Anna Goździewicz-Smejda, Centre of Mathematics and Physics, Technical University of Łódź, al. Politechniki 11, 90-924 Łódź, Poland. email: aniags@op.pl
Ewa Łazarow, Institute of Mathematics, Academia Pomeraniensis, ul. Arci-szewskiego 22a, 76-200 Słupsk, Poland. email:
elazarow@toya.net.pl

TOPOLOGIES GENERATED BY THE ψ-SPARSE SETS

Abstract

We study the notion of ψ-sparse point and ψ-sparse topology for nondecreasing continuous function ψ. We show that ψ-sparse topology is stronger then the ψ-density topology and weaker than the density topology.

1 Introduction

We shall use the following notations: \mathbb{R} denotes the set of all real numbers, \mathbb{N} - the set of all positive integers, m^{*} - the outer Lebesgue measure, \mathcal{L} - the σ-algebra of Lebesgue measurable sets, m - the Lebesgue measure and \mathcal{C} - the family of all continuous, nondecreasing functions $\psi:(0, \infty) \rightarrow(0,1)$ such that $\lim _{x \rightarrow 0^{+}} \psi(x)=0$.

For $E \subset \mathbb{R}$ and $x \in \mathbb{R}$, we let

$$
\underline{d}(E, x)=\liminf _{h \rightarrow 0^{+}} \frac{m^{*}(E \cap[x-h, x+h])}{2 h}
$$

and

$$
\bar{d}(E, x)=\limsup _{h \rightarrow 0^{+}} \frac{m^{*}(E \cap[x-h, x+h])}{2 h}
$$

Mathematical Reviews subject classification: Primary: 26A03, 26A04; Secondary: 26A05
Key words: density topology, ψ-sparse point, ψ-sparse topology
Received by the editors June 5, 2009
Communicated by: Udayan B. Darji
as the lower and upper outer density of a set E at a point x, respectively.
Analogously, for any $\psi \in \mathcal{C}, E \subset \mathbb{R}$ and $x \in \mathbb{R}$ let

$$
\psi-\underline{d}(E, x)=\liminf _{h \rightarrow 0^{+}} \frac{m^{*}(E \cap[x-h, x+h])}{2 h \psi(2 h)}
$$

and

$$
\psi-\bar{d}(E, x)=\limsup _{h \rightarrow 0^{+}} \frac{m^{*}(E \cap[x-h, x+h])}{2 h \psi(2 h)}
$$

denote the lower and upper outer ψ-density of a set E at a point x, respectively.
Definition 1.1. [1] We say that $x \in \mathbb{R}$ is a density point of a set $E \in \mathcal{L}$ if $\underline{d}(E, x)=1$. We say that $x \in \mathbb{R}$ is a dispersion point of a set $E \in \mathcal{L}$ if x is a density point of the set $\mathbb{R} \backslash E$.

Set, for each $E \in \mathcal{L}$,

$$
\Phi(E)=\{x \in \mathbb{R}: x \text { is a density point of } E\}
$$

Then the family $d=\{E \in \mathcal{L}: E \subset \Phi(E)\}$ is a topology on the real line called the density topology [1].
Let $\psi \in \mathcal{C}$.
Definition 1.2. [3] We say that $x \in \mathbb{R}$ is a ψ-dispersion point of a set $E \in \mathcal{L}$ if $\psi-\bar{d}(E, x)=0$. We say that $x \in \mathbb{R}$ is a ψ-density point of a set $E \in \mathcal{L}$ if x is a ψ-dispersion point of the set $\mathbb{R} \backslash E$.

For $E \in \mathcal{L}$, let

$$
\Phi_{\psi}(E)=\{x \in \mathbb{R}: x \text { is a } \psi-\text { density point of } E\}
$$

and

$$
\mathcal{T}_{\psi}=\left\{E \in \mathcal{L}: E \subset \Phi_{\psi}(E)\right\}
$$

Theorem 1.1. [3] The family \mathcal{T}_{ψ} is a topology on the real line, stronger than the Euclidean topology and weaker than the density topology d.
Definition 1.3. [2] We say that a set $E \subset \mathbb{R}$ is sparse at a point $x \in \mathbb{R}$ on the right if there exists, for every $\varepsilon>0, \delta>0$ such that every interval $(a, b) \subset(x, x+\delta)$, with $m((x, a))<\delta m((x, b))$, contains at least one point y such that $m^{*}(E \cap(x, y))<\varepsilon m((x, y))$.

The family of sets sparse at x on the right is denoted by $\mathcal{S}(x+)$, and E is said to be sparse at x if $E \in \mathcal{S}(x)=\mathcal{S}(x+) \cap \mathcal{S}(x-)$, where $\mathcal{S}(x-)$ denotes, by convention, the family of sets sparse at x on the left.

