RESEARCH

Anna Goździewicz-Smejda, Centre of Mathematics and Physics, Technical University of Łódź, al. Politechniki 11, 90-924 Łódź, Poland. email: aniags@op.pl

Ewa Łazarow, Institute of Mathematics, Academia Pomeraniensis, ul. Arci-szewskiego 22a, 76-200 Słupsk, Poland. email: elazarow@toya.net.pl

TOPOLOGIES GENERATED BY THE ψ -SPARSE SETS

Abstract

We study the notion of ψ -sparse point and ψ -sparse topology for nondecreasing continuous function ψ . We show that ψ -sparse topology is stronger than the ψ -density topology and weaker than the density topology.

1 Introduction

We shall use the following notations: \mathbb{R} denotes the set of all real numbers, $\mathbb N$ - the set of all positive integers, m^* - the outer Lebesgue measure, $\mathcal L$ - the σ -algebra of Lebesgue measurable sets, m - the Lebesgue measure and C - the family of all continuous, nondecreasing functions $\psi: (0,\infty) \to (0,1)$ such that $\lim_{x\to 0^+}\psi(x)=0.$

For $E \subset \mathbb{R}$ and $x \in \mathbb{R}$, we let

$$\underline{d}(E, x) = \liminf_{h \to 0^+} \frac{m^*(E \cap [x - h, x + h])}{2h}$$

and

$$\overline{d}(E,x) = \limsup_{h \to 0^+} \frac{m^*(E \cap [x-h, x+h])}{2h}$$

Mathematical Reviews subject classification: Primary: 26A03, 26A04; Secondary: 26A05 Key words: density topology, ψ -sparse point, ψ -sparse topology Received by the editors June 5, 2009 Communicated by: Udayan B. Darji

as the lower and upper outer density of a set E at a point x, respectively. Analogously, for any $\psi \in \mathcal{C}, E \subset \mathbb{R}$ and $x \in \mathbb{R}$ let

$$\psi - \underline{d}(E, x) = \liminf_{h \to 0^+} \frac{m^*(E \cap [x - h, x + h])}{2h\psi(2h)}$$

and

$$\psi - \overline{d}(E, x) = \limsup_{h \to 0^+} \frac{m^*(E \cap [x - h, x + h])}{2h\psi(2h)}$$

denote the lower and upper outer ψ -density of a set E at a point x, respectively.

Definition 1.1. [1] We say that $x \in \mathbb{R}$ is a density point of a set $E \in \mathcal{L}$ if $\underline{d}(E, x) = 1$. We say that $x \in \mathbb{R}$ is a dispersion point of a set $E \in \mathcal{L}$ if x is a density point of the set $\mathbb{R} \setminus E$.

Set, for each $E \in \mathcal{L}$,

 $\Phi(E) = \{ x \in \mathbb{R} : x \text{ is a density point of } E \}.$

Then the family $d = \{E \in \mathcal{L} : E \subset \Phi(E)\}$ is a topology on the real line called the density topology [1].

Let $\psi \in \mathcal{C}$.

Definition 1.2. [3] We say that $x \in \mathbb{R}$ is a ψ -dispersion point of a set $E \in \mathcal{L}$ if $\psi - \overline{d}(E, x) = 0$. We say that $x \in \mathbb{R}$ is a ψ -density point of a set $E \in \mathcal{L}$ if x is a ψ -dispersion point of the set $\mathbb{R} \setminus E$.

For $E \in \mathcal{L}$, let

$$\Phi_{\psi}(E) = \{ x \in \mathbb{R} : x \text{ is a } \psi - \text{density point of } E \}$$

and

$$\mathcal{T}_{\psi} = \{ E \in \mathcal{L} : E \subset \Phi_{\psi}(E) \}.$$

Theorem 1.1. [3] The family \mathcal{T}_{ψ} is a topology on the real line, stronger than the Euclidean topology and weaker than the density topology d.

Definition 1.3. [2] We say that a set $E \subset \mathbb{R}$ is sparse at a point $x \in \mathbb{R}$ on the right if there exists, for every $\varepsilon > 0$, $\delta > 0$ such that every interval $(a,b) \subset (x,x+\delta)$, with $m((x,a)) < \delta m((x,b))$, contains at least one point y such that $m^*(E \cap (x,y)) < \varepsilon m((x,y))$.

