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ON UNIFORMLY DISTRIBUTED
SEQUENCES OF AN INCREASING FAMILY

OF FINITE SETS IN
INFINITE-DIMENSIONAL RECTANGLES

Abstract

The concepts of uniformly distributed sequences of an increasing
family of finite sets and Riemann integrability are considered in terms
of the “Lebesgue measure” on infinite-dimensional rectangles in R∞ and
infinite-dimensional versions of famous results of Lebesgue and Weyl are
proved.

1 Introduction

Following [5], a sequence s1, s2, s3, · · · of real numbers from an interval [a, b] is
said to be equidistributed or uniformly distributed on that interval if the pro-
portion of terms contained in a subinterval [c, d] is proportional to the length
of that subinterval. Such sequences are studied in Diophantine approximation
theory and have applications to Monte Carlo integration (see, for example, [5],
[6], [12]).

Let R be the class of all infinite dimensional rectangles R of the form

R =

∞∏
i=1

[ai, bi], −∞ < ai < bi < +∞
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with 0 <
∏∞
i=1(bi − ai) < +∞, where

∞∏
i=1

(bi − ai) := lim
n→∞

n∏
i=1

(bi − ai).

In [1], a translation invariant Borel measure λ was constructed on R∞ such
that

λ(R) =

∞∏
i=1

(bi − ai)

for R ∈ R.
The purpose of the present paper is to consider the concept of a uniform

distribution in infinite-dimensional rectangles which can be used to calculate
Riemann integrals over such rectangles. Similar topics are discussed in [10].

The paper is organized as follows.
In Section 2, some auxiliary notions and facts due to Weyl [13] are con-

sidered. In Section 3, the main results of the paper are proved. In particular,
the infinite-dimensional versions of the famous results due to Lebesgue [9] and
Weyl [13] are proved.

2 Auxiliary notions and propositions

Definition 2.1. A bounded sequence s1, s2, s3, · · · of real numbers is said
to be equidistributed or uniformly distributed on an interval [a, b] if for any
subinterval [c, d] of [a, b] we have

lim
n→∞

#({s1, s2, s3, · · · , sn} ∩ [c, d])

n
=
d− c
b− a

,

where # denotes a counting measure.

Remark 2.1. For a ≤ c < d ≤ b, let ][c, d][ denote a subinterval of [a, b] that
has one of the following forms : [c, d], [c, d[, ]c, d[ or ]c, d]. Then it is obvious
that a bounded sequence s1, s2, s3, · · · of real numbers is equidistributed or
uniformly distributed on an interval [a, b] iff, for any subinterval ][c, d][ of
[a, b], we have

lim
n→∞

#({s1, s2, s3, · · · , sn}∩][c, d][)

n
=
d− c
b− a

.

Definition 2.2 (Weyl [13]). A sequence s1, s2, s3, · · · is said to be equidis-
tributed modulo 1 or uniformly distributed modulo 1 if the sequence (sn −
[sn])n∈N of the fractional parts of (sn)n∈N ’s is equidistributed (equivalently,
uniformly distributed) on the interval [0, 1].
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Example 2.1 ([5], Exercise 1.12, p. 16). The sequence of all multiples of an
irrational α

0, α, 2α, 3α · · ·

is uniformly distributed modulo 1.

Example 2.2 ([5], Exercise 1.13, p. 16). The sequence

0

1
,

0

2
,

1

2
,

0

3
,

1

3
,

2

3
, · · · , 0

k
, · · · , k − 1

k
, · · ·

is uniformly distributed modulo 1.

Example 2.3. The sequence of all multiples of an irrational α by successive
prime numbers

2α, 3α, 5α, 7α, 11α, · · ·

is equidistributed modulo 1. This is the famous theorem of analytic number
theory proved by I. M. Vinogradov in 1935 (see [16]).

Notation In the sequel, and as distinct from N. Bourbaki’s well known
notion, by N we understand the set {1, 2, · · · }.

Remark 2.2. If (sk)k∈N is uniformly distributed modulo 1, then

((sk − [sk])(b− a) + a)k∈N

is uniformly distributed on an interval [a, b).

