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A CHANGE OF VARIABLES FORMULA
FOR DARBOUX INTEGRALS

Abstract

We offer an inequality involving upper and lower Darboux integrals
of bounded real functions which implies a number of variations of the
change of variables formula for Riemann integrals.

Throughout this paper Dg denotes one of the four Dini derivates of a
continuous real valued function g on a compact interval [a, b] (the same Dini
derivate at all z). Let g(a) < g(b) and let Dg be bounded on [a,b]. Let f be
a bounded function on g[a, b] such that for almost every t € [a, b], one or both
of the functions f(g(-)) or Dg(-) is continuous at t.

We offer the following change of variables formula for Darboux integrals.

Theorem 1. For upper and lower Darbouz integrals we have the inequality:
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Moreover, if f(g(t)) Dg(t) is R-integrable on [a,b], then f(x) is R-integrable
on [9(a), g(b)] and
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The inspiration for this work was references [H] and [T], which provided
essentially the following proposition.
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Proposition 1. In Theorem 1, let Dg be continuous almost everywhere on
[a,b] and let g be nondecreasing. Then we have

b g(b)
/ﬂm»mwwzj f(x) dz
a g(a)

g(b) b
zbwﬂwm=LmeDWMt

The continuity hypothesis in this paper is satisfied, for example, when
f is everywhere continuous; likewise it is satisfied when Dg is continuous
almost everywhere on [a, b] as in Proposition 1. The hypothesis of Theorem 1
subsumes both of these cases.

Theorem 1 has immediate applications to Riemann integration. We offer
some of these.

Corollary 1. Let k be a real valued function on [a, b] with a bounded difference
quotient, and k(a) < k(b). Let h be a bounded function on k[a,b]. If two of the
three functions h(k(t)) Dk(t), h(k(t)), Dk(t) are R-integrable on [a,b], then h
is R-integrable on [k(a), k(b)], h(k(t)) Dk(t) is R-integrable on [a,b], and

b k(b)
/ h(k(t)) Dk(t) dt = / h(z)dx .
a k(a)
To prove this from Theorem 1, recall that a bounded function is R-inte-
grable on [a, b] if and only if it is continuous almost everywhere on [a, b]. Thus

in particular, the product of two R-integrable functions is R-integrable on
[a, b].

Corollary 2. In Theorem 1 let f(g(t)) Dg(t) be R-integrable on [a,b]. Then
f is R-integrable on the interval gla, b].

To prove this apply Theorem 1 on the intervals [a, s] and [r,b] where g
takes its maximum at s and its minimum at r.

Corollary 3. In Theorem 1 let f be R-integrable on gla,b] and let Dg be
R-integrable on [a,b]. Then f(g(t)) Dg(t) is R-integrable on [a,b] and

g(b)

b
/ f(a(t)) Dy(t) dt = / flz)dz.

g(a)

(See also [V]).
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PROOF. In view of Theorem 1, it suffices to prove that m(X) = 0 where
X ={z : f(g(t)) Dg(t) is discontinuous at z} .

Put
X1 ={xz € X : Dy is continuous at z}.

Then m(X \ X;) = 0 because Dy is R-integrable on [a,b]. Also Dg(z) # 0
for each = € X; because Dy is continuous at x and f is bounded. Moreover,
f is discontinuous at g(x) for each x € X;. Now each x € X; lies in an open
interval I, with Dg bounded away from 0 on I,. Thus g has an absolutely
continuous inverse g~* on g(I,). But m(g(X;)) = 0 because f is R-integrable.
Hence

m(Iw N Xl) < m(g_l(g(lz N Xl))) =0.

Thus X; is the union of countably many subsets of measure 0, so m(X;) =
m(X) =0. [

Corollary 4. Let (xx) hold in Theorem 1. Then f(g(t)) Dg(t) is R-integrable
on any interval [u,v] for which g(u) = g(v).

We defer the proof of Corollary 4 until we prove Theorem 1. Finally we
show by example that the equations in (x%) need not hold in Theorem 1.

Our techniques will be quite different from those used for change of vari-
ables for the Lebesgue and other integrals. Compare with the work found in
references [F|, [G1], [G2], [K], [V], for example.

We turn now to some definitions we will use. We say that a finite increasing
sequence a = xg < 1 < ... < &, = b is a partition of the interval [a,b]. The
x; are called the dividing points of this partition. By the norm of the partition
we mean max}_; (x; —x;—1). By the inherited partition of the subinterval [u, v]
of [a,b] we mean the partition whose dividing points are u, v and all the z;
between u and v. We say that another partition of [a,b], a =yg <y1 < ... <
Ym = b is a refinement of this one if for each z; there is a y; with y; = z;.