The family of sets sparse at x on the right is denoted by $\mathcal{S}(x+)$, and E is said to be sparse at x if $E \in \mathcal{S}(x) = \mathcal{S}(x+) \cap \mathcal{S}(x-)$, where $\mathcal{S}(x-)$ denotes, by convention, the family of sets sparse at x on the left.

Let $S_0(x) = \{E \subset \mathbb{R} : \overline{d}(E, x) = 0\}$. Then by [2], for each $x \in \mathbb{R}$ $S_0(x) \subset S(x)$. (i) $E \in \mathcal{S}(x)$,

(ii) for each $F \subset \mathbb{R}$, if $\underline{d}(F, x) = 0$ then $\underline{d}(E \cup F, x) = 0$.

2 ψ -sparse sets

In this chapter ψ will be an arbitrary fixed function from \mathcal{C} and

$$g(x) = \begin{cases} 2x\psi(2x) & \text{if } x \in (0,1], \\ 0 & \text{if } x = 0. \end{cases}$$

Then the function g is continuous and increasing. Moreover, g(x) < 2x and $g(ax) \le ag(x)$ for any $x \in (0, 1]$ and $a \in (0, 1)$.

Definition 2.1. We say that a set $E \subset \mathbb{R}$ is ψ -sparse at a point $x \in \mathbb{R}$ if for each $F \subset \mathbb{R}$, the following holds:

if
$$\psi - \underline{d}(F, x) = 0$$
 then $\psi - \underline{d}(E \cup F, x) = 0$.

For each $x \in \mathbb{R}$, we denote by $\psi - S(x)$ the family of all sets which are ψ -sparse at x. Put, for each $x \in \mathbb{R}$, $\psi - S_0(x) = \{E \subset \mathbb{R} : \psi - \overline{d}(E, x) = 0\}$. Then the following proposition and two theorems are obvious.

Proposition 2.1. Let $A \subset \mathbb{R}$, $B \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then

1. if $A \in \psi - S(x)$ and $B \in \psi - S(x)$, then $A \cup B \in \psi - S(x)$,

2. if
$$A \in \psi - S(x)$$
 and $B \subset A$, then $B \in \psi - S(x)$

Theorem 2.1. For each $x \in \mathbb{R}$, $\psi - S_0(x) \subset \psi - S(x)$.

Theorem 2.2. For any $E \subset \mathbb{R}$ and $x \in \mathbb{R}$, $E \in \psi - S(x)$ if and only if $\{y - x : y \in E\} \in \psi - S(0)$.

Theorem 2.3. Let $E \subset \mathbb{R}$ and let A be a measurable cover of E. Then the following conditions are equivalent:

- (i) $E \in \psi \mathcal{S}(0)$.
- (ii) For each $\varepsilon \in (0,1)$, there exists $\delta \in (0,1)$ such that, for each interval $[a,b] \subset (0,\delta)$, if $g(a) < \delta g\left(x \frac{\varepsilon}{2}g(x)\right)$ for each $x \in [b,1]$, then there exists $y \in (a,b)$ such that $m^*(E \cap (-y,y)) < \varepsilon g(y)$.

(iii) $A \in \psi - \mathcal{S}(0)$.

Proof. (i) \Rightarrow (ii) For any $\varepsilon, \delta \in (0,1)$, denote by $W(\varepsilon, \delta)$ the family of all intervals $[a, b] \subset (0, \delta)$ such that, for each $x \in [b, 1]$, $g(a) < \delta g \left(x - \frac{\varepsilon}{2}g(x)\right)$ and, for each $y \in (a, b)$, $m^*(E \cap (-y, y)) \ge \varepsilon g(y)$.

Proceeding by contradiction, assume that $E \in \psi - \mathcal{S}(0)$ and (ii) is false. From our assumption it follows that there is $\varepsilon \in (0,1)$ such that $W(\varepsilon, \delta) \neq \emptyset$, for each $\delta \in (0, 1)$.