The following assertion contains an interesting application of uniformly
distributed sequences for the calculation of Riemann integrals.

Lemma 2.1 (Weyl [13]). The following two conditions are equivalent:

(i) (an)n∈N is equidistributed modulo 1;

(ii) For every Riemann integrable function f on [0, 1]

lim
n→∞

1

n

n∑
j=1

f(aj) =

∫
[0,1]

f(x)dx.
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3 On uniformly distributed sequences of an increasing
family of finite sets in infinite-dimensional rectangles

Let s1, s2, s3, · · · be uniformly distributed on an interval [a, b]. Setting Yn =
{s1, s2, s3, · · · , sn} for n ∈ N, (Yn)n∈N will be an increasing sequence of finite
subsets of the [a, b] that, for any subinterval [c, d] of the [a, b], the following
equality

lim
n→∞

#(Yn ∩ [c, d])

#(Yn)
=
d− c
b− a

will be valid. This remark raises the following:

Definition 3.1. An increasing sequence (Yn)n∈N of finite subsets of [a, b] is
said to be equidistributed or uniformly distributed on an interval [a, b] if, for
any subinterval [c, d] of [a, b], we have

lim
n→∞

#(Yn ∩ [c, d])

#(Yn)
=
d− c
b− a

.

Definition 3.2. Let
∏
k∈N[ak, bk] ∈ R. A set U is called an elementary

rectangle in
∏
k∈N[ak, bk] if it admits the following representation

U =

m∏
k=1

][ck, dk][×
∏

k∈N\{1,··· ,m}

[ak, bk],

where ak ≤ ck < dk ≤ bk for 1 ≤ k ≤ m.

It is obvious that

λ(U) =

m∏
k=1

(dk − ck)×
∞∏

k=m+1

(bk − ak),

for the elementary rectangle U .

Definition 3.3. An increasing sequence (Yn)n∈N of finite subsets of an infinite-
dimensional rectangle

∏
k∈N[ak, bk] ∈ R is said to be uniformly distributed on∏

k∈N [ak, bk] if for every elementary rectangle U in
∏
k∈N[ak, bk[ we have

lim
n→∞

#(Yn ∩ U)

#(Yn)
=

λ(U)

λ(
∏
k∈N[ak, bk[)

.
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Theorem 3.1. Let
∏
k∈N[ak, bk] ∈ R. Let (x

(k)
n )n∈N be uniformly distributed

on the interval [ak, bk] for k ∈ N. We set

Yn =

n∏
k=1

(∪nj=1x
(k)
j )×

∏
k∈N\{1,··· ,n}

{ak}.

Then (Yn)n∈N is uniformly distributed in the rectangle
∏
k∈N[ak, bk].

Proof. Let U be an elementary rectangle in
∏
k∈N[ak, bk].

Since (x
(k)
n )n∈N is uniformly distributed on the interval [ak, bk] for k ∈ N,

by Remark 2.1 we have

lim
n→∞

#({x(k)1 , x
(k)
2 , · · · , x(k)n }∩][ck, dk][)

n
=
dk − ck
bk − ak

.

Hence

lim
n→∞

#(Yn ∩ U)

#(Yn)
= lim
n→∞

m∏
k=1

#({x(k)1 , x
(k)
2 , · · · , x(k)n }∩][ck, dk][)

n
=

=

m∏
k=1

lim
n→∞

#({x(k)1 , x
(k)
2 , · · · , x(k)n }∩][ck, dk][)

n
=

=

m∏
k=1

dk − ck
bk − ak

=
λ(U)

λ(
∏
k∈N [ak, bk])

.

Remark 3.1. In the context of Theorem 3.1, it is natural to ask whether there
exists an increasing sequence of finite subsets (Yn)n∈N such that

lim
n→∞

#(Yn ∩ U)

#(Yn)
=

λ(U)

λ(
∏
k∈N[ak, bk])

for every infinite-dimensional rectangle U =
∏
k∈NXk ⊂

∏
k∈N[ak, bk], where,

for each k ∈ N, Xk is a finite sum of pairwise disjoint subintervals of [ak, bk]?