Let $\mathcal{S}_{0}(x)=\{E \subset \mathbb{R}: \bar{d}(E, x)=0\}$. Then by [2], for each $x \in \mathbb{R}$ $S_{0}(x) \subset S(x)$.

Theorem 1.2. [2] Let $x \in \mathbb{R}$ and $E \subset \mathbb{R}$. The following conditions are equivalent:
(i) $E \in \mathcal{S}(x)$,
(ii) for each $F \subset \mathbb{R}$, if $\underline{d}(F, x)=0$ then $\underline{d}(E \cup F, x)=0$.

2ψ-sparse sets

In this chapter ψ will be an arbitrary fixed function from \mathcal{C} and

$$
g(x)=\left\{\begin{array}{lll}
2 x \psi(2 x) & \text { if } & x \in(0,1] \\
0 & \text { if } & x=0
\end{array}\right.
$$

Then the function g is continuous and increasing. Moreover, $g(x)<2 x$ and $g(a x) \leq a g(x)$ for any $x \in(0,1]$ and $a \in(0,1)$.

Definition 2.1. We say that a set $E \subset \mathbb{R}$ is ψ-sparse at a point $x \in \mathbb{R}$ if for each $F \subset \mathbb{R}$, the following holds:

$$
\text { if } \psi-\underline{d}(F, x)=0 \text { then } \psi-\underline{d}(E \cup F, x)=0
$$

For each $x \in \mathbb{R}$, we denote by $\psi-\mathcal{S}(x)$ the family of all sets which are ψ-sparse at x. Put, for each $x \in \mathbb{R}, \psi-\mathcal{S}_{0}(x)=\{E \subset \mathbb{R}: \psi-\bar{d}(E, x)=0\}$. Then the following proposition and two theorems are obvious.

Proposition 2.1. Let $A \subset \mathbb{R}, B \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then

1. if $A \in \psi-S(x)$ and $B \in \psi-S(x)$, then $A \cup B \in \psi-S(x)$,
2. if $A \in \psi-S(x)$ and $B \subset A$, then $B \in \psi-S(x)$.

Theorem 2.1. For each $x \in \mathbb{R}, \psi-\mathcal{S}_{0}(x) \subset \psi-\mathcal{S}(x)$.
Theorem 2.2. For any $E \subset \mathbb{R}$ and $x \in \mathbb{R}, E \in \psi-\mathcal{S}(x)$ if and only if $\{y-x: y \in E\} \in \psi-\mathcal{S}(0)$.

Theorem 2.3. Let $E \subset \mathbb{R}$ and let A be a measurable cover of E. Then the following conditions are equivalent:
(i) $E \in \psi-\mathcal{S}(0)$.
(ii) For each $\varepsilon \in(0,1)$, there exists $\delta \in(0,1)$ such that, for each interval $[a, b] \subset(0, \delta)$, if $g(a)<\delta g\left(x-\frac{\varepsilon}{2} g(x)\right)$ for each $x \in[b, 1]$, then there exists $y \in(a, b)$ such that $m^{*}(E \cap(-y, y))<\varepsilon g(y)$.
(iii) $A \in \psi-\mathcal{S}(0)$.

Proof. $(i) \Rightarrow(i i)$ For any $\varepsilon, \delta \in(0,1)$, denote by $W(\varepsilon, \delta)$ the family of all intervals $[a, b] \subset(0, \delta)$ such that, for each $x \in[b, 1], g(a)<\delta g\left(x-\frac{\varepsilon}{2} g(x)\right)$ and, for each $y \in(a, b), m^{*}(E \cap(-y, y)) \geq \varepsilon g(y)$.

Proceeding by contradiction, assume that $E \in \psi-\mathcal{S}(0)$ and (ii) is false. From our assumption it follows that there is $\varepsilon \in(0,1)$ such that $W(\varepsilon, \delta) \neq \emptyset$, for each $\delta \in(0,1)$.

Let $\delta_{1} \in(0,1)$ be such that $\psi\left(2 \delta_{1}\right)<\frac{1}{4}$ and $\left[a_{1}, b_{1}\right] \in W\left(\varepsilon, \delta_{1}\right)$. For each $n \in \mathbb{N}$, let $0<\delta_{n+1}<\min \left\{\frac{1}{n+1}, \frac{1}{2} g\left(a_{n}\right)\right\}$ and $\left[a_{n+1}, b_{n+1}\right] \in W\left(\varepsilon, \delta_{n+1}\right)$.

By the above we have defined the sequence of disjoint intervals $\left\{\left[a_{n}, b_{n}\right]\right\}_{n \in \mathbb{N}}$ and the sequence of real positive numbers $\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ such that
(1) $\psi\left(2 \delta_{1}\right)<\frac{1}{4}$ and $\delta_{1} \in(0,1)$,
(2) for each $n \in \mathbb{N}, \quad\left[a_{n}, b_{n}\right] \in W\left(\varepsilon, \delta_{n}\right)$,
(3) for each $n \in \mathbb{N}, \quad 0<\delta_{n+1}<\min \left\{\frac{1}{n+1}, \frac{1}{2} g\left(a_{n}\right)\right\}$ and $0<\delta_{n+1}<a_{n}<\delta_{1}$,
(4) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$.

