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INTEGRAL REPRESENTATIONS FOR A
CLASS OF OPERATORS ON L1

E

Abstract

Let (X,A, µ) be a finite measure space, E a locally convex Hausdorff
space, L1

E the space of functions f : X → E which are µ-integrable
by semi-norms, P (µ,E) the space of Pettis integrable functions and
P1(µ,E) those elements of P (µ,E) which are measurable by semi-norms.
We prove that a linear continuous mapping T : L1

E → E is of the form
T (f) =

∫
gfdµ (g ∈ L∞) if and only if h(T (f)) = 0 whenever h ◦ f = 0

for any f ∈ L1
E , h ∈ E′. Similar results are proved for P (µ,E) and

P1(µ,E).

1 Introduction and notation

In this paper R stands for the set of real numbers, K will denote the field of
real or complex numbers (we will call them scalars), (X,A, µ) a finite measure
space and E a locally convex space space over K with topology generated by an
increasing and closed under multiplications with positive real numbers family
of semi-norms ‖.‖p, p ∈ P ; E′ will denote the topological dual of E. If x ∈ E
and f ∈ E′ then f(x) will also be denoted by< x, f > or< f, x >. For a p ∈ P ,
Vp = {x ∈ E : ‖x‖p ≤ 1}; polars will be taken in the duality < E,E′ >. For
locally convex spaces, the notation and results of [6] will be used. For measure
theory, notation and results of ([2], [1], [7], [8], [3] are used. All locally convex
spaces are assumed to be Hausdorff and over K. L1 will denote the space of
µ-integrable functions and L∞ will denote the space of µ essentially bounded
functions. As done in ([1], p. 95), the locally convex space L1

E will denote the
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space of functions f : X → E which are µ-integrable by semi-norms. P (µ,E)
denote the locally convex space of Pettis integrable functions; its topology is
generated by semi-norms: ‖f‖p = sup{

∫
|h ◦ f |p : h ∈ V ◦p }. P1(µ,E) denotes

the subspace of P (µ,E), with induced topology, consisting of those elements
of P (µ,E) which are measurable by semi-norms.

In [4] an interesting result is proven about some special operator T : L1
E →

E when E is a Banach space. In this paper we extend this result to the some
cases when E is a locally convex space and give a different proof.

2 Main results

Theorem 1. ([4], Theorem 2.5) Let (X,A, µ) be a finite measure space, E
a locally convex space and T : L1

E → E a continuous linear operator. Then
there is a g ∈ L∞ such that T (f) =

∫
gfdµ ⇔ for any f ∈ L1

E and h ∈ E′
with h ◦ f = 0, we have < h, T (f) >= 0.

Proof. (⇐) Fix an x ∈ E and an f ∈ L1. We first prove that T (f⊗x) = cx
for some c ∈ K. If T (f⊗x) = 0 there is nothing to prove. Assume T (f⊗x) = y
where x and y are linearly independent. By Hahn-Banach theorem there is a
h ∈ E′ with h(x) = 0, h(y) = 1. Now < f⊗x, h >= 0 and so < T (f⊗x), h >=
0 a contradiction. Now we prove that for any y, z ∈ E, y 6= 0, z 6= 0, if
T (f⊗y) = py and T (f⊗z) = qz, then p = q. If y and z are linearly dependent,
then there is nothing to prove. So assume that y, z are linearly independent.
This means y, y− z are linearly independent. By Hahn-Banach theorem there
is a h ∈ E′ with h(y) = 1, h(y − z) = 0. Now < f ⊗ (y − z), h >= 0 and so
< T (f⊗(y−z), h >= 0. But < T (f⊗(y−z), h >= p−q 6= 0, a contradiction.

Fix an x ∈ E, x 6= 0 and put T ((f ⊗ x) = ν(f)x. It is easily verified that
ν : L1 → K is continuous and so there is a g ∈ L∞ such that ν = gµ. Thus
T (.) =

∫
. g dµ on L1 ⊗ E. Since L1 ⊗ E is dense in L1

E ([1], Theorem 3.1, p.
95), it is a simple verification that T (.) =

∫
. g dµ on L1

E .
(⇒) It is a trivial verification.