Let us show that the answer to this question is negative.
Indeed, assume the contrary and let (Yn)n∈N be such an increasing sequence

of finite subsets in
∏
k∈N [ak, bk]. Then we have

∪n∈NYn = {(x(k)i )i∈N : k ∈ N}.
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For k ∈ N, we set Xk = [ak, bk] \ x(k)k . Then it is clear that

λ(
∏
k∈N

Xk) = λ(
∏
k∈N

[ak, bk])

and
#(Yn ∩

∏
k∈NXk)

#(Yn)
= 0

for k ∈ N, which implies

lim
n→∞

#(Yn ∩
∏
k∈N Xk)

#(Yn)
= 0 < 1 =

λ(
∏
k∈N Xk)

λ(
∏
k∈N[ak, bk])

.

Definition 3.4. Let
∏
k∈N[ak, bk] ∈ R. A family of pairwise disjoint elemen-

tary rectangles τ = (Uk)1≤k≤n of
∏
k∈N[ak, bk] is called the Riemann partition

of
∏
k∈N[ak, bk] if ∪1≤k≤nUk =

∏
k∈N[ak, bk].

Definition 3.5. Let τ = (Uk)1≤k≤n be the Riemann partition of
∏
k∈N [ak, bk].

Let `(Pri(Uk)) be the length of the i-th projection Pri(Uk) of Uk for i ∈ N.
We set

d(Uk) =
∑
i∈N

`(Pri(Uk))

2i(1 + `(Pri(Uk))
.

It is obvious that d(Uk) is the diameter of the elementary rectangle Uk for
k ∈ N with respect to the Tikhonov metric ρ defined as follows

ρ((xk)k∈N, (yk)k∈N) =
∑
k∈N

|xk − yk|
2k(1 + |xk − yk|)

for (xk)k∈N, (yk)k∈N ∈ R∞.
A number d(τ) defined by

d(τ) = max{d(Uk) : 1 ≤ k ≤ n}

is called the mesh or the norm of the Riemann partition τ .

Definition 3.6. Let τ1 = (U
(1)
i )1≤i≤n and τ2 = (U

(2)
j )1≤j≤m be the Riemann

partitions of
∏
k∈N [ak, bk]. We say that τ2 ≤ τ1 iff

(∀j)((1 ≤ j ≤ m)→ (∃i0)(1 ≤ i0 ≤ n & U
(2)
j ⊆ U (1)

i0
)).

Definition 3.7. Let f be a real-valued bounded function defined on
∏
i∈N[ai, bi].

Let τ = (Uk)1≤k≤n be the Riemann partition of
∏
k∈N[ak, bk] and (tk)1≤k≤n

be a sample such that, for each k, tk ∈ Uk. Then:
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(i) a sum
∑n
k=1 f(tk)λ(Uk) is called a Riemann sum of f with respect to the

Riemann partition τ = (Uk)1≤k≤n together with the sample (tk)1≤k≤n;

(ii) a sum Sτ =
∑n
k=1Mkλ(Uk) is called an upper Darboux sum with respect

to the Riemann partition τ where Mk = supx∈Uk
f(x)(1 ≤ k ≤ n);

(iii) a sum sτ =
∑n
k=1mkλ(Uk) is called a lower Darboux sum with respect

to the Riemann partition τ where mk = infx∈Uk
f(x)(1 ≤ k ≤ n).

Definition 3.8. Let f be a real-valued bounded function defined on
∏
i∈N [ai, bi[.

We say that f is Riemann-integrable on
∏
i∈N[ai, bi] if there exists a real num-

ber s such that for every positive real number ε there exists a real number
δ > 0 such that, for every Riemann partition (Uk)1≤k≤n of

∏
k∈N[ak, bk] with

d(τ) < δ and for every sample (tk)1≤k≤n, we have

∣∣ n∑
k=1

f(tk)λ(Uk)− s
∣∣ < ε.

The number s is called a Riemann integral and denoted by

(R)

∫
∏

k∈N[ak,bk]

f(x)dλ(x).