Let $n \in \mathbb{N}$ and $x_{n} \in\left[b_{n+1}, a_{n}\right]$ be such that

$$
x_{n}-\frac{\varepsilon}{2} g\left(x_{n}\right)=\min \left\{x-\frac{\varepsilon}{2} g(x): x \in\left[b_{n+1}, a_{n}\right]\right\}
$$

Set $y_{n+1}=x_{n}-\frac{\varepsilon}{2} g\left(x_{n}\right)$ and $z_{n+1}=y_{n+1}+g\left(a_{n}\right)$. We shall show that
(5) $g\left(a_{n+1}\right)<\frac{1}{n+1} g\left(y_{n+1}\right)$,
(6) $a_{n+1}<y_{n+1}<b_{n+1}<z_{n+1}<2 g\left(a_{n}\right)<a_{n}$.

By (2) and (3), we have that $g\left(a_{n+1}\right)<\delta_{n+1} g\left(x_{n}-\frac{\varepsilon}{2} g\left(x_{n}\right)\right)<\frac{1}{n+1} g\left(y_{n+1}\right)$. Therefore the monotonicity of function g implies $a_{n+1}<y_{n+1}$. By the definition of the point x_{n}, we have $y_{n+1}=x_{n}-\frac{\varepsilon}{2} g\left(x_{n}\right) \leq b_{n+1}-\frac{\varepsilon}{2} g\left(b_{n+1}\right)<b_{n+1}$. By the above and (2),(3) we get $z_{n+1}<b_{n+1}+g\left(a_{n}\right)<\delta_{n+1}+g\left(a_{n}\right)<2 g\left(a_{n}\right)$. Additionally, by (3) and (1) $2 g\left(a_{n}\right)=4 a_{n} \psi\left(2 a_{n}\right) \leq 4 a_{n} \psi\left(2 \delta_{1}\right)<a_{n}$. Besides that $z_{n+1} \geq y_{n+1}+g\left(x_{n}\right)=x_{n}-\frac{\varepsilon}{2} g\left(x_{n}\right)+g\left(x_{n}\right)>x_{n} \geq b_{n+1}$. Therefore the conditions (5) and (6) are satisfied.

Let $F=\bigcup_{n=1}^{\infty}\left[y_{n+1}, z_{n+1}\right]$. By (6) and (5), we observe that, for each $n \in \mathbb{N}$,

$$
m\left(F \cap\left[-y_{n+1}, y_{n+1}\right]\right)<z_{n+2}<2 g\left(a_{n+1}\right)<\frac{2}{n+1} g\left(y_{n+1}\right)
$$

Hence,

$$
\psi-\underline{d}(F, 0) \leq \lim _{n \rightarrow \infty} \frac{m\left(F \cap\left[-y_{n+1}, y_{n+1}\right]\right)}{2 y_{n+1} \psi\left(2 y_{n+1}\right)}=0 .
$$

Now, we shall show that $\psi-\underline{d}(E \cup F, 0)>0$. Let $h \in\left(0, b_{1}\right)$. Then there exists $n \in \mathbb{N}$ such that $h \in\left[b_{n+1}, b_{n}\right)$. There are three cases to consider.
(α) $h \in\left(a_{n}, b_{n}\right)$. Then by (2),

$$
m^{*}((E \cup F) \cap[-h, h]) \geq m^{*}(E \cap[-h, h]) \geq \varepsilon g(h) .
$$

(β) $h \in\left[z_{n+1}, a_{n}\right]$. Then by the definition of z_{n+1},

$$
m^{*}((E \cup F) \cap[-h, h]) \geq m(F \cap[0, h])>z_{n+1}-y_{n+1}=g\left(a_{n}\right) \geq g(h) .
$$

(γ) $h \in\left[b_{n+1}, z_{n+1}\right)$. Then by $h-\frac{\varepsilon}{2} g(h) \geq x_{n}-\frac{\varepsilon}{2} g\left(x_{n}\right)=y_{n+1}$, we have that $h-y_{n+1} \geq \frac{\varepsilon}{2} g(h)$. Hence

$$
m^{*}((E \cup F) \cap[-h, h]) \geq m(F \cap[0, h])>h-y_{n+1} \geq \frac{\varepsilon}{2} g(h) .
$$

Therefore

$$
\liminf _{h \rightarrow 0^{+}} \frac{m^{*}((E \cup F) \cap[-h, h])}{2 h \psi(2 h)} \geq \frac{\varepsilon}{2}
$$