We say that the partition a = zg < 21 < ... < z, = b is a special partition
of [a, b] if there is a finite increasing sequence of integers 0 =ng < n; < ... <
ny = n such that for each index j = 0,1,...,k—1 either g(x,,) = g(xn,,,), or
Njy1 = N5 + 1 and g(xnj) < g(xnjurl) and g(mnj s xnj+1) = (g(-rnj)ag(xnj+1))'

By a Riemann sum for f(g(t)) Dg(t) on the partition a = zo < 1 < ... <
z, = b we mean a sum of the form

n

> flg(ts) Dg(ti) (s — i)

i=1
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where ¢; is any point in the interval [x;_1,z;]. If f(g(t;)) Dg(t;) is replaced by

sup{7(9(1)) Dg(®) : t € [wi1,:]}

the sum is called an upper sum. Likewise when f(g(t;)) Dg(t;) is replaced by

inf{f(g(t)) Dg(t) : te [aciq,xi]}

the sum is called a lower sum. Similar definitions are given for f on partitions
of the interval [g(a), g(b)].

By a mized sum on the partition a = 9 < 1 < ... < z, = b we mean
a sum of the form Y1, f(g(s;)) Dg(t:;)(x; — xi—1) where s; and ¢; are in
[£i—1,x;]. Thus a Riemann sum for f(g(t)) Dg(t) is a particular kind of mixed
sum.

Special partitions and mixed sums are ad hoc definitions in this paper.

Lemma 1. Leta =129 < 21 < ... < xp, = b be a partition of [a,b]. Then it
has a refinement that is a special partition of [a,b].

PROOF. Assume g(a) < g(b); otherwise g(a) = g(b) and the given partition is
a special partition.

Let y be the least number in the set [a,b] Mg~ (g(b)), let z be the greatest
number in the set [a,b] N g7*(g(a)), and let w be the greatest number in the
set [a,y] N g~ (g(a)).

We use induction on n. If n = 1, the dividing points in the special partition
are the distinct points among a, b, y and w. Note that g(w,y) = (g(w)7g(y))
ifw<y, gla) =g(w) if a <w and g(y) = g(b) if y <.

Assume n > 2 and the conclusion holds for partitions of any subinterval of
[a,b] with fewer than n + 1 dividing points. We have three cases.

CasE 1. g(zp—1) > g(b). Then y < x,-1. Use g(b) = g(y) and the
induction hypothesis on the inherited partition of the interval [a, y].

CASE 2. g(zn-1) < g(a). Then z,-1 < z. Use g(a) = g(z) and the
induction hypothesis on the inherited partition of the interval [z, b].

Cask 3. g(a) < g(zn—1) < g(b). Use the induction hypothesis on the
respective inherited partitions of the intervals [a, z,—1] and [x,_1,b].

This covers all cases, and the induction is proved. O

Lemma 2. Let a =x¢ < 21 < ... < x, = b be a partition of [a,b]. Let 6 > 0.
Then there is a refinement of this partition that is a special partition of [a, b]
of norm < §.

PrOOF. Take a refinement of norm < § and apply Lemma 1 to it. O
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Lemma 3. Let a = 29 < 1 < ... < x, = b be any partition of [a,b], let
g(a) = g(b), and € > 0. Then there is a refinement of this partition with a
mized sum on it > —e (< €).

PROOF. The proof follows by induction on n. Let n = 1. Choose any z € [a, b].
We use g(b) — g(a) = 0 and Dini’s Theorem [S] to select ¢ € [a, b] such that

Fg(x)) Dg(t)(b —a) > —e
as follows. For f(g(x)) > 0 choose t so that

Dy(t) > (9(b) — g(a)) (b —a) ™ —ef(g(z)) " (b —a)~?

andhmultiply by the positive number f(g(x))(b— a); for f(g(x)) < 0 choose ¢
so that
Dy(t) < (9(b) — g(a)) (b —a) ™" = ef (g(x)) " (b—a) "

and multiply by the negative number f(g(z))(b — a); for f(g(z)) = 0, any ¢
will do.

Now assume that n > 2 and the conclusion holds when [a, b] is replaced by
any subinterval, € is replaced by any positive number, and the partition has
fewer than n + 1 dividing points.

CASE 1. g(x1) = g(a) or g(zn—1) = g(b). Use the induction hypothesis on
the respective inherited partitions of the intervals [a, z1] and [z1, ], or [a, Z,,—1]
and [z,—1,b].