Let $\delta_1 \in (0,1)$ be such that $\psi(2\delta_1) < \frac{1}{4}$ and $[a_1,b_1] \in W(\varepsilon,\delta_1)$. For each $n \in \mathbb{N}$, let $0 < \delta_{n+1} < \min\left\{\frac{1}{n+1}, \frac{1}{2}g(a_n)\right\}$ and $[a_{n+1}, b_{n+1}] \in W(\varepsilon, \delta_{n+1})$. By the above we have defined the sequence of disjoint intervals $\{[a_n, b_n]\}_{n \in \mathbb{N}}$

and the sequence of real positive numbers $\{\delta_n\}_{n\in\mathbb{N}}$ such that

- (1) $\psi(2\delta_1) < \frac{1}{4}$ and $\delta_1 \in (0,1)$,
- (2) for each $n \in \mathbb{N}$, $[a_n, b_n] \in W(\varepsilon, \delta_n)$,
- (3) for each $n \in \mathbb{N}$, $0 < \delta_{n+1} < \min\left\{\frac{1}{n+1}, \frac{1}{2}g(a_n)\right\}$ and $0 < \delta_{n+1} < a_n < \delta_1$,
- (4) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0.$

Let $n \in \mathbb{N}$ and $x_n \in [b_{n+1}, a_n]$ be such that

$$x_n - \frac{\varepsilon}{2}g(x_n) = \min\left\{x - \frac{\varepsilon}{2}g(x): x \in [b_{n+1}, a_n]\right\}.$$

Set $y_{n+1} = x_n - \frac{\varepsilon}{2}g(x_n)$ and $z_{n+1} = y_{n+1} + g(a_n)$. We shall show that

(5)
$$g(a_{n+1}) < \frac{1}{n+1}g(y_{n+1})$$

(6)
$$a_{n+1} < y_{n+1} < b_{n+1} < z_{n+1} < 2g(a_n) < a_n$$

By (2) and (3), we have that $g(a_{n+1}) < \delta_{n+1}g(x_n - \frac{\varepsilon}{2}g(x_n)) < \frac{1}{n+1}g(y_{n+1})$. Therefore the monotonicity of function g implies $a_{n+1} < y_{n+1}$. By the definition of the point x_n , we have $y_{n+1} = x_n - \frac{\varepsilon}{2}g(x_n) \le b_{n+1} - \frac{\varepsilon}{2}g(b_{n+1}) < b_{n+1}$. By the above and (2),(3) we get $z_{n+1} < b_{n+1} + g(a_n) < \delta_{n+1} + g(a_n) < 2g(a_n)$. Additionally, by (3) and (1) $2g(a_n) = 4a_n\psi(2a_n) \le 4a_n\psi(2\delta_1) < a_n$. Besides that $z_{n+1} \ge y_{n+1} + g(x_n) = x_n - \frac{\varepsilon}{2}g(x_n) + g(x_n) > x_n \ge b_{n+1}$. Therefore the conditions (5) and (6) are satisfied.

Let $F = \bigcup_{n=1}^{\infty} [y_{n+1}, z_{n+1}]$. By (6) and (5), we observe that, for each $n \in \mathbb{N}$,

$$m(F \cap [-y_{n+1}, y_{n+1}]) < z_{n+2} < 2g(a_{n+1}) < \frac{2}{n+1}g(y_{n+1}).$$

Hence,

$$\psi - \underline{d}(F, 0) \le \lim_{n \to \infty} \frac{m(F \cap [-y_{n+1}, y_{n+1}])}{2y_{n+1}\psi(2y_{n+1})} = 0$$

Now, we shall show that $\psi - \underline{d}(E \cup F, 0) > 0$. Let $h \in (0, b_1)$. Then there exists $n \in \mathbb{N}$ such that $h \in [b_{n+1}, b_n)$. There are three cases to consider.

(α) $h \in (a_n, b_n)$. Then by (2),

$$m^*((E \cup F) \cap [-h,h]) \ge m^*(E \cap [-h,h]) \ge \varepsilon g(h).$$

(β) $h \in [z_{n+1}, a_n]$. Then by the definition of z_{n+1} ,

$$m^*((E \cup F) \cap [-h,h]) \ge m(F \cap [0,h]) > z_{n+1} - y_{n+1} = g(a_n) \ge g(h).$$

(γ) $h \in [b_{n+1}, z_{n+1})$. Then by $h - \frac{\varepsilon}{2}g(h) \ge x_n - \frac{\varepsilon}{2}g(x_n) = y_{n+1}$, we have that $h - y_{n+1} \ge \frac{\varepsilon}{2}g(h)$. Hence

$$m^*((E \cup F) \cap [-h,h]) \ge m(F \cap [0,h]) > h - y_{n+1} \ge \frac{\varepsilon}{2}g(h).$$