We have shown that there exists a set $F \subset \mathbb{R}$ such that $\psi-\underline{d}(F, 0)=0$ and $\psi-\underline{d}(E \cup F, 0)>0$. Thus $E \notin \psi-\mathcal{S}(0)$, a contradiction.
$(i i) \Rightarrow$ (iii) Suppose that (ii) is fulfilled. First we show that $\psi-\underline{d}(A, 0)=0$. Let $n \in \mathbb{N}$. By our assumption, there exists $\delta_{n} \in(0,1)$ such that, for each interval $[a, b] \subset\left(0, \delta_{n}\right)$, if $g(a)<\delta_{n} g\left(x-\frac{1}{2(n+1)} g(x)\right)$ for each $x \in[b, 1]$, then there exists $y \in(a, b)$ such that

$$
m(A \cap(-y, y))=m^{*}(E \cap(-y, y))<\frac{1}{n+1} g(y) .
$$

Let $0<b_{n}<\min \left\{\delta_{n}, \frac{1}{n}\right\}$ and $z_{n}=\min \left\{\delta_{n} g\left(x-\frac{1}{2(n+1)} g(x)\right): x \in\left[b_{n}, 1\right]\right\}$. By the continuity of g at 0 , there exists $a_{n} \in\left(0, b_{n}\right)$ such that $g\left(a_{n}\right)<z_{n}$. Therefore, $g\left(a_{n}\right)<\delta_{n} g\left(x-\frac{1}{2(n+1)} g(x)\right)$ for each $x \in\left[b_{n}, 1\right]$ and by our assumption there exists $y_{n} \in\left(a_{n}, b_{n}\right)$ such that $m\left(A \cap\left(-y_{n}, y_{n}\right)\right)<\frac{1}{n+1} g\left(y_{n}\right)$. Thus

$$
\psi-\underline{d}(A, 0) \leq \lim _{n \rightarrow \infty} \frac{m\left(A \cap\left[-y_{n}, y_{n}\right]\right)}{2 y_{n} \psi\left(2 y_{n}\right)}=0 .
$$

Let $F \subset \mathbb{R}$ be such that $\psi-\underline{d}(F, 0)=0$. It is sufficient to show that for each $n \in \mathbb{N} \backslash\{1\}$ there exists $v_{n} \in\left(0, \frac{1}{n}\right)$ such that

$$
m^{*}\left((A \cup F) \cap\left[-v_{n}, v_{n}\right]\right) \leq \frac{4}{n} g\left(v_{n}\right)
$$

Let $n \in \mathbb{N} \backslash\{1\}$ and

$$
A_{n}=\left\{h \in(0,1): m(A \cap[-h, h])>\frac{1}{n} g(h)\right\}
$$

Observe that $\left(0, \frac{1}{n}\right) \backslash A_{n} \neq \emptyset$. If there exists $v_{n} \in\left(0, \frac{1}{n}\right) \backslash A_{n}$ such that $m^{*}\left(F \cap\left[-v_{n}, v_{n}\right]\right) \leq \frac{1}{n} g\left(v_{n}\right)$, then

$$
m^{*}\left((A \cup F) \cap\left[-v_{n}, v_{n}\right]\right) \leq \frac{2}{n} g\left(v_{n}\right)
$$

We assume that $m^{*}(F \cap(-x, x))>\frac{1}{n} g(x)$ for each $x \in\left(0, \frac{1}{n}\right) \backslash A_{n}$.
By our assumption there exists $\delta \in(0,1)$ such that for each closed interval $[a, b] \subset(0, \delta)$, if $g(a)<\delta g\left(x-\frac{1}{2 n} g(x)\right)$ for each $x \in[b, 1]$, then there exists $y \in(a, b)$ such that $m(A \cap(-y, y))<\frac{1}{n} g(y)$. Let $\delta_{1}=\min \left\{\delta, \frac{1}{n}\right\}$. By $\psi-$ $\underline{d}(A, 0)=0$ there exists $y_{0} \in\left(0, \delta_{1}\right)$ such that

$$
m\left(A \cap\left(-y_{0}, y_{0}\right)\right)<\frac{1}{n} g\left(y_{0}\right)
$$

and, by $\psi-\underline{d}(F, 0)=0$, there exists a sequence $\left\{t_{k}\right\}_{k \in \mathbb{N}}$ tending to zero, such that

$$
m^{*}\left(F \cap\left[-t_{k}, t_{k}\right]\right)<\delta \frac{1}{n} g\left(t_{k}\right)
$$

and $t_{k}<y_{0}$ for each $k \in \mathbb{N}$. Then $t_{k} \in\left(0, \frac{1}{n}\right)$ and $m^{*}\left(F \cap\left[-t_{k}, t_{k}\right]\right)<\frac{1}{n} g\left(t_{k}\right)$ so we have $t_{k} \in A_{n}$ for each $k \in \mathbb{N}$.

