Surjit S. Khurana, Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, U. S. A. email: khurana@math.uiowa.edu

INTEGRAL REPRESENTATIONS FOR A CLASS OF OPERATORS ON L_E^1

Abstract

Let (X,\mathcal{A},μ) be a finite measure space, E a locally convex Hausdorff space, L_E^1 the space of functions $f:X\to E$ which are μ -integrable by semi-norms, $P(\mu,E)$ the space of Pettis integrable functions and $P_1(\mu,E)$ those elements of $P(\mu,E)$ which are measurable by semi-norms. We prove that a linear continuous mapping $T:L_E^1\to E$ is of the form $T(f)=\int gfd\mu \ (g\in L^\infty)$ if and only if h(T(f))=0 whenever $h\circ f=0$ for any $f\in L_E^1, h\in E'$. Similar results are proved for $P(\mu,E)$ and $P_1(\mu,E)$.

1 Introduction and notation

In this paper R stands for the set of real numbers, K will denote the field of real or complex numbers (we will call them scalars), (X, \mathcal{A}, μ) a finite measure space and E a locally convex space space over K with topology generated by an increasing and closed under multiplications with positive real numbers family of semi-norms $\|.\|_p$, $p \in P$; E' will denote the topological dual of E. If $x \in E$ and $f \in E'$ then f(x) will also be denoted by $\langle x, f \rangle$ or $\langle f, x \rangle$. For a $p \in P$, $V_p = \{x \in E : \|x\|_p \leq 1\}$; polars will be taken in the duality $\langle E, E' \rangle$. For locally convex spaces, the notation and results of [6] will be used. For measure theory, notation and results of ([2], [1], [7], [8], [3] are used. All locally convex spaces are assumed to be Hausdorff and over K. L^1 will denote the space of μ -integrable functions and L^∞ will denote the space of μ essentially bounded functions. As done in ([1], p. 95), the locally convex space L^1_E will denote the

Mathematical Reviews subject classification: Primary: 46G10, 28C05, 28A32; Secondary: 28A40

Key words: Pettis integration, perfect measure, integrable by semi-norms Received by the editors October 28, 2010 Communicated by: Brian S. Thomson

space of functions $f: X \to E$ which are μ -integrable by semi-norms. $P(\mu, E)$ denote the locally convex space of Pettis integrable functions; its topology is generated by semi-norms: $||f||_p = \sup\{\int |h \circ f|_p : h \in V_p^{\circ}\}$. $P_1(\mu, E)$ denotes the subspace of $P(\mu, E)$, with induced topology, consisting of those elements of $P(\mu, E)$ which are measurable by semi-norms.

In [4] an interesting result is proven about some special operator $T: L_E^1 \to E$ when E is a Banach space. In this paper we extend this result to the some cases when E is a locally convex space and give a different proof.

2 Main results

Theorem 1. ([4], Theorem 2.5) Let (X, \mathcal{A}, μ) be a finite measure space, E a locally convex space and $T: L_E^1 \to E$ a continuous linear operator. Then there is a $g \in L^{\infty}$ such that $T(f) = \int gfd\mu \Leftrightarrow \text{for any } f \in L_E^1 \text{ and } h \in E'$ with $h \circ f = 0$, we have $\langle h, T(f) \rangle = 0$.

Proof. (\Leftarrow) Fix an $x \in E$ and an $f \in L^1$. We first prove that $T(f \otimes x) = cx$ for some $c \in K$. If $T(f \otimes x) = 0$ there is nothing to prove. Assume $T(f \otimes x) = y$ where x and y are linearly independent. By Hahn-Banach theorem there is a $h \in E'$ with h(x) = 0, h(y) = 1. Now $< f \otimes x$, h >= 0 and so $< T(f \otimes x)$, h >= 0 a contradiction. Now we prove that for any $y, z \in E$, $y \neq 0, z \neq 0$, if $T(f \otimes y) = py$ and $T(f \otimes z) = qz$, then p = q. If y and z are linearly dependent, then there is nothing to prove. So assume that y, z are linearly independent. This means y, y - z are linearly independent. By Hahn-Banach theorem there is a $h \in E'$ with h(y) = 1, h(y - z) = 0. Now $< f \otimes (y - z), h >= 0$ and so $< T(f \otimes (y - z), h >= 0$. But $< T(f \otimes (y - z), h >= p - q \neq 0$, a contradiction. Fix an $x \in E$, $x \neq 0$ and put $T((f \otimes x) = \nu(f)x$. It is easily verified that $\nu : L^1 \to K$ is continuous and so there is a $g \in L^\infty$ such that $\nu = g\mu$. Thus $T(.) = \int .g d\mu$ on $L^1 \otimes E$. Since $L^1 \otimes E$ is dense in L^1_E ([1], Theorem 3.1, p. 95), it is a simple verification that $T(.) = \int .g d\mu$ on L^1_E .

 (\Rightarrow) It is a trivial verification.

Now we consider the locally convex space $P(\mu, E)$ of Pettis integrable functions. Here we assume that the (X, \mathcal{A}, μ) is perfect—this will insure that simple functions are dense in $P(\mu, E)$ ([7]).

Theorem 2. ([4]) Let (X, A, μ) be a perfect finite measure space, E a locally convex space, $P(\mu, E)$ the locally convex space of Pettis integrable functions, and $T: P(X, E) \to E$ a continuous linear operator. Then there is a $g \in L^{\infty}$ such that $T(f) = \int gfd\mu \Leftrightarrow for \ any \ f \in P(X, E)$ and $h \in E'$ with $h \circ f = 0$, we have $\langle h, T(f) \rangle = 0$.

