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NORM CONVERGENCE AND UNIFORM
INTEGRABILITY FOR THE
HENSTOCK-KURZWEIL INTEGRAL

Abstract

We show that a uniformly integrable, pointwise convergent sequence
of Henstock-Kurzweil integrable functions converges in the Alexiewicz
norm. In particular, this implies that a sequence satisfying the condi-
tions in the Dominated Convergence Theorem is norm convergent.

The Dominated Convergence Theorem (DCT) for the Lebesgue (or Mc-
Shane) integral immediately implies that the dominated sequence is convergent
with respect to the L'-norm ([Sw1] 3.2.16). Since the DCT for the Henstock-
Kurzweil (gauge) integral allows for conditionally convergent integrals ([M] p.
89, 100), it is not the case that the DCT for the Henstock-Kurzweil integral im-
mediately implies the convergence of the dominated sequence with respect to
the Alexiewicz norm on the space of Henstock-Kurzweil integrable functions.
However, in this note we show that the Uniform Henstock Lemma recently
established by Lee, Chew and Lee ([LCL] Lemma 3) can be employed to es-
tablish the norm convergence of the dominated sequence in the DCT for the
Henstock-Kurzweil integral. Indeed, we use the Uniform Henstock Lemma to
show that a uniformly integrable, pointwise convergent sequence is convergent
with respect to the Alexiewicz norm. The analogous result was established
for the vector-valued McShane integral in [Sw2]; however, the techniques em-
ployed there are not applicable to the Henstock-Kurzweil integral.

Throughout this note we will employ the notation and definitions for the
Henstock-Kurzweil integral given in [LPY]. Let I = [a,b] be an interval in
R and let H/C(I) be the space of all functions which are Henstock-Kurzweil
integrable over I. If f € HIK(I), the Alexiewicz norm of f is defined by
Ifll = sup{|fax f‘ :a <z <b} ([A], [LPY] 11.1). In contrast to the L'-norm
on the space of Lebesgue integrable functions, the space H/X(I) is not complete
with respect to the Alexiewicz norm ([LPY] 11.1).
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A sequence {fx} in HI(I) is said to be uniformly (Henstock-Kurzweil)
integrable over I if for every € > 0 there exists a gauge § : I — (0,00) such
that

/fk > et |L|| <e
T =1

for every k whenever D = {(I;,t;) : 1 <4 < m} is a §-fine tagged partition of T

and |J| denotes the length of an interval J. It is known that if {fi} C HK(I)

is uniformly integrable over I and {fx} converges pointwise to the function

f: I — R, then f is integrable over I and lim [ f = [ f ([G1] Theorem 2,
T T

[G2] 13.16). We use the Uniform Henstock Lemma to show that this result can
be improved to show that the sequence {fi} converges to f in the Alexiewicz
norm.

For the convenience of the reader we give a statement of the Uniform
Henstock Lemma established in [LCL], Lemma 3.

Lemma 1. Let f € HK(I) and e > 0. If § is a gauge on I such that

/f—zmk)uu <e
T k=1

for every §-fine tagged partition D = {(I;,t;) : 1 < i < m}, then

3 f(tmm\—/f <3
i=1 LnJ

and
m

Z f@) L0 J| - / f| <6e

=1 LnJ
for every subinterval J of I and every d-fine partial tagged partition {(I;,t;) :
1<i<m} of I.

The lemma is stated differently in [LCL], but the proof given establishes
Lemma 1 which is a more convenient form when dealing with uniformly inte-
grable sequences.

Theorem 1. Let {fi} C HK(I) be uniformly integrable and suppose that
{fr} converges pointwise to the function f : I — R. Then f is integrable and

Ifx = fIl = 0.
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PRrROOF. By the remarks above f is integrable so we may assume that f = 0.
Let € > 0. Let § be a gauge on I such that

[ =3 e inl| <=
T =1

for every k whenever {(I;,t;) : 1 <i <m} = D is a d-fine tagged partition of
1. Fix such a §-fine tagged partition of I. Choose n such that k& > n implies
|fi ()] < e/m || for 1< i < m. Suppose that J is an arbitrary subinterval
of I and k > n. From Lemma 1, we have

[a] = 24 [ f-feimng b+ Y in @l
7 =1 \;ns =1
< 3e+4e=A4e.

Hence, if k& > n, then || fx| < 4e.
The proof of the DCT for the Henstock-Kurzweil integral given by McLeod
yields the following version of the DCT ([M] p. 89, 100).

Theorem 2. Let {fr} C HK(I), g € HK(I) and suppose {fr} converges
pointwise to f on I. If |fi — f;| < g on I for every k, j, then f is integrable
and {fr} is uniformly integrable.

It follows from Theorem 2 that the sequence {fx} converges to f in the
Alexiewicz norm establishing the analogue of the conclusion in the DCT for
the Lebesgue integral and the L'-norm. [It should be noted that the domi-
nation hypothesis in Theorem 3 allows the functions in the sequence {fj} to
be conditionally integrable ([M] p. 89) in contrast with the usual domination
hypothesis found in the DCT for the Lebesgue integral ([Sw] 3.2.16).]

The Uniform Henstock Lemma is established for intervals in R™ in [LCL],
and the proof of Theorem 2 is also valid for R™ with only the usual complica-
tions of notation in R™.

Also, it is easy to extend the definition of the Henstock-Kurzweil integral
to functions with values in a Banach space. Henstock’s Lemma is still valid
in this setting and the first inequality in Lemma 1 can also be obtained from
the proof of the Uniform Henstock Lemma in [LCL] (however, see [C] for
the second inequality). The proof of Theorem 2 then carries forward to this
setting.

In conclusion we also note another application of the Uniform Henstock
Lemma. Namely, the proof of Theorem 2 shows that the step functions are
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dense in HA(I) with respect to the Alexiewicz norm [a step function is a linear
combination of characteristic functions of intervals].

Theorem 3. Given f € HK(I) and € > 0, there is a step function g such
that || f — gll < e.
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