Let k be a fixed positive integer number. Since $t_{k} \in A_{n}$ it follows that there exists a component $\left(a_{k}, b_{k}\right)$ of the open set A_{n}, such that $t_{k} \in\left(a_{k}, b_{k}\right)$. We observe that

$$
m(A \cap[-x, x])>\frac{1}{n} g(x)
$$

for each $x \in\left(a_{k}, b_{k}\right)$,

$$
m\left(A \cap\left[-a_{k}, a_{k}\right]\right)=\frac{1}{n} g\left(a_{k}\right)
$$

and

$$
m\left(A \cap\left[-b_{k}, b_{k}\right]\right)=\frac{1}{n} g\left(b_{k}\right)
$$

So $y_{0} \notin\left[a_{k}, b_{k}\right]$ and as $t_{k}<y_{0}$, we have $b_{k}<y_{0}<\delta$.
We have proven that $\left[a_{k}, b_{k}\right] \subset(0, \delta)$ and $m(A \cap[-x, x])>\frac{1}{n} g(x)$ for each $x \in\left(a_{k}, b_{k}\right)$. Therefore, there exists $x_{k} \in\left[b_{k}, 1\right]$ such that

$$
g\left(a_{k}\right) \geq \delta g\left(x_{k}-\frac{1}{2 n} g\left(x_{k}\right)\right)
$$

Moreover, $a_{k} \notin A_{n}$ and $a_{k} \in\left(0, \frac{1}{n}\right)$, hence $m^{*}\left(F \cap\left[-a_{k}, a_{k}\right]\right)>\frac{1}{n} g\left(a_{k}\right)$. Therefore

$$
\begin{aligned}
\frac{1}{n} \delta g\left(x_{k}-\frac{1}{2 n} g\left(x_{k}\right)\right) & \leq \frac{1}{n} g\left(a_{k}\right)<m^{*}\left(F \cap\left[-a_{k}, a_{k}\right]\right) \\
& \leq m^{*}\left(F \cap\left[-t_{k}, t_{k}\right]\right)<\delta \frac{1}{n} g\left(t_{k}\right)
\end{aligned}
$$

and, by the monotonicity of the function g, we have

$$
x_{k}-\frac{1}{2 n} g\left(x_{k}\right)<t_{k}<b_{k} \leq x_{k}
$$

Thus

$$
\begin{aligned}
m\left(A \cap\left[-x_{k}, x_{k}\right]\right) & \leq m\left(A \cap\left[-b_{k}, b_{k}\right]\right)+2\left(x_{k}-b_{k}\right) \\
& \leq \frac{1}{n} g\left(b_{k}\right)+\frac{1}{n} g\left(x_{k}\right) \leq \frac{2}{n} g\left(x_{k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
m^{*}\left(F \cap\left[-x_{k}, x_{k}\right]\right) & \leq m^{*}\left(F \cap\left[-t_{k}, t_{k}\right]\right)+2\left(x_{k}-t_{k}\right) \\
& <\delta \frac{1}{n} g\left(t_{k}\right)+\frac{1}{n} g\left(x_{k}\right)<\frac{2}{n} g\left(x_{k}\right) .
\end{aligned}
$$

Hence, $m^{*}\left((A \cup F) \cap\left[-x_{k}, x_{k}\right]\right)<\frac{4}{n} g\left(x_{k}\right)$.
Moreover, $\limsup _{k \rightarrow \infty}\left(x_{k}-\frac{1}{2 n} g\left(x_{k}\right)\right) \leq \lim _{k \rightarrow \infty} t_{k}=0$, so $\lim _{k \rightarrow \infty} x_{k}=0$. Now we put $v_{n}=x_{k}$, where $x_{k} \in\left(0, \frac{1}{n}\right)$.
(iii) $\Rightarrow(i)$ Assume that (iii) is fulfilled. Let $F \subset \mathbb{R}$ be a set such that $\psi-\underline{d}(F, 0)=0$. Then

$$
\liminf _{h \rightarrow 0^{+}} \frac{m^{*}((E \cup F) \cap[-h, h])}{g(h)} \leq \liminf _{h \rightarrow 0^{+}} \frac{m^{*}((A \cup F) \cap[-h, h])}{g(h)}=0 .
$$

Hence $E \in \psi-\mathcal{S}(0)$.
Lemma 2.1. For each real number $\alpha \in(0,1)$, there exists an open interval $(a, b) \subset(0, \alpha)$ such that $b-a=2 b \psi(2 b)$ and $2 a \psi(2 a) \geq b \psi(2 b)$.

Proof. Let $\alpha \in(0,1)$ and $\delta>0$ be such that, for each $x \in(0, \delta)$, we have $\psi(2 x)<\frac{1}{4}$. Put $\gamma=\min \{\alpha, \delta\}, b_{1} \in(0, \gamma)$ and, for each $n \in \mathbb{N}, b_{n+1}$ be such that $b_{n+1} \psi\left(2 b_{n+1}\right)=\frac{1}{2^{n}} b_{1} \psi\left(2 b_{1}\right)$. Then $\lim _{n \rightarrow \infty} b_{n}=0$.