Proof. (\Leftarrow) Fix an $x \in E$ and an $f \in L^1$. We first prove that $T(f \otimes x) = cx$ for some $c \in K$. If $T(f \otimes x) = 0$ there is nothing to prove. Assume $T(f \otimes x) = y$ where x and y are linearly independent. By Hahn-Banach theorem there is a $h \in E'$ with h(x) = 0, h(y) = 1. Now $\langle f \otimes x, h \rangle = 0$ and so $\langle T(f \otimes x), h \rangle = 0$ 0 a contradiction. Now we prove that for any $y,z\in E, y\neq 0,z\neq 0$, if $T(f \otimes y) = py$ and $T(f \otimes z) = qz$, then p = q. If y and z are linearly dependent, then there is nothing to prove. So assume that y, z are linearly independent. This means y, y-z are linearly independent. By Hahn-Banach theorem there is a $h \in E'$ with h(y) = 1, h(y - z) = 0. Now $\langle f \otimes (y - z), h \rangle = 0$ and so $\langle T(f \otimes (y-z), h \rangle = 0$. But $\langle T(f \otimes (y-z), h \rangle = p - q \neq 0$, a contradiction. Fix an $x \in E$, $x \neq 0$ and put $T((f \otimes x) = \nu(f)x$. It is easily verified that $\nu: L^1 \to K$ is continuous and so there is a $g \in L^\infty$ such that $\nu = g\mu$. Thus $T(.)=\int .\,g\,d\mu$ on $L^1\otimes E.$ Since $L^1\otimes E$ is dense in L^1_E ([1], Theorem 3.1, p. 95), it is a simple verification that $T(.) = \int g d\mu$ on L_E^1 .

 (\Rightarrow) It is a trivial verification.

In the locally convex space $P_1(X, E)$, simple functions are dense in $P_1(X, E)$ ([2]), and so proceeding as in Theorem 2, we get:

Theorem 3. Let (X, \mathcal{A}, μ) be a finite measure space, E a locally convex space, $P_1(\mu, E)$ the locally convex space of Pettis integrable functions which are measurable by semi-norms, and $T: P_1(X, E) \to E$ a continuous linear operator. Then there is a $g \in L^{\infty}$ such that $T(f) = \int gf d\mu \Leftrightarrow \text{for any } f \in P_1(X, E)$ and $h \in E'$ with $h \circ f = 0$, we have $\langle h, T(f) \rangle = 0$.

If F is another locally convex space whose topology is generated by increasing family of seminorms $\{q: q \in Q\}$ and $T: L_E^1 \to F$ a continuous mapping, then we get, in a canonical way, a unique measure $\nu: \mathcal{A} \to L(E, F)$ which is countably additive when the topology of pointwise convergence on E, with the original topology of F, is considered on L(E,F); also it is of finite semi-variation in the sense that, for every $q \in Q$, $\sup\{|\sum (\nu(A_i)(x_i)|_q\} < \infty$ as $\{A_i\}$ varies as a finite disjoint collection of elements from \mathcal{A} along with $\{x_i\} \subset E$ having $|x_i|_p \leq 1 \ \forall i$. Conversely given such a measure we get a unique continuous $T: L_E^1 \to F$. The Theorem 1 can now be stated in terms of this measure:

Theorem 4. ([4], Theorem 3.16) Let (X, \mathcal{A}, μ) be a finite measure space, E a locally convex space and $T:L^1_E \to E$ a continuous linear operator with $\nu: \mathcal{A} \to L(E,E)$ the associated measure. Then there is a finite measure λ absolutely continuous with respect to μ such that $(\nu(A))(x) = (\lambda(A))x$ for every $A \in \mathcal{A}$ and every $x \in E \Leftrightarrow For \ any \ f \in L^1_E$ and $h \in E'$ with $h \circ f = 0$, we have $\langle h, T(f) \rangle = 0$.

Acknowledgment. We are very thankful to the referee for making some very useful suggestions and also pointing out some errors.

References

- [1] Blondia, C., Integration in locally convex spaces, Simon Stevin, **55(3)**(1981), 81–102.
- [2] Diestel, J., Uhl, J. J., Vector Measures, Amer. Math. Soc. Surveys, Vol. 15, Amer. Math. Soc., 1977.
- [3] Geitz, Robert F., Pettis integration, Proc. Amer. Math. Soc. 82 (1981), no. 1, 81–86
- [4] Meziani, Lakhdar, Almezel, Saleh, Waly, Maha Noor, Integral structure of some bounded operators on $L_1(\mu, X)$, Int. J. Math. Anal., $\mathbf{2}(2008)$, 437-446.
- [5] Pallaris Ruiz, Antonio J. The space of Pettis integrable functions with relatively compact range (Spanish), Proceedings of the tenth Spanish-Portuguese conference on mathematics, III (Murcia, 1985), 385–391, Univ. Murcia, Murcia, 1985.
- [6] Schaefer, H. H., Topological Vector spaces, Springer Verlag 1986.
- [7] Talagrand, M., Pettis integration and measure theory, Memoirs Amer. math. Soc., 307(1984).
- [8] Thomas, G. E., Integration of functions with values in locally convex Suslin spaces, Trans. Amer. Math. Soc., 212(1975), 61–81.