CaSE 2. g(z1) < g(a) < g(zp—1). Let ¢ € (x1,2,-1) such that g(q) =
g(a). Use the induction hypothesis on the respective inherited partitions of
the intervals [a, ¢] and [g, b].

CASE 3. g(x1) > g(a) > g(zn—1). Analogous to Case 2.

CASE 4. g(x1) > g(zn—1) > g(a). Let u be the smallest number in the
set [a,b] Ng~! (g(xn,l)). Then u < 21, and the Intermediate Value Theorem
may be used to select v1 € [a,u] and ve € [x,_1,b] such that g(vi) = g(v2).
As in the proof for n = 1, use Dini’s Theorem [S] to choose r € [a,u] and
$ € [xp-1,b] such that

Fg(01)) Dg(r)(w = a) > F(gle) (9() — gla)) = 7 (1)

7(002)) D(s)b —201) > Flo(02)) (900) ~ 9(ara 1)) — 3¢ (2)
Recall that g(a) = g(b). 9(u) = g(z,1). g(v1) = g(v2). and add (1) and (2)
to obtain

F(g(v1)) Dg(r)(u — a) + F(g(v2)) Dg(s)(b— 20r) > —%e. 3)



472 F. S. CATER

Apply the induction hypothesis to the inherited partition of the subinterval
[u, ©,,—1] (with Je€), and add the inequality obtained to (3).

CASE 5. g(xn—1) > g(x1) > g(a). Let u be the largest number in the
set [a,b] N g~* (g(wl)) Then u > z,_;. Argue as in Case 4 and use the
subintervals [a, 21], [21,u] and [u, b].

CASE 6. g(z1) < g(a) and g(zn—1) < g(a). This is analogous to Cases 4
and 5, so we leave it.

This covers all the cases to prove the induction for the first inequality (with
> —e). The second inequality (with < €) is proved analogously. We leave the
rest. O

Lemma 4. Let € > 0 and § > 0. Then there is a special partition of [a,b]
with norm < § and a mized sum on it

g(b)
> (z)dx — €.
g(a)

PROOF. We can dismiss the case in which g(a) = g(b); for here we just apply
Lemma 3 to any partition of [a,b] of norm < §. So assume g(a) < g(b).

Let a = 29 < 21 < ... < z, = b be a special partition of [a,b] of
norm < 0 (Lemma 2). Say 0 = ng < ny < ... < mp = n such that for
any j = 0,1,...,k — 1, either g(x,;) = g(wn,,,) or g(z,,;) < g(zn,,,) and
g(xnj,anl) = (g(mnj),g(xnj+l)) and n;y1 = n; + 1. For any such j we
consider the two possibilities.

CASE 1. g(xpn;) = g(xn,,,). Use Lemma 3 to obtain a refinement of the
inherited partition of the interval [z,,,, 2y, ] and a mixed sum on it

g(mnﬁ—l)

> / f(z)de —e(2k)™".
g(wnj)

CASE 2. g(@n,,Tn,.,) = (9(2n,) 9(@n,,,)). Let M denote the sup of

f on the interval [g(zn,),9(%n,,,)]. We use Dini’s Theorem [S] to find a
t € [xpn;,Tn,,,] such that

MDg(t) (xﬂj+1 - x’ﬂj) > M(g(xnj+1) - g(xng)) - 6(2k>_1
as follows. Choose t so that

Dg(t) - (g(m"j+l) - g(xnj)) (mn.7‘+1 - xn]‘)il - 6(2]{)71M71 (‘T"J‘H B x"j)il
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an multiply by M (2, , — xn;) if M is positive; choose ¢ so that

Dg(t) < (g(xnj+1) - g(xnj)> (xnj+1 - xnj)_l - 6(2k)71M71(xnj+1 - xnj)_l

an multiply by M (z,,,, —xy,) if M is negative; choose any ¢ if M = 0. Then
we choose s € [xy,;,Tn,,,] so that

F(9(9)) D) (@0 = 2n,) > M (g, ) = glan,)) = e(20)”!

(Inj+1)
> /gg f(z)dr —e(2k)1.

(mnj)

From Cases 1 and 2 we easily see that there is a refinement of a = zg <
r1 < ...<x, =band a mixed sum on it

O

So far we have not used the continuity hypothesis on f and Dg. Now we
use this hypothesis to change from mixed sums to Riemann sums and complete
the proof of Theorem 1.

Lemma 5. Let € > 0. Then there is a 6 > 0 such that for any partition
a=x9<x1 <...<xp="> of [a,b] with norm < ¢ and for any mized sum W
on this partition, there is a Riemann sum Wy on the same partition such that
‘W — Wo‘ < €.