Now we consider the locally convex space P (µ,E) of Pettis integrable func-
tions. Here we assume that the (X,A, µ) is perfect–this will insure that simple
functions are dense in P (µ,E) ([7]).

Theorem 2. ([4]) Let (X,A, µ) be a perfect finite measure space, E a locally
convex space, P (µ,E) the locally convex space of Pettis integrable functions,
and T : P (X,E) → E a continuous linear operator. Then there is a g ∈ L∞
such that T (f) =

∫
gfdµ ⇔ for any f ∈ P (X,E) and h ∈ E′ with h ◦ f = 0,

we have < h, T (f) >= 0.
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Proof. (⇐) Fix an x ∈ E and an f ∈ L1. We first prove that T (f⊗x) = cx
for some c ∈ K. If T (f⊗x) = 0 there is nothing to prove. Assume T (f⊗x) = y
where x and y are linearly independent. By Hahn-Banach theorem there is a
h ∈ E′ with h(x) = 0, h(y) = 1. Now < f⊗x, h >= 0 and so < T (f⊗x), h >=
0 a contradiction. Now we prove that for any y, z ∈ E, y 6= 0, z 6= 0, if
T (f⊗y) = py and T (f⊗z) = qz, then p = q. If y and z are linearly dependent,
then there is nothing to prove. So assume that y, z are linearly independent.
This means y, y− z are linearly independent. By Hahn-Banach theorem there
is a h ∈ E′ with h(y) = 1, h(y − z) = 0. Now < f ⊗ (y − z), h >= 0 and so
< T (f⊗(y−z), h >= 0. But < T (f⊗(y−z), h >= p−q 6= 0, a contradiction.

Fix an x ∈ E, x 6= 0 and put T ((f ⊗ x) = ν(f)x. It is easily verified that
ν : L1 → K is continuous and so there is a g ∈ L∞ such that ν = gµ. Thus
T (.) =

∫
. g dµ on L1 ⊗ E. Since L1 ⊗ E is dense in L1

E ([1], Theorem 3.1, p.
95), it is a simple verification that T (.) =

∫
. g dµ on L1

E .
(⇒) It is a trivial verification.

In the locally convex space P1(X,E), simple functions are dense in P1(X,E)
([2]), and so proceeding as in Theorem 2, we get:

Theorem 3. Let (X,A, µ) be a finite measure space, E a locally convex space,
P1(µ,E) the locally convex space of Pettis integrable functions which are mea-
surable by semi-norms, and T : P1(X,E) → E a continuous linear operator.
Then there is a g ∈ L∞ such that T (f) =

∫
gfdµ ⇔ for any f ∈ P1(X,E)

and h ∈ E′ with h ◦ f = 0, we have < h, T (f) >= 0.

If F is another locally convex space whose topology is generated by in-
creasing family of seminorms {q : q ∈ Q} and T : L1

E → F a continuous
mapping, then we get, in a canonical way, a unique measure ν : A → L(E,F )
which is countably additive when the topology of pointwise convergence on E,
with the original topology of F, is considered on L(E,F ); also it is of finite
semi-variation in the sense that, for every q ∈ Q, sup{|

∑
(ν(Ai)(xi)|q} < ∞

as {Ai} varies as a finite disjoint collection of elements from A along with
{xi} ⊂ E having |xi|p ≤ 1 ∀i. Conversely given such a measure we get a
unique continuous T : L1

E → F . The Theorem 1 can now be stated in terms
of this measure:

Theorem 4. ([4], Theorem 3.16) Let (X,A, µ) be a finite measure space, E
a locally convex space and T : L1

E → E a continuous linear operator with
ν : A → L(E,E) the associated measure. Then there is a finite measure λ
absolutely continuous with respect to µ such that (ν(A))(x) = (λ(A))x for
every A ∈ A and every x ∈ E ⇔ For any f ∈ L1

E and h ∈ E′ with h ◦ f = 0,
we have < h, T (f) >= 0.
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