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SETS WITH DIFFERENT DIMENSIONS IN
[0,1]

Abstract

Given 0 < s < u < v < 1land s < t < v, a Cantor set Y is
constructed in [0, 1] with Hausdorff dimension s, packing dimension ¢,
lower box dimension u and upper box dimension v. In the sense that
t and u are independent, so are the packing and lower box dimensions.
Although Y = {0} U U2, Yz, the lower and upper box dimensions of
each Y} are respectively s and t.

1 Introduction

The lower and upper box dimensions of a set E are denoted by dimpE and
dimpFE. They are not able to see the fine structure of a set in the sense that

@BE =dimpFE and dimgE = dimgF

where E denotes the closure of E. As a result there is a set E which is the
union of a countable number of sets {F;; i € N} and the strict inequality

dimp U E; > SUP{@BEi} (1)
i€N ieN
is necessary. However for just two sets F¥ and F,
dimpEUF = sup{@BE,@BF}.

Similar remarks can be made for the upper box dimension.
In Section 5, we note that for the Hausdorff (dimy) and the packing (dimp)
dimensions there must be equality in (1). The dimensions always have the
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relationships dimy P < dimgpFE < dimgE and dimy F < dimpFE < MBE,
but the lower box dimension and the packing dimension are independent.

If dim stands for any of the four dimensions, dim is monotone. Y is a
Cantor set constructed in Section 7. The point 0 is such that if e > 0, dimzY N
[0,6) =u =dimgY. f x € Y, e > 0 and (x — &,z + €) misses (0,¢), then
dimgpY N (r — &,z +¢) = s < u. In this sense the local lower box dimension
only agrees with the global lower box dimension at one point. The same holds
for the upper box dimension, but is never possible for either the Hausdorff or
the packing dimension.

2 Nested Intervals

For each positive integer g, we select a set Z,, of nonoverlapping closed intervals
from [0, 1]. The cardinality of Z, is called ¢(gp). Each interval in Z,4 is also
in one and only one element of I Y is defined to be (\._, UZ,. We define
a sequence {d(p); p € N} for Wthh 0(p+1)/6(p) e N\ {Wl} Each interval in
T, is of length §(p)~*

In this paragraph the sequence 0(p) is defined. Permanently fix 0 < s <
u<v<lands<t<w With f=max{[v/(1—-v)],[2u/(1—u)]}+2, set, for
j €N, my;_1 = 2l21=V8/ul and 7y; = 2[208/4] A sequence of positive integers
{ni; i € N} is defined with n; > 2 in Section 6. If Z}f n; <j< Z}fﬂ n;, let
©(j) = h+ 1. In order to simplify notations, set no = 0 and gg_1 = Z(;_l n;
where # € N. We are using the notation Zf n; = 0 and Hf n, =1if k < j.
Let 6(1) = 7 and 6(p + 1) = 1_[p 1 To(i) = 0(9)Tp(p+1)- The sequences in
[1v4o.1,...,7,—1} or [T°{0, 1,.. —1} are the digits of a number in [0, 1].
Let @ : [17{0.1,...,7, — 1} be deﬁned by Q(z) = >V x(i)6(:)~'. Extend the
domain of @ to [];°{0,1,...,7, — 1} by setting Q(z) = >.7" (i)d(i)~*. For
z e [1740,1,. .., 7,4 — 1}, set

= {w € ﬁ{O, L., 7pe) — 1} o= (w(l),... ,w(p))}
1
The intervals Z, are selected from
K, =Q(z)+ [0,0(p)"'] where z € IE[{O7 1...,7p — 1} (2)
1
An exact definition of Z,, is stated in (30). The map () takes the sequences in
A, into K. The symbol * indicates that = * y is an extension of the sequence

z. If z is in J[¥{0,1,...,7, — 1} and i is in {0,1,...,7p(p+1) — 1}, then
Kx*i C Kac-
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3 The Cardinality of 7,

We use the sequences §; = 27 78 y Coj—1 = = 2l(21=1)Bs/ul and Coj = 2[23tB/v]  The
intervals in Z, are selected so that their cardinality is

ZH&.@' H Cw (3)

j=01i=1 i=j+1
An interval of length §(p)~" contains 7,11y intervals of length d(p + 1)~!
Since (25 — 1)+ 1< [(2j —1)B/u] and 258 + 1 < [2j3/v], we have 2§; < ;.
We can select 2§,(,11) of the 7,41y intervals. If m < nq, the cardinality of
T is & + Z;r:ol €1¢"7. We need the cardinality of Z,, 1 to be

m—1

elm+1) =26 - /2426 - €2+ G- S €.