Therefore

$$\liminf_{h \to 0^+} \frac{m^*((E \cup F) \cap [-h,h])}{2h\psi(2h)} \ge \frac{\varepsilon}{2}.$$

We have shown that there exists a set $F \subset \mathbb{R}$ such that $\psi - \underline{d}(F, 0) = 0$ and $\psi - \underline{d}(E \cup F, 0) > 0$. Thus $E \notin \psi - \mathcal{S}(0)$, a contradiction.

 $(ii) \Rightarrow (iii)$ Suppose that (ii) is fulfilled. First we show that $\psi - \underline{d}(A, 0) = 0$. Let $n \in \mathbb{N}$. By our assumption, there exists $\delta_n \in (0, 1)$ such that, for each interval $[a, b] \subset (0, \delta_n)$, if $g(a) < \delta_n g\left(x - \frac{1}{2(n+1)}g(x)\right)$ for each $x \in [b, 1]$, then there exists $y \in (a, b)$ such that

$$m(A \cap (-y,y)) = m^*(E \cap (-y,y)) < \frac{1}{n+1}g(y).$$

Let $0 < b_n < \min\left\{\delta_n, \frac{1}{n}\right\}$ and $z_n = \min\left\{\delta_n g\left(x - \frac{1}{2(n+1)}g(x)\right) : x \in [b_n, 1]\right\}$. By the continuity of g at 0, there exists $a_n \in (0, b_n)$ such that $g(a_n) < z_n$. Therefore, $g(a_n) < \delta_n g\left(x - \frac{1}{2(n+1)}g(x)\right)$ for each $x \in [b_n, 1]$ and by our assumption there exists $y_n \in (a_n, b_n)$ such that $m(A \cap (-y_n, y_n)) < \frac{1}{n+1}g(y_n)$. Thus

$$\psi - \underline{d}(A, 0) \le \lim_{n \to \infty} \frac{m(A \cap [-y_n, y_n])}{2y_n \psi(2y_n)} = 0.$$

Let $F \subset \mathbb{R}$ be such that $\psi - \underline{d}(F, 0) = 0$. It is sufficient to show that for each $n \in \mathbb{N} \setminus \{1\}$ there exists $v_n \in (0, \frac{1}{n})$ such that

$$m^*((A \cup F) \cap [-v_n, v_n]) \le \frac{4}{n}g(v_n).$$

Let $n \in \mathbb{N} \setminus \{1\}$ and

$$A_n = \left\{ h \in (0,1) : \ m(A \cap [-h,h]) > \frac{1}{n}g(h) \right\}.$$

Observe that $(0, \frac{1}{n}) \setminus A_n \neq \emptyset$. If there exists $v_n \in (0, \frac{1}{n}) \setminus A_n$ such that $m^*(F \cap [-v_n, v_n]) \leq \frac{1}{n}g(v_n)$, then

$$m^*((A \cup F) \cap [-v_n, v_n]) \le \frac{2}{n}g(v_n).$$

We assume that $m^*(F \cap (-x, x)) > \frac{1}{n}g(x)$ for each $x \in (0, \frac{1}{n}) \setminus A_n$.

By our assumption there exists $\delta \in (0, 1)$ such that for each closed interval $[a, b] \subset (0, \delta)$, if $g(a) < \delta g\left(x - \frac{1}{2n}g(x)\right)$ for each $x \in [b, 1]$, then there exists $y \in (a, b)$ such that $m(A \cap (-y, y)) < \frac{1}{n}g(y)$. Let $\delta_1 = \min\left\{\delta, \frac{1}{n}\right\}$. By $\psi - \underline{d}(A, 0) = 0$ there exists $y_0 \in (0, \delta_1)$ such that

$$m(A \cap (-y_0, y_0)) < \frac{1}{n}g(y_0)$$

and, by $\psi - \underline{d}(F, 0) = 0$, there exists a sequence $\{t_k\}_{k \in \mathbb{N}}$ tending to zero, such that

$$m^*(F \cap [-t_k, t_k]) < \delta \frac{1}{n}g(t_k)$$

and $t_k < y_0$ for each $k \in \mathbb{N}$. Then $t_k \in (0, \frac{1}{n})$ and $m^*(F \cap [-t_k, t_k]) < \frac{1}{n}g(t_k)$ so we have $t_k \in A_n$ for each $k \in \mathbb{N}$.