PRrROOF. Use the Vitali Covering Theorem to find finitely many intervals I, I5,
..., Iy, such that

m([a, b\ (U?zlfj)) <e

where m is Lebesgue measure, and such that either

[f(9(w)) = f9(v))| <e or |Dg(u)— Dg(v)| <e

when v and v lie in an interval concentric with any I; and having twice the
length of I; (1 <j <k).
Now f and Dg are bounded. Choose M with M > |f| and M > |Dg|. Let

k
min (length I;)
J

5=

NN
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and let the partition a = x¢g < 1 < ... < x, = b have norm < §. Let
W= Z f(9(si)) Dg(ts) (i — xi—1) (Si,ti € [961'717%})
i=1
Now
‘Zf (si) Dg fx11’<MQZ i —Ti—1) < M*e,

'Z*f(g(ti))Dg i — Ti_1 ’<M22 i —Ti—1) < M*e

where Y* means sum on those indices i for which [z;_1, x;] does not meet any
I;. But if [z;_1, ;] does meet some I, either

(1)

’f(g(sz‘)) Dyg(t:) (i — zi—1) — f(g(t:)) Dg(t:) (z: — ah‘fl)‘ < M(zi — xia)e, or

’f(g(sz')) Dy(ti)(zi — wi—1) = f(g(si)) Dg(si) (wi — i—1)| < M (i — xi1)e . ®
We use (1) and (2) to select r; = s; or t; in such a way that if
Wy = zn: f(g(ri)) Dg(ri)(wi — wi1),
j=1
then
W — Wo| < 2M%e + MEZ(;Q —2i1) < 2M%c+ Me(b—a).
We leave the rest. O

PROOF. [Proof of Theorem 1] We deduce the first inequality from Lemmas
4 and 5. The last inequality is proved similarly by reversing appropriate
inequalities in Lemma 4 and its proof. We leave the rest. O

PROOF. [Proof of Corollary 4] Let a < u < v < b and let (*%) hold. Let
g(u) = g(v). We define a function h on [a + v — u,b] as follows: put h(z) =
glx—v+u) fora+v—u<z<vand h(x) = g(z) for v < z < b. Note that

h(b) = g(b), h(v) = g(u) = g(v), h(a +v —u) = g(a),

/ " f(h(e) Dh(t) dt = / " (glt) Da(t) dt

+v—u
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b e
[ 1) prwya = [ 5(ot0) Dotoyar.
By hypothesis,

U ] b
t/ f@Kﬂ)DQU%ﬁ%*/jf@KU)D9@%h+f F(g(8)) Dy(t) di
g(b)
— [ ) de
g(a)

By Theorem 1,

h(b)

v b
/ f(Rr(t)) Dh(t)dt+/ f(h(t)) Dh(t) dtz/h f(z)dx.

+v—u (a+v—u)

Take the difference of the last two (in)equalities and obtain

—v
[ #(6(0) Doyt <o.
u
Similar arguments on the lower integrals give f;f(g(t)) Dg(t)dt > 0. It fol-
lows that f(g(t)) Dg(t) is Riemann integrable on [u, v]. O

We conclude this paper with some examples.

Example 1. Let g(x) = |z| for —1 <z <1, let f(z) =1 if x is rational, and
f(z) =0 if x is irrational. Then g(—1) = g(1) = 1, and

g(1) 1
/ F@)de=0<1= / £(9(t)) Dy(t) dt
g(—1) —1

So the equations in (%) need not hold in Theorem 1 when g is not monotone.

Example 2. Let E be a measurable subset of [0, 1] such that any subinterval
of [0,1] meets E in a set of positive measure, and meets its complement CE in
a set of positive measure. let g be the indefinite integral of the characteristic
function of E: g(z) = [ x,(t)dt. Then g is strictly increasing, and the sets
A={t: ¢(t)=1} and B = {t : ¢'(t) = 0} are dense in [0, 1]; hence g(A)
and ¢g(B) are dense in g[0, 1]. Now let f be identically 1. It follows that

1 o)
| #00) Doty =1> mm) = 901) —0) = | sy
0 g(0
So the equations in (*x) need not hold in Theorem 1 when Dg is not Riemann
integrable.
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Example 3. Let F and g be as in Example 2, and put £ = g. On the range of
k put h(z) = 1if x € k(B) and h(z) = 0 if x ¢ k(B). Then h(k(t)) Dk(t) =0
for all ¢, and

k(1)

/1h(k(t)) DE(t) dt = 0 < m(E) = k(1) — k(0) = / h(z) da.
0 £(0)

Of course the continuity hypothesis of the paper is not satisfied by h and Dk.
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