=0

2 &; intervals are selected in each of the first £*/2 intervals of Z,, and 2 (3
intervals are selected in each of the second £7"/2 intervals of Z,,. This still
leaves the last Z;n:_ol &¢"7 intervals in Z,, and (; intervals are selected in

each of them. Thus ¢(m + 1) = ZmH ¢TI A complete description of

the construction is in Section 7. The term []} &, in the sum c¢(p) dominates
() in the sense that the ratio of c(p) to [[} &, is bounded.

Lemma 3.1. For k€ {0}UN and m € {0,1,...,ng+1},

m+ox m+ox m+0ok
1<Cm+Qk/Hf<p_ Z H(C@/§¢)<max{)‘j}v (4)

j=0 j+1
where

Z Cj/fj (fj - CJ) (5)
0

In order to see this note that ;/¢; € {2l98s/ul=38 2liBt/v1=38} The supre-
mum of the fractions {¢;/&;; j € N} is realized for some j and the maximum
of the \;’s depends on the fractions (;/§;. The construction is designed so
that the lower box dimension of YV is

liminf(logé&;)/logt; = u
j—oo

and the upper box dimension of Y is limsup,_, . (log&;)/log7; = v. The
construction is designed so that Y is the union of {0} and the sets {Yp; £ €
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{0} UN}. The Hausdorff dimension of each Y} is liminf;_, % = s and the
packing dimension of each Yy is limsup,_, ., (log (;)/log7; = t.

What bounds are there on (log (x11)/1og 7x+1 and (logxt1)/log Tey1? If
2|k,

log Cra1 (k+1)Bs/u s s
gt Gt DB/u—1 T hr0sju—1 """ w+1)8
. u _(k+1)Bs/u—1 < log Cr+1
(k+1)8  (k+1)B/u 10g Th41

s—1/(k+1) < (log Cev1)/log Thy1 <s+1/(k+1). (6)
If 2|(k + 1), then

t—1/(k+1) < (logCry1)/log i1 <t+1/(k+1). (7)
If 2|k,
u < (log&ky1)/log 1 <u+1/(k+1). (8)
If 2|k + 1,
v < (log€ki1)/log 1 <v+1/(k+1). (9)

4 Box Counting

For r > 0, set N,.(F) = #{a € Z; [ar, (a+1)r]NF # 0}. The lower and upper
box dimensions of F' are defined to be

log N,.(F — log N,.(F’
L() and dimgF = —limsupM.

10
log r rl0 logr (10)

o F — — liminf
dimp imin
Let B, (z) be a closed ball and r be its radius. A set, F = {B,, (z;); ¢ € M},

is said to h-pack J if its elements are pairwise disjoint, x; € J and 2r; < h.
Let

PrJ = sup{ E (2¢)%; R h-packs J} and Py'J = ’ilnfO{Pﬁ“J}. (11)
>
B.(z)ER

F§ is called the o packing premeasure of J. It is monotone P*E C P§E U F
and it is finitely subadditive PE U F' < P§E + P§F, but it is not count-
ably subadditive. Taylor and Tricot [4, p 683] point out that if F is the set
of rational numbers in [0, 1], then P01/2E = 00, but each point has zero pre-
measure. At the end of this paper we will be able to conclude that for any
l, Pét+v)/2Yg = 0 but PO(HD)/Q Usen Ye = oo. In general Pg* can not detect
fine structure in the following sense.
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Proposition 4.1. If E is a subset of R, then P{E = PS'E.

Pick 1 > & > 0. For any € E and r > 0, there is 2/ € E at a distance
less than re from x and B(;_.y,(2") € B.(x). Let h | 0 and then ¢ | 0 in

(1-e)*PPE = sup{ Z (1 —¢)*(2r)*; R h-packs E} < Pi_nE.
B.(z)ER

Equality holds because E C E. Given a set E with 0 < diam E < 1, (diam E)®
as a function of « is decreasing with increasing . If § > o and 0 < ¢ < 1,
then P°E < ¢#~*P®E. When P$E < oo, P(?E is forced to be 0. When
PJE >0, PYE = cc.

Lemma 4.1. inf{a > 0; P§F =0} =sup{a > 0; P§E > 0}.

The next proposition is a slight change from one of Tricot [5, p 59]. It
shows that the upper box dimension can be defined by using the packing
premeasures. Let M,.(E) be the greatest number of nonoverlapping closed
balls with radius r and center in E. The set function M, can replace N, in
the definitions of the box dimensions.