Let k be a fixed positive integer number. Since $t_k \in A_n$ it follows that there exists a component (a_k, b_k) of the open set A_n , such that $t_k \in (a_k, b_k)$. We observe that

$$m(A \cap [-x,x]) > \frac{1}{n}g(x)$$

for each $x \in (a_k, b_k)$,

$$m(A \cap [-a_k, a_k]) = \frac{1}{n}g(a_k)$$

and

$$m(A \cap [-b_k, b_k]) = \frac{1}{n}g(b_k).$$

So $y_0 \notin [a_k, b_k]$ and as $t_k < y_0$, we have $b_k < y_0 < \delta$.

We have proven that $[a_k, b_k] \subset (0, \delta)$ and $m(A \cap [-x, x]) > \frac{1}{n}g(x)$ for each $x \in (a_k, b_k)$. Therefore, there exists $x_k \in [b_k, 1]$ such that

$$g(a_k) \ge \delta g\left(x_k - \frac{1}{2n}g(x_k)\right)$$

Moreover, $a_k \notin A_n$ and $a_k \in (0, \frac{1}{n})$, hence $m^*(F \cap [-a_k, a_k]) > \frac{1}{n}g(a_k)$. Therefore

$$\frac{1}{n}\delta g\left(x_k - \frac{1}{2n}g(x_k)\right) \leq \frac{1}{n}g(a_k) < m^*(F \cap [-a_k, a_k])$$
$$\leq m^*(F \cap [-t_k, t_k]) < \delta \frac{1}{n}g(t_k)$$

and, by the monotonicity of the function g, we have

$$x_k - \frac{1}{2n}g(x_k) < t_k < b_k \le x_k.$$

Thus

$$\begin{aligned} m(A \cap [-x_k, x_k]) &\leq m(A \cap [-b_k, b_k]) + 2(x_k - b_k) \\ &\leq \frac{1}{n}g(b_k) + \frac{1}{n}g(x_k) \leq \frac{2}{n}g(x_k), \end{aligned}$$

and

$$m^{*}(F \cap [-x_{k}, x_{k}]) \leq m^{*}(F \cap [-t_{k}, t_{k}]) + 2(x_{k} - t_{k})$$

$$< \delta \frac{1}{n}g(t_{k}) + \frac{1}{n}g(x_{k}) < \frac{2}{n}g(x_{k}).$$

Hence, $m^*((A \cup F) \cap [-x_k, x_k]) < \frac{4}{n}g(x_k)$. Moreover, $\limsup_{k \to \infty} (x_k - \frac{1}{2n}g(x_k)) \le \lim_{k \to \infty} t_k = 0$, so $\lim_{k \to \infty} x_k = 0$. Now we put $v_n = x_k$, where $x_k \in (0, \frac{1}{n})$.

 $(iii) \Rightarrow (i)$ Assume that (iii) is fulfilled. Let $F \subset \mathbb{R}$ be a set such that $\psi - \underline{d}(F, 0) = 0$. Then

$$\liminf_{h \to 0^+} \frac{m^*((E \cup F) \cap [-h,h])}{g(h)} \le \liminf_{h \to 0^+} \frac{m^*((A \cup F) \cap [-h,h])}{g(h)} = 0.$$

Hence $E \in \psi - \mathcal{S}(0)$.

Lemma 2.1. For each real number $\alpha \in (0,1)$, there exists an open interval $(a,b) \subset (0,\alpha)$ such that $b-a = 2b\psi(2b)$ and $2a\psi(2a) \ge b\psi(2b)$.

PROOF. Let $\alpha \in (0,1)$ and $\delta > 0$ be such that, for each $x \in (0,\delta)$, we have $\psi(2x) < \frac{1}{4}$. Put $\gamma = \min\{\alpha, \delta\}$, $b_1 \in (0,\gamma)$ and, for each $n \in \mathbb{N}$, b_{n+1} be such that $b_{n+1}\psi(2b_{n+1}) = \frac{1}{2^n}b_1\psi(2b_1)$. Then $\lim_{n\to\infty} b_n = 0$.