Suppose that $b_{n}-b_{n+1}<2 b_{n} \psi\left(2 b_{n}\right)$ for each $n \in \mathbb{N}$. Then

$$
b_{1}=\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right) \leq \sum_{n=1}^{\infty} 2 b_{n} \psi\left(2 b_{n}\right)=4 b_{1} \psi\left(2 b_{1}\right)<b_{1}
$$

which is impossible. Thus there exists $n \in \mathbb{N}$ such that $b_{n}-b_{n+1} \geq 2 b_{n} \psi\left(2 b_{n}\right)$.
Let $b=b_{n}$ and $a=b_{n}-2 b_{n} \psi\left(2 b_{n}\right)$. Then $b-a=2 b \psi(2 b), a \geq b_{n+1}$ and $2 a \psi(2 a) \geq 2 b_{n+1} \psi\left(2 b_{n+1}\right)=b \psi(2 b)$.

Theorem 2.4. There exists an open set H such that $H \in \psi-\mathcal{S}(0) \backslash \psi-\mathcal{S}_{0}(0)$.
Proof. By Lemma 2.1, we can defined a sequence of disjoint open intervals $\left\{\left(c_{n}, d_{n}\right)\right\}_{n \in \mathbb{N}} \subset(0,1)$ such that for each $n \in \mathbb{N}$,

1. $d_{n}-c_{n}=g\left(d_{n}\right)$,
2. $g\left(c_{n}\right) \geq \frac{1}{2} g\left(d_{n}\right)$,
3. $d_{n+1}<\min \left\{\frac{1}{n}, \frac{1}{2^{n}} g\left(c_{n}\right)\right\}$.

Put $H=\bigcup_{n \in \mathbb{N}}\left(c_{n}, d_{n}\right)$. Then $m\left(H \cap\left[-d_{n}, d_{n}\right]\right) \geq d_{n}-c_{n}=g\left(d_{n}\right)$ for each $n \in \mathbb{N}$. Therefore $H \notin \psi-\mathcal{S}_{0}(0)$.

We shall show that $H \in \psi-\mathcal{S}(0)$. Let $\varepsilon \in(0,1)$. Choose $n_{0} \in \mathbb{N}$ such that $\max \left\{c_{n_{0}}, \frac{1}{2^{n_{0}}}\right\}<\frac{\varepsilon}{4}$. Then, for each $n>n_{0}$, the inequality

$$
\frac{\varepsilon}{2} g\left(d_{n+1}\right)<g\left(d_{n+1}\right)<2 d_{n+1}<\frac{\varepsilon}{2} g\left(c_{n}\right)
$$

implies that there exists $y_{n} \in\left(d_{n+1}, c_{n}\right)$ such that $g\left(d_{n+1}\right)=\frac{\varepsilon}{2} g\left(y_{n}\right)$.
Let $x_{0} \in[0,1]$ be such that

$$
m=x_{0}-\frac{\varepsilon}{2} g\left(x_{0}\right)=\sup \left\{x-\frac{\varepsilon}{2} g(x): x \in[0,1]\right\}
$$

It is easily seen that $x_{0} \neq 0$ and $m>0$. Choose $n_{1}>n_{0}$ such that $c_{n_{1}}<m$ and $c_{n_{1}}<x_{0}$. Put $\delta=c_{n_{1}}$. Let $[a, b] \subset(0, \delta)$ be an interval such that, for each $x \in[b, 1], g(a)<\delta g\left(x-\frac{\varepsilon}{2} g(x)\right)$. If there exists $n \geq n_{1}$ such that $c_{n} \in(a, b)$, then

$$
m\left(H \cap\left[-c_{n}, c_{n}\right]\right)<d_{n+1}<\frac{1}{2^{n}} g\left(c_{n}\right)<\varepsilon g\left(c_{n}\right)
$$

Now let as assume that for each $n \geq n_{1} c_{n} \notin(a, b)$. Then there exists $n \geq n_{1}$ such that $(a, b) \subset\left(c_{n+1}, c_{n}\right)$. Suppose $(a, b) \subset\left(c_{n+1}, y_{n}\right)$. Then, by $0<y_{n}-\frac{\varepsilon}{2} g\left(y_{n}\right)<y_{n}<c_{n_{1}}<m$ and $y_{n}<x_{0}$, there exists $x \in\left(y_{n}, x_{0}\right) \subset[b, 1]$ such that $x-\frac{\varepsilon}{2} g(x)=y_{n}$. Therefore, by 2

$$
g(a) \geq g\left(c_{n+1}\right) \geq \frac{1}{2} g\left(d_{n+1}\right)=\frac{\varepsilon}{4} g\left(y_{n}\right) \geq \delta g\left(x-\frac{\varepsilon}{2} g(x)\right) .
$$

