood of © in the C* topology to be a set of the form

Ene = {0 SO0 = (e C () <Ohand [ lon <)

Note particularly that £q ¢ is a set of domains. Our semicontinuity results
below will be formulated in terms of this topology on the collection of domains
with C* boundary. In particular, when we speak of a “small C* perturbation
of 2,” we mean a domain selected from £,  with e > 0 small. For convenience,
when € is an element of Eq ., then we say that €’ has C* distance less than
€ from Q.

4 The semicontinuity theorem

Now one of the main results of this paper is the following:

Theorem 4.1. Let € be a smoothly bounded, finite type domain in C? which
has compact automorphism group in the compact-open topology. Let k an
integer be sufficiently large. Then there is an € > 0 so that if ' is a smoothly
bounded, finite type domain with C* distance less than e from €2, then Aut (')
can be realized as a subgroup of Aut(Q2). By this we mean that there is a
smooth diffeomorphism ® : Q' — Q) so that

pr— Popod !
is a univalent homomorphism of Aut(Q') into Aut(Q).
PROOF. The proof of this result is standard (see [7, Theorem 0.1], so we only

sketch the steps.

Step 1: There is a Riemannian metric, smooth on £, which is invariant under
any automorphism of . We construct this metric simply by averaging the
Euclidean metric with respect to Haar measure on the automorphism group
of Q. In order for the resulting metric to be smooth to the boundary, we must
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invoke the uniform bounds on automorphism derivatives that we proved in
Section 2.

Step 2: The metric in Step 1 can be modified so that it is a product metric
near the boundary, and still invariant. This is a standard construction from
Riemannian geometry, and we omit the details.

Step 3: We may form the metric double Q of Q, and the resulting metric is
smooth on 2.

Step 4: Any automorphism of Q can now be realized as an isometry of Q.

Step 5: By a classical result of David Ebin [3, Section 1], there is a semicon-
tinuity result for isometries of compact Riemannian manifolds. We may apply
this result to the isometry group of €. In particular, any smooth deformation
Q' of Q gives rise to a smooth deformation €’ of Q and hence to a deformation
of the invariant metric on ). Thus we may compare the isometry group of the
perturbed metric to the isometry group of the original metric.

Step 6: We may unravel the construction to see that Step 5 may be interpreted
to say that the automorphism group of €’ is a subgroup of the automorphism
group of €2, and we may extract the conjugation map ® from the conjugation
map provided by Ebin’s theorem.

That completes the argument. O

Since we introduced the C* metric for the space of automorphisms, it is
worthwhile to formulate a result for that topology. We have:

Theorem 4.2. Let 2 be a smoothly bounded, finite type domain in C™.
Equip Aut(Q) with the C* topology, some integer k > 0. Assume that § has
compact automorphism group in the C* topology. Then there is an € > 0 so
that if Q' is a smoothly bounded, finite type domain with C™ distance less
than e from  (with m < k), then Aut(QY') can be realized as a subgroup of
Aut(§2). By this we mean that there is a smooth mapping ® : Q' — ) so that

pr— Popo ot
is a univalent homomorphism of Aut(Y') into Aut(€2).
PROOF. The proof is just the same as that for the last theorem. The main
point is to have a uniform bound for derivatives of automorphisms (Proposition

2.5), so that the smooth-to-the-boundary invariant metric can be constructed.

O
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5 Some examples

In this section we provide some examples which bear on the context of Theo-
rems 3.1 and 3.2.

Example 5.1. Let
Q= DB(0,2)\ B(0,1).

Then € is a bounded domain, but it is not pseudoconvex.

Of course any automorphism of  continues analytically to B(0,2). But
it also must preserve S; = {7z : |z| = 1} and Sy = {z : |z| = 2}. It follows
that Aut(Q2) = U(n). Now an obvious Lie subgroup of U(n) is SU(n). But
SU(n) has precisely the same orbits as U(n)—in fact the orbit of any point
in Sy is Sy itself and the orbit of any point in S; is S itself. It follows
that there is no domain that is “near” to € in any C* topology and with
automorphism group that is precisely SU(n). Therefore an obvious sort of
converse to Theorems 4.1, 4.2 fails in this case. That is to say, not every
closed subgroup of the automorphism group of Q2 arises as the automorphism
group of a nearby domain.

We note, however, that with suitable hypotheses (including strong pseu-
doconvexity), there is a sort of converse to Theorem 4.1—see [13, Section 1].

Example 5.2. If we do not mandate that the domain €2 have smooth bound-
ary, then Theorems 3.1 and 3.2 need not be true. As a simple example,
consider

Q={zeC":0<|z] <1}.

Of course this €2 is not pseudoconvex and does not have a smooth defining
function (so does not have smooth boundary by our reckoning). The auto-
morphism group of Q is U(n). A “small” perturbation of 2 is Q' = B =
{#z € C" : |z| < 1}. But the automorphism group of €' is much larger than
U(n) (it includes U(n), but it also includes the Mobius transformations). So
semicontinuity of automorphism groups fails.

6 Closing remarks

The idea of semicontinuity for automorphism groups is an important paradigm
that has far-reaching applicability in geometry. In any situation where sym-
metries are considered, one may formulate the idea of semicontinuity. The
basic idea is that symmetry is hard to create but easy to destroy: small per-
turbations can and will reduce symmetry, but it takes a large perturbation to
create symmetry.
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In the present paper we have taken a fundamental theorem of [GK1, Theo-
rem 0.1] in the strongly pseudoconvex setting and extended it in various ways
to the finite type setting. It would be interesting to know whether the result is
true in complete generality. Even more interesting would be an example—say
in the infinite type context—in which semicontinuity fails.

We hope to explore these matters further in future papers.
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