Definition 3.9. A function f is called a step function on
∏
k∈N[ak, bk] if it

can be written as

f(x) =

n∑
k=1

ckXUk
(x),

where τ = (Uk)1≤k≤n is any Riemann partition of
∏
k∈N[ak, bk], ck ∈ R for

1 ≤ k ≤ n and XA is the indicator function of A.

Theorem 3.2. Let f be a continuous function on
∏
k∈N[ak, bk] with respect

to the Tikhonov metric ρ. Then f is Riemann-integrable on
∏
k∈N[ak, bk].

Proof. It is obvious that, for every Riemann partition τ = (Uk)1≤k≤n of∏
k∈N[ak, bk] and for every sample (tk)1≤k≤n with tk ∈ Uk(1 ≤ k ≤ n), we

have

sτ ≤
n∑
k=1

f(tk)λ(Uk) ≤ Sτ .

Note that if τ1 and τ2 are two Riemann partitions of
∏
k∈N[ak, bk] such that

τ2 ≤ τ1, then
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sτ1 ≤ sτ2 ≤
n∑
k=1

f(tk)λ(Uk) ≤ Sτ2 ≤ Sτ1 .

Let us show the validity of the condition

(∀ε)(ε > 0→ (∃r)(∀τ)(d(τ) < r → Sτ − sτ < ε)),

which yields infτ Sτ = supτ sτ .

Following the Tikhonov theorem,
∏
k∈N[ak, bk] is a compact set in the Pol-

ish group R∞ equipped with the Tikhonov metric ρ.

Following Cantor’s well known result, the function f is uniformly continu-
ous on

∏
k∈N [ak, bk]. Hence, for ε > 0, there exists r > 0 such that

(∀x, y)(x, y ∈
∏
k∈N

[ak, bk]&ρ(x, y) < r → |f(x)− f(y)| ≤ ε

λ(
∏
k∈N [ak, bk])

).

Thus, for every Riemann partition τ = (Uk)1≤k≤n with d(τ) < r, we get

Sτ − sτ ≤
ε

λ(
∏
k∈N[ak, bk[)

×
∑

1≤k≤n

λ(Uk) = ε.

Thus infτ Sτ = supτ sτ .

Finally, setting δ = r and s = infτ Sτ , we deduce that for every Riemann
partition (Uk)1≤k≤n of the

∏
k∈N[ak, bk] with d(τ) < δ and for every sample

(tk)1≤k≤n with tk ∈ Uk(1 ≤ k ≤ n), we have

∣∣ n∑
k=1

f(tk)λ(Uk)− s
∣∣ ≤ Sτ − sτ ≤ ε.

This ends the proof of Theorem 3.2.

We have the following infinite-dimensional version of the Lebesgue theorem
(see [8], Lebesgue Theorem, p. 359).

Theorem 3.3. Let f be a bounded real-valued function on
∏
k∈N[ak, bk] ∈ R.

Then f is Riemann integrable on
∏
k∈N [ak, bk] if and only if f is λ-almost

continuous on
∏
k∈N[ak, bk].

Proof. We first prove the necessity. Let f be a Riemann integrable function
on
∏
k∈N[ak, bk] ∈ R.
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Then, for every ε > 0 and µ > 0, there exists a Riemann partition τ =
(Uk)1≤k≤n such that

ε× µ ≥ Sτ − sτ ≥
∑

1≤k≤n

(Mk −mk)λ(Uk) ≥

∑
k∈I1

(Mk −mk)λ(Uk) ≥ µ
∑
k∈I1

λ(Uk), (3.1)

where I1 = {k : 1 ≤ k ≤ n & Uk contains at least one inner point p belonging
to the set Eµ}, where

Eµ = {x : x ∈
∏
k∈N

[ak, bk] & ω(f, x) ≥ µ}

and
ω(f, x) = lim

δ→0
sup

x′ ,x”∈V (x,δ)∩
∏

k∈N[ak,bk]

∣∣f(x
′
)− f(x”)

∣∣.
Here, for x ∈ R∞ and δ > 0, V (x, δ) is defined by

V (x, δ) = {y : y ∈
∏
k∈N

[ak, bk] &ρ(x, y) ≤ δ}.