But this contradicts the definition of the interval $[a, b]$, so $(a, b) \cap\left(y_{n}, c_{n}\right) \neq \emptyset$. Let $h \in(a, b) \cap\left(y_{n}, c_{n}\right)$. Then

$$
m(H \cap[-h, h])<\frac{1}{2^{n+1}} g\left(c_{n+1}\right)+g\left(d_{n+1}\right)<\frac{\varepsilon}{2} g(h)+\frac{\varepsilon}{2} g\left(y_{n}\right)<\varepsilon g(h) .
$$

We have shown that, for each $\varepsilon \in(0,1)$, there exists $\delta \in(0,1)$ such that, for each interval $[a, b] \subset(0, \delta)$, if $g(a)<\delta g\left(x-\frac{\varepsilon}{2} g(x)\right)$ for each $x \in[b, 1]$, then there exists $y \in(a, b)$ such that $m(H \cap(-y, y))<\varepsilon g(y)$. Thus, by Theorem 2.3, $H \in \psi-\mathcal{S}(0)$.

Theorem 2.5. For each $x \in \mathbb{R}, \psi-\mathcal{S}(x) \cap \mathcal{L} \subset \mathcal{S}_{0}(x)$.
Proof. We may assume that $x=0$. We suppose that there exists a set $A \in \psi-\mathcal{S}(0) \cap \mathcal{L} \backslash \mathcal{S}_{0}(0)$. Then there exists a real number $\alpha \in(0,1)$ such that

$$
\begin{equation*}
\limsup _{x \rightarrow 0^{+}} \frac{m^{*}(A \cap[-x, x])}{2 x}>\alpha \tag{7}
\end{equation*}
$$

and, by Theorem 2.3, there exists a real number $\delta \in(0,1)$ such that
(8) for each interval $[a, b] \subset(0, \delta)$, if $g(a)<\delta g\left(x-\frac{1}{4} g(x)\right)$ for each $x \in[b, 1]$, then there exists $y \in(a, b)$ such that $m(A \cap(-y, y))<\frac{1}{2} g(y)$.

Let γ be a real positive number such that $\gamma<\delta$ and, for each $x \in(0, \gamma)$, $\psi(2 x)<\alpha$. By the continuity of the function $x-\frac{1}{4} g(x)$, for each $b \in(0,1)$, there exists a point $t(b) \in[b, 1]$ such that

$$
t(b)-\frac{1}{4} g(t(b))=\min \left\{x-\frac{1}{4} g(x): x \in[b, 1]\right\} \leq b-\frac{1}{4} g(b) .
$$

Then, by $\lim _{b \rightarrow 0^{+}}\left(t(b)-\frac{1}{4} g(t(b))=0\right.$ and by the definition of the function g , we see that

$$
\lim _{b \rightarrow 0^{+}} \frac{g(t(b))}{t(b)-\frac{1}{4} g(t(b))}=0 .
$$

Thus there exists a real positive number $\delta_{1}<\gamma$ such that, for any $b \in\left(0, \delta_{1}\right)$ and $x \in[b, 1]$,

$$
g(b) \leq g(t(b))<2 \alpha \delta\left(t(b)-\frac{1}{4} g(t(b))\right) \leq 2 \alpha \delta\left(x-\frac{1}{4} g(x)\right)
$$

Consequently,
(9) for any $b \in\left(0, \delta_{1}\right)$ and $x \in[b, 1]$,

$$
g\left(\frac{1}{2 \alpha} g(b)\right)<g\left(\delta\left(x-\frac{1}{4} g(x)\right)\right) \leq \delta g\left(x-\frac{1}{4} g(x)\right)
$$

By $A \in \psi-\mathcal{S}(0)$, there exists $x_{1} \in\left(0, \delta_{1}\right)$ such that $m\left(A \cap\left[-x_{1}, x_{1}\right]\right)<g\left(x_{1}\right)$ and, by (7), there exists $x_{2} \in\left(0, x_{1}\right)$ such that $m\left(A \cap\left[-x_{2}, x_{2}\right]\right)>2 \alpha x_{2}$. Put

$$
E=\left\{x \in\left[x_{2}, 1\right]: m(A \cap[-x, x]) \leq g(x)\right\}
$$

Then $x_{1} \in E$. Set $b=\min E$. Since $\psi\left(2 x_{2}\right)<\alpha$, we have that

$$
m\left(A \cap\left[-x_{2}, x_{2}\right]\right)>2 \alpha x_{2}>g\left(x_{2}\right)
$$

and $x_{2}<b<x_{1}$. Put $a=x_{2}$. Then
(10)

$$
g(b)=m(A \cap[-b, b]) \geq m(A \cap[-a, a])>2 \alpha a
$$

and
(11) for each $t \in(a, b), m(A \cap(-t, t))>g(t)$.