Suppose that $b_n - b_{n+1} < 2b_n \psi(2b_n)$ for each $n \in \mathbb{N}$. Then

$$b_1 = \sum_{n=1}^{\infty} (b_n - b_{n+1}) \le \sum_{n=1}^{\infty} 2b_n \psi(2b_n) = 4b_1 \psi(2b_1) < b_1,$$

which is impossible. Thus there exists $n \in \mathbb{N}$ such that $b_n - b_{n+1} \ge 2b_n \psi(2b_n)$. Let $b = b_n$ and $a = b_n - 2b_n \psi(2b_n)$. Then $b - a = 2b\psi(2b)$, $a \ge b_{n+1}$ and $2a\psi(2a) \ge 2b_{n+1}\psi(2b_{n+1}) = b\psi(2b)$.

Theorem 2.4. There exists an open set H such that $H \in \psi - \mathcal{S}(0) \setminus \psi - \mathcal{S}_0(0)$.

PROOF. By Lemma 2.1, we can defined a sequence of disjoint open intervals $\{(c_n, d_n)\}_{n \in \mathbb{N}} \subset (0, 1)$ such that for each $n \in \mathbb{N}$,

1. $d_n - c_n = g(d_n),$ 2. $g(c_n) \ge \frac{1}{2}g(d_n),$ 3. $d_{n+1} < \min\left\{\frac{1}{n}, \frac{1}{2^n}g(c_n)\right\}.$

Put $H = \bigcup_{n \in \mathbb{N}} (c_n, d_n)$. Then $m(H \cap [-d_n, d_n]) \ge d_n - c_n = g(d_n)$ for each $n \in \mathbb{N}$. Therefore $H \notin \psi - \mathcal{S}_0(0)$.

We shall show that $H \in \psi - \mathcal{S}(0)$. Let $\varepsilon \in (0, 1)$. Choose $n_0 \in \mathbb{N}$ such that $\max\left\{c_{n_0}, \frac{1}{2^{n_0}}\right\} < \frac{\varepsilon}{4}$. Then, for each $n > n_0$, the inequality

$$\frac{\varepsilon}{2}g(d_{n+1}) < g(d_{n+1}) < 2d_{n+1} < \frac{\varepsilon}{2}g(c_n)$$

implies that there exists $y_n \in (d_{n+1}, c_n)$ such that $g(d_{n+1}) = \frac{\varepsilon}{2}g(y_n)$. Let $x_0 \in [0, 1]$ be such that

$$m = x_0 - \frac{\varepsilon}{2}g(x_0) = \sup\left\{x - \frac{\varepsilon}{2}g(x) : x \in [0,1]\right\}.$$

It is easily seen that $x_0 \neq 0$ and m > 0. Choose $n_1 > n_0$ such that $c_{n_1} < m$ and $c_{n_1} < x_0$. Put $\delta = c_{n_1}$. Let $[a, b] \subset (0, \delta)$ be an interval such that, for each $x \in [b, 1], g(a) < \delta g(x - \frac{\varepsilon}{2}g(x))$. If there exists $n \geq n_1$ such that $c_n \in (a, b)$, then

$$m(H \cap [-c_n, c_n]) < d_{n+1} < \frac{1}{2^n}g(c_n) < \varepsilon g(c_n).$$

Now let as assume that for each $n \geq n_1$ $c_n \notin (a,b)$. Then there exists $n \geq n_1$ such that $(a,b) \subset (c_{n+1},c_n)$. Suppose $(a,b) \subset (c_{n+1},y_n)$. Then, by $0 < y_n - \frac{\varepsilon}{2}g(y_n) < y_n < c_{n_1} < m$ and $y_n < x_0$, there exists $x \in (y_n,x_0) \subset [b,1]$ such that $x - \frac{\varepsilon}{2}g(x) = y_n$. Therefore, by 2

$$g(a) \ge g(c_{n+1}) \ge \frac{1}{2}g(d_{n+1}) = \frac{\varepsilon}{4}g(y_n) \ge \delta g(x - \frac{\varepsilon}{2}g(x)).$$