Since, for k ∈ I1, p is an inner point of Uk, there exists V (p, δ(k, p)) such
that V (p, δ(k, p)) ⊆ Uk. Note that

Since ω(f, p) ≥ µ, we have

Mk −mk ≥Mp −mp ≥ ω(f, p) ≥ µ,

where
Mp = sup

x∈V (p,δ(k,p))

f(x), mδ = inf
x∈V (p,δ(k,p))

f(x).

From (3.1) we get

ε ≥
∑
k∈I1

λ(Uk).

Other points of Eµ, which are not inner points of the elements of the
partition τ , can be placed on the boundary of the elements of τ , whose λ-
measure is zero.

Thus, for µ > 0, we have

λ(Eµ) ≤
∑
k∈I1

λ(Uk) + λ(∪1≤k≤n∂(Uk)) ≤ ε

µ
,
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which yields λ(Eµ) = 0. Since the set E of all points of discontinuity of f
admits the representation E = ∪∞k=1E 1

k
, we deduce that λ(E) = 0.

This ends the proof of necessity and we continue with the proof of the
sufficiency.

For K ∈ R+, suppose we have |f(x)| ≤ K whenever x ∈
∏
k∈N[ak, bk].

Suppose that f is λ-almost continuous on
∏
k∈N [ak, bk]. For ε > 0, let µ be a

positive number such that

4µλ(
∏
k∈N

[ak, bk]) < ε.

Since, for a set E of all points of discontinuity of f on
∏
k∈N[ak, bk] we have

λ(E) = 0, we easily claim that λ(Eµ) = 0. Since Eµ is closed in
∏
k∈N[ak, bk],

we claim that Eµ is compact. Hence, for ε > 0, there exists a finite family of
open elementary rectangles in

∏
k∈N[ak, bk] whose union covers Eµ such that

λ(∪1≤k≤nUk) <
ε

4K
.

Finally, we have ∏
k∈N

[ak, bk] = ∪1≤k≤nUk ∪ F,

where F is a compact subset in
∏
k∈N [ak, bk].

It is obvious that, for every point x ∈ F , we have ω(f, x) < µ. Since F
is compact, we can choose δ > 0 such that for every x, x

′ ∈ F the condition
ρ(x, x

′
) < δ yields

∣∣f(x)− f(x
′
)
∣∣ < 2λ.

Since F is a finite union of elementary rectangles in
∏
k∈N[ak, bk] (this

follows from the fact that the class of all elementary rectangles in
∏
k∈N[ak, bk]

is a ring), there exists a partition τ1 = (Fi)2≤i≤m of F such that, for i with
2 ≤ i ≤ m, Fi is an elementary rectangle in

∏
k∈N[ak, bk] with d(Fi) < δ. Then

τ = {∪1≤k≤nUk, F2, · · · , Fm} will be Riemann partition of
∏
k∈N[ak, bk] such

that

Sτ − sτ = (M1 −m1)λ(∪1≤k≤nUk) +
∑

1≤i≤m

(Mi −mi)λ(Fk) ≤

ε

2
+ 2µλ(

∏
k∈N

[ak, bk])) ≤ ε

2
+
ε

2
= ε.
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Remark 3.2. Theorem 3.2 is a simple consequence of Theorem 3.3. Therefore,
using Theorem 3.3, one can extend the concept of Riemann integrability theory
to the case of functions defined in the topological vector space R∞ of all real-
valued sequences equipped with Tikhonov topology.

In the sequel, we need some important notions and well-known results from
general topology and measure theory.

Definition 3.10. A topological Hausdorff space X is called normal if given
any disjoint closed sets E and F , there are neighborhoods U of E and V of F
that are also disjoint.

Lemma 3.1 (Urysohn [15]). A topological space X is normal if and only if
any two disjoint closed sets can be separated by a function. That is, given
disjoint closed sets E and F , there is a continuous function f from X to [0, 1]
such that the preimages of 0 and 1 under f are E and F , respectively.

Remark 3.3. Since all compact Hausdorff spaces are normal, we deduce
that

∏
k∈N [ak, bk] equipped with Tikhonov topology is normal. By Urysohn’s

lemma we deduce that any two disjoint closed sets in
∏
k∈N[ak, bk] can be

separated by a function.