Let $x \in[b, 1]$. By (10) and (9),

$$
g(a)<g\left(\frac{1}{2 \alpha} g(b)\right)<\delta g\left(x-\frac{1}{4} g(x)\right)
$$

for each $x \in[b, 1]$. Therefore, by (8), there exists $y \in(a, b)$ such that

$$
m(A \cap[-y, y])<\frac{1}{2} g(y)
$$

contrary to (11).
Theorem 2.6. There exists an open set H such that $H \in \mathcal{S}_{0}(0) \backslash \psi-\mathcal{S}(0)$.
Proof. Let $b_{0} \in(0,1)$ be such that $\psi\left(2 b_{0}\right)<\frac{1}{16}$ and, for each $n \in \mathbb{N}, b_{n}=$ $\frac{1}{2^{n}} b_{0}$. We choose a_{1} as an arbitrary point of an interval $\left(b_{2}, b_{1}\right)$ and, for each $n \geq 2$, put $a_{n}=b_{n}-g\left(b_{n-2}\right)$. We observe that, for each $n \geq 2$,

$$
a_{n}=b_{n}-g\left(b_{n-2}\right)=2 b_{n+1}\left(1-8 \psi\left(2 b_{n-2}\right)\right)>b_{n+1} .
$$

Put $H=\bigcup_{n=2}^{\infty}\left(a_{n}, b_{n}\right)$. We shall show that $H \notin \psi-S(0)$. Let $h \in\left(0, a_{2}\right]$. Then there exists $n \geq 3$ such that $h \in\left(a_{n}, a_{n-1}\right]$. Therefore

$$
m(H \cap[-h, h])>b_{n+1}-a_{n+1}=g\left(b_{n-1}\right)>g(h) .
$$

Now we shall show that $H \in \mathcal{S}_{0}(0)$. Let $\varepsilon>0$. Then there exists $n_{0} \in \mathbb{N}$ such that, for each $n \geq n_{0}, \psi\left(2 b_{n}\right)<\frac{\varepsilon}{16}$. Put $\delta=a_{n_{0}+1}$ and let $h \in(0, \delta)$. Then there exists $n>n_{0}+1$ such that $h \in\left[a_{n}, a_{n-1}\right)$, and

$$
m(H \cap[-h, h]) \leq \sum_{k=n}^{\infty}\left(b_{k}-a_{k}\right)=\sum_{k=n}^{\infty} g\left(b_{k-2}\right)<\frac{\varepsilon}{8} \sum_{k=n}^{\infty} b_{k-2}=\varepsilon 2 b_{n+1}<\varepsilon 2 h .
$$

Thus

$$
\lim _{h \rightarrow 0^{+}} \frac{m(H \cap[-h, h])}{2 h}=0
$$

3ψ-sparse topology

Let $\psi \in \mathcal{C}$. For $E \in \mathcal{L}$, put

$$
\Gamma_{\psi}(E)=\{x \in \mathbb{R}: x \text { is a } \psi-\text { sparse point of } \mathbb{R} \backslash E\}
$$

Let $A \in \mathcal{L}$ and $B \in \mathcal{L}$. We denote $A \sim B$, if $m(A \triangle B)=0$, where $A \triangle B$ is the symmetric difference of A and B.

It is easy to see that the following theorem is true.
Theorem 3.1. Let $\psi \in \mathcal{C}$. Then for each $A, B \in \mathcal{L}$

1. if $A \subset B$, then $\Gamma_{\psi}(A) \subset \Gamma_{\psi}(B)$;
2. if $A \sim B$, then $\Gamma_{\psi}(A)=\Gamma_{\psi}(B)$;
3. $\Gamma_{\psi}(\emptyset)=\emptyset, \quad \Gamma_{\psi}(\mathbb{R})=\mathbb{R}$;
4. $\Gamma_{\psi}(A \cap B)=\Gamma_{\psi}(A) \cap \Gamma_{\psi}(B)$.

By theorems 3.1, 2.1, 2.4, 2.5 and 2.6, we have the following
Theorem 3.2. Let $\psi \in \mathcal{C}$ and

$$
\tau_{\psi}=\left\{E \in \mathcal{L}: E \subset \Gamma_{\psi}(E)\right\} .
$$

Then τ_{ψ} is a topology on the real line, stronger than the ψ-density topology \mathcal{T}_{ψ} and weaker than the density topology d.

References

[1] Goffman, C., Neugebauer, C., Nishiura, T., Density topology and approximate continuity, Duke Math. J. 28(1961), 497-505.
[2] Sarkhel, D.N., De, A.K., The proximally Continuous Integrals, J. Austral. Math. Soc. (Series A) 31(1981),26-45.
[3] Terepeta, M., Wagner-Bojakowska, E., Ψ-density topologies, Circ. Mat. Palermo 48(1999), 451-476.