But this contradicts the definition of the interval [a, b], so $(a, b) \cap (y_n, c_n) \neq \emptyset$. Let $h \in (a, b) \cap (y_n, c_n)$. Then

$$m(H \cap [-h,h]) < \frac{1}{2^{n+1}}g(c_{n+1}) + g(d_{n+1}) < \frac{\varepsilon}{2}g(h) + \frac{\varepsilon}{2}g(y_n) < \varepsilon g(h).$$

We have shown that, for each $\varepsilon \in (0, 1)$, there exists $\delta \in (0, 1)$ such that, for each interval $[a, b] \subset (0, \delta)$, if $g(a) < \delta g(x - \frac{\varepsilon}{2}g(x))$ for each $x \in [b, 1]$, then there exists $y \in (a, b)$ such that $m(H \cap (-y, y)) < \varepsilon g(y)$. Thus, by Theorem 2.3, $H \in \psi - \mathcal{S}(0)$.

Theorem 2.5. For each $x \in \mathbb{R}$, $\psi - S(x) \cap \mathcal{L} \subset S_0(x)$.

PROOF. We may assume that x = 0. We suppose that there exists a set $A \in \psi - \mathcal{S}(0) \cap \mathcal{L} \setminus \mathcal{S}_0(0)$. Then there exists a real number $\alpha \in (0, 1)$ such that

(7)
$$\limsup_{x \to 0^+} \frac{m^*(A \cap [-x, x])}{2x} > \alpha$$

and, by Theorem 2.3, there exists a real number $\delta \in (0, 1)$ such that

(8) for each interval $[a,b] \subset (0,\delta)$, if $g(a) < \delta g\left(x - \frac{1}{4}g(x)\right)$ for each $x \in [b,1]$, then there exists $y \in (a,b)$ such that $m(A \cap (-y,y)) < \frac{1}{2}g(y)$.

Let γ be a real positive number such that $\gamma < \delta$ and, for each $x \in (0, \gamma)$, $\psi(2x) < \alpha$. By the continuity of the function $x - \frac{1}{4}g(x)$, for each $b \in (0, 1)$, there exists a point $t(b) \in [b, 1]$ such that

$$t(b) - \frac{1}{4}g(t(b)) = \min\left\{x - \frac{1}{4}g(x) : x \in [b, 1]\right\} \le b - \frac{1}{4}g(b).$$

Then, by $\lim_{b\to 0^+} (t(b) - \frac{1}{4}g(t(b)) = 0$ and by the definition of the function g, we see that

$$\lim_{b \to 0^+} \frac{g(t(b))}{t(b) - \frac{1}{4}g(t(b))} = 0$$

Thus there exists a real positive number $\delta_1 < \gamma$ such that, for any $b \in (0, \delta_1)$ and $x \in [b, 1]$,

$$g(b) \le g(t(b)) < 2\alpha\delta\left(t(b) - \frac{1}{4}g(t(b))\right) \le 2\alpha\delta\left(x - \frac{1}{4}g(x)\right).$$

Consequently,

(9) for any $b \in (0, \delta_1)$ and $x \in [b, 1]$,

$$g\left(\frac{1}{2\alpha}g(b)\right) < g\left(\delta\left(x-\frac{1}{4}g(x)\right)\right) \le \delta g\left(x-\frac{1}{4}g(x)\right).$$

By $A \in \psi - \mathcal{S}(0)$, there exists $x_1 \in (0, \delta_1)$ such that $m(A \cap [-x_1, x_1]) < g(x_1)$ and, by (7), there exists $x_2 \in (0, x_1)$ such that $m(A \cap [-x_2, x_2]) > 2\alpha x_2$. Put

$$E = \{ x \in [x_2, 1] : m(A \cap [-x, x]) \le g(x) \}.$$

Then $x_1 \in E$. Set $b = \min E$. Since $\psi(2x_2) < \alpha$, we have that

$$m(A \cap [-x_2, x_2]) > 2\alpha x_2 > g(x_2)$$

and $x_2 < b < x_1$. Put $a = x_2$. Then

(10)
$$g(b) = m(A \cap [-b, b]) \ge m(A \cap [-a, a]) > 2\alpha a$$

and

(11) for each
$$t \in (a, b)$$
, $m(A \cap (-t, t)) > g(t)$.