Definition 3.11. A Borel measure µ, defined on a Hausdorff topological space
X is called Radon if

(∀Y )(Y ∈ B(X) & 0 ≤ µ(Y ) < +∞→ µ(Y ) = sup
K⊆Y

K is compact in X

µ(K)).

Lemma 3.2 (Ulam [14]). Every probability Borel measure defined on a Polish
metric space is Radon.

In the sequel, we denote by C(
∏
k∈N[ak, bk]) a class of all continuous (with

respect to the Tikhonov topology) real-valued functions on
∏
k∈N [ak, bk].

Theorem 3.4. For
∏
i∈N[ai, bi] ∈ R, let (Yn)n∈N be an increasing family of

its finite subsets. Then (Yn)n∈N is uniformly distributed in
∏
k∈N[ak, bk] if and

only if the equality

lim
n→∞

∑
y∈Yn

f(y)

#(Yn)
=

(R)
∫∏

k∈N [ak,bk]
f(x)dλ(x)

λ(
∏
i∈N [ai, bi])

holds for every f ∈ C(
∏
k∈N[ak, bk]).
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Proof. We begin by proving the necessity. Let (Yn)n∈N be uniformly dis-
tributed on

∏
k∈N[ak, bk] and let f(x) =

∑m
k=1 ckXUk

(x) be a step function.
Then we have

lim
n→∞

∑
y∈Yn

f(y)

#(Yn)
= lim
n→∞

∑
y∈Yn

∑m
k=1 ckXUk

(y)

#(Yn)
=

lim
n→∞

∑m
k=1 ck#(Uk ∩ Yn)

#(Yn)
=

m∑
k=1

ck lim
n→∞

#(Uk ∩ Yn)

#(Yn)
=

m∑
k=1

ck
λ(Uk)

λ(
∏
i∈N[ai, bi])

=
(R)

∫∏
k∈N [ak,bk]

f(x)dλ(x)

λ(
∏
i∈N[ai, bi])

.

Now, let f ∈ C(
∏
k∈N[ak, bk]). By Theorem 3.2 we deduce that f is Riemann-

integrable. From the definition of a Riemann integral we deduce that, for
every positive ε, there exist two step functions f1 and f2 on

∏
i∈N[ai, bi] such

that
f1(x) ≤ f(x) ≤ f2(x)

and

(R)

∫
∏

i∈N [ai,bi]

(f1(x)− f2(x))dλ(x) < ε.

Then we have

(R)

∫
∏

i∈N[ai,bi]

f(x)dλ(x)− ε ≤ (R)

∫
∏

i∈N[ai,bi]

f1(x)dλ(x) =

λ(
∏
i∈N

[ai, bi])× lim
n→∞

∑
y∈Yn

f1(y)

#(Yn)
≤ λ(

∏
i∈N

[ai, bi])× limn→∞

∑
y∈Yn

f(y)

#(Yn)
≤

λ(
∏
i∈N

[ai, bi])× limn→∞

∑
y∈Yn

f(y)

#(Yn)
≤ lim
n→∞

∑
y∈Yn

f2(y)

#(Yn)
≤

λ(
∏
i∈N

[ai, bi])× (R)

∫
∏

i∈N[ai,bi]

f2(x)dλ(x) ≤ (R)

∫
∏

i∈N[ai,bi]

f(x)dλ(x) + ε.

The latter relation yields the existence of a limit limn→∞

∑
y∈Yn

f(y)

#(Yn)
such that

lim
n→∞

∑
y∈Yn

f(y)

#(Yn)
=

(R)
∫∏

k∈N [ak,bk]
f(x)dλ(x)

λ(
∏
i∈N [ai, bi])

.

This ends the proof of the necessity.
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To begin the proof of the sufficiency, assume that (Yn)n∈N is an increasing
sequence of subsets of

∏
k∈N [ak, bk] such that the equality

lim
n→∞

∑
y∈Yn

f(y)

#(Yn)
=

(R)
∫∏

k∈N [ak,bk[
f(x)dλ(x)

λ(
∏
i∈N [ai, bi])

holds for every f ∈ C(
∏
k∈N[ak, bk]).

Let U be any elementary rectangle in
∏
i∈N[ai, bi].

For ε > 0, by Ulam’s lemma we can choose a compact set

F ⊂
∏
k∈N

[ak, bk] \ [U ]T ,

such that λ((
∏
k∈N[ak, bk]\ [U ]T )\F ) < ε

2 , where [U ]T denotes the completion
of the set U by the Tikhonov topology in

∏
k∈N[ak, bk]. Then, by Urysohn’s

lemma there is a continuous function g2 from
∏
k∈N[ak, bk] to [0, 1] such the

preimages of 0 and 1 under g2 are F and [U ]T , respectively. Then, for x ∈∏
k∈N [ak, bk], we have

XU (x) ≤ g2(x)

and

(R)

∫
∏

k∈N [ak,bk]

(g2(x)−XU (x))dλ(x) ≤ ε

2
,

where XU is an indicator of U defined on
∏
k∈N[ak, bk].

Now let us consider the set [
∏
k∈N[ak, bk] \ U ]T . Using Ulam’s lemma, we

can choose a compact set

F1 ⊂
∏
k∈N

[ak, bk] \ [
∏
k∈N

[ak, bk] \ U ]T

such that
λ((
∏
k∈N

[ak, bk] \ [
∏
k∈N

[ak, bk] \ U ]T ) \ F1) <
ε

2
.

Then, by Urysohn’s lemma there is a continuous function g1 from
∏
k∈N[ak, bk]

to [0, 1] such that the preimages of 0 and 1 under g1 are [
∏
k∈N[ak, bk] \ U ]T

and F1, respectively. Then, for x ∈
∏
k∈N[ak, bk], we have

g1(x) ≤ XU (x)

and

(R)

∫
∏

k∈N [ak,bk]

(XU (x)− g1(x))dλ(x) ≤ ε

2
.
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Now, we deduce that for every elementary rectangle U in
∏
i∈N[ai, bi] there

exists two continuous functions g1 and g2 on
∏
i∈N[ai, bi] such that

g1(x) ≤ XU (x) ≤ g2(x)

and

(R)

∫
∏

i∈N[ai,bi]

(g2(x)− g1(x))dλ(x) ≤ ε.

Then we have

λ(U)− ε ≤ (R)

∫
∏

i∈N [ai,bi]

g2(x)dλ(x)− ε ≤ (R)

∫
∏

i∈N [ai,bi]

g1(x)dλ(x) =

λ(
∏
i∈N

[ai, bi])× lim
n→∞

∑
y∈Yn

g1(y)

#(Yn)
≤ λ(

∏
i∈N

[ai, bi])× limn→∞
#(Yn ∩ U)

#(Yn)
≤

λ(
∏
i∈N

[ai, bi])× limn→∞
#(Yn ∩ U)

#(Yn)
≤ λ(

∏
i∈N

[ai, bi])× lim
n→∞

∑
y∈Yn

g2(y)

#(Yn)
=

(R)

∫
∏

i∈N [ai,bi]

g2(x)dλ(x) ≤ (R)

∫
∏

i∈N [ai,bi]

g1(x)dλ(x) + ε ≤ λ(U) + ε.

Since ε was taken arbitrary, we deduce that

λ(
∏
i∈N

[ai, bi])× lim
n→∞

#(Yn ∩ U)

#(Yn)
= λ(U).

This ends the proof of Theorem 3.4.

Now by the scheme used in the proof of Theorem 3.4, one can get the
validity of an infinite-dimensional analog of Lemma 3.1. In particular, the
following assertion is valid.

Theorem 3.5. For
∏
i∈N[ai, bi] ∈ R, let (Yn)n∈N be an increasing family its

finite subsets. Then (Yn)n∈N is uniformly distributed in the
∏
k∈N[ak, bk] if

and only if the equality

lim
n→∞

∑
y∈Yn

f(y)

#(Yn)
=

(R)
∫∏

k∈N [ak,bk]
f(x)dλ(x)

λ(
∏
i∈N [ai, bi])

holds for every Riemann integrable function f on
∏
k∈N[ak, bk]).
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