Let $x \in [b, 1]$. By (10) and (9),

$$g(a) < g\left(\frac{1}{2\alpha}g(b)\right) < \delta g\left(x - \frac{1}{4}g(x)\right),$$

for each $x \in [b, 1]$. Therefore, by (8), there exists $y \in (a, b)$ such that

$$m(A \cap [-y,y]) < \frac{1}{2}g(y),$$

contrary to (11).

Theorem 2.6. There exists an open set H such that $H \in S_0(0) \setminus \psi - S(0)$.

PROOF. Let $b_0 \in (0,1)$ be such that $\psi(2b_0) < \frac{1}{16}$ and, for each $n \in \mathbb{N}$, $b_n = \frac{1}{2^n}b_0$. We choose a_1 as an arbitrary point of an interval (b_2, b_1) and, for each $n \ge 2$, put $a_n = b_n - g(b_{n-2})$. We observe that, for each $n \ge 2$,

$$a_n = b_n - g(b_{n-2}) = 2b_{n+1}(1 - 8\psi(2b_{n-2})) > b_{n+1}.$$

266

Put $H = \bigcup_{n=2}^{\infty} (a_n, b_n)$. We shall show that $H \notin \psi - S(0)$. Let $h \in (0, a_2]$. Then there exists $n \ge 3$ such that $h \in (a_n, a_{n-1}]$. Therefore

$$m(H \cap [-h,h]) > b_{n+1} - a_{n+1} = g(b_{n-1}) > g(h).$$

Now we shall show that $H \in \mathcal{S}_0(0)$. Let $\varepsilon > 0$. Then there exists $n_0 \in \mathbb{N}$ such that, for each $n \ge n_0$, $\psi(2b_n) < \frac{\varepsilon}{16}$. Put $\delta = a_{n_0+1}$ and let $h \in (0, \delta)$. Then there exists $n > n_0 + 1$ such that $h \in [a_n, a_{n-1})$, and

$$m(H \cap [-h,h]) \le \sum_{k=n}^{\infty} (b_k - a_k) = \sum_{k=n}^{\infty} g(b_{k-2}) < \frac{\varepsilon}{8} \sum_{k=n}^{\infty} b_{k-2} = \varepsilon 2b_{n+1} < \varepsilon 2h.$$
Thus

Thus

$$\lim_{h \to 0^+} \frac{m(H \cap [-h,h])}{2h} = 0.$$

ψ -sparse topology 3

Let $\psi \in \mathcal{C}$. For $E \in \mathcal{L}$, put

 $\Gamma_{\psi}(E) = \{ x \in \mathbb{R} : x \text{ is a } \psi - \text{sparse point of } \mathbb{R} \setminus E \}.$

Let $A \in \mathcal{L}$ and $B \in \mathcal{L}$. We denote $A \sim B$, if $m(A \triangle B) = 0$, where $A \triangle B$ is the symmetric difference of A and B.

It is easy to see that the following theorem is true.

Theorem 3.1. Let $\psi \in C$. Then for each $A, B \in \mathcal{L}$

- **1.** if $A \subset B$, then $\Gamma_{\psi}(A) \subset \Gamma_{\psi}(B)$;
- **2.** if $A \sim B$, then $\Gamma_{\psi}(A) = \Gamma_{\psi}(B)$;
- **3.** $\Gamma_{\psi}(\emptyset) = \emptyset, \quad \Gamma_{\psi}(\mathbb{R}) = \mathbb{R};$
- 4. $\Gamma_{\psi}(A \cap B) = \Gamma_{\psi}(A) \cap \Gamma_{\psi}(B).$

By theorems 3.1, 2.1, 2.4, 2.5 and 2.6, we have the following

Theorem 3.2. Let $\psi \in C$ and

$$\tau_{\psi} = \{ E \in \mathcal{L} : E \subset \Gamma_{\psi}(E) \}.$$

Then τ_{ψ} is a topology on the real line, stronger than the ψ -density topology \mathcal{T}_{ψ} and weaker than the density topology d.

References

- Goffman, C., Neugebauer, C., Nishiura, T., Density topology and approximate continuity, Duke Math. J. 28(1961), 497–505.
- [2] Sarkhel, D.N., De, A.K., The proximally Continuous Integrals, J. Austral. Math. Soc. (Series A) 31(1981),26–45.
- [3] Terepeta, M., Wagner-Bojakowska, E., Ψ-density topologies, Circ. Mat. Palermo 48(1999), 451–476.

268