Proposition 4.2. dimgFE = inf{a > 0; PSE = 0} = sup{a > 0; PSE > 0}.
If lim sup,. o — log M,.(E)/logr > =, then PJE > 1 and

sup{a > 0; P§*E > 0} > limsup — log M,.(E)/logr.
rl0

Now suppose a > 8 > limsup,. o — log M,.(E)/logr. There is m € N such that
if 0 <r<2™™ r=# > M.(E). Choose R that 2~ ™-packs E. For ¢ > m,
My (E) > #{B,(z) € R; 271 <r <27} and

> 2t S N My, (B)2TTH Y > Y (20),
j=m

j=m B,(z)eER

So, P§'E = 0 and inf{a > 0; P*E = 0} < limsup,., —log M, (E)/log.

5 The Hausdorff and Packing Dimensions

The « spherical packing measure is

PaE = Hlf{iPOaJZ, E = [j Jz}

i=1 i=1
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Suppose > a. When P*E < oo, PPE is forced to be 0. When PPE > 0,
PYE = oco. The packing dimension of a set FE is

dimp E = inf{a > 0; P*E < oo} =sup{a > 0; P*E > 0}.

According to Falconer [2, p 48], dimpE < dimpFE. This follows from Propo-
sition 4.2. For v > 0 and € > 0, let

HOE = inf{ > (diam J)*; E C UR, diam J < g}.
JER

We could assume each J is an interval. The o Hausdorfl measure is

HYE =supHSE =limHIE.
el0

e>0

If 3> aand 1 > ¢ >0, then HE < #*H2E. When H*E < oo,
HPE = 0. When HPE > 0, H*E = oo. The Hausdorff dimension of E is
defined to be

dimy E = inf{a > 0; H*E < oo} = sup{a > 0; H*E > 0}.

Falconer [2, p 43] shows dimy E < dimpE. Let N,.(E) be the smallest number
of sets of diameter at most r which can cover E. If N, replaces N, in (10),
the same dimensions result [2, p 38]. For 0 < e < 1, HZE < N.(E)e* and

—logHYE/loge < —a — log N.(E)/ loge.

IfHE < o0, 0 <dimgkF.
Both % and P“ are measures. Specifically, if E = J,2, E, then

HOE <> H'E and PYE <Y P°E,.
£=0 £=0
If H*E > 0, there is £ so H*E; > 0. If a < dimyFE, there is £ so a <

dimy Fy. This forces dimy E < sup{dimy Ey; ¢ € {0,1,...}} and similarly for
the packing dimension. Since each Ey C F,

dimyFEF = sup dimyFEp and dimpFE = sup dimpFy.
£e{0}UN £e{0}UN

Saint Raymond and Tricot [3, p 136] show that H*E < P*E. So dimyFE <
dimpE.
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6 The Ratio logc(p)/logd(p)

log N.(Y)
logr
ing the box dimensions of Y. Make n; = 2 + [2(log max{\;})/log 7] and for

k>1,

According to Lemma 9.1 izg gggg can be used instead of

in calculat-

k k
nigr = ([o/ul + Dy [JGlv/ul +5+1) = ([v/u] + 1) D in,. (12)

The N’s are defined in (5). Assume 7 Hz( v/ul+j5+1) = Z]f in;. Since

k

n1H(j['U/u]—|—j+1)((k—|—1)([v/u ]+1)+1) Z:mz + (k4 Dngya,
2

the second equality in (12) holds by induction.
The sequence & does not grow too fast. In fact §(p + 1)/8(p) =3 1.

Proposition 6.1. For k € N and any p € {0k, 06 +1,...,06+1 — 1},
(log Ty (p11y)/ log d(p) < 2v/uk. (13)

10g7—<p(p+1) < (k+1)B/u
ogole) = SFia0

[i8/v] <logyT; < [if/u]. (14)
Proposition 6.2. The sequence § grows fast enough that
k+1 < (logd(ok+1))/logd(er). (15)

By the definition of ngy1, k6/u < ([v/u] + 1)[(k + 1)5/v] if and only if

We have

, because n;[i/v] > if/v and

k
kY ifni/u < g [(k+1)B/v]. (16)

Inequality (15) is equivalent to k+1 < 1+ (ng41 log 7x+1)/log d(or). Use (14).
Theorem 6.1. For k € {0} UN and m € {0,1,...,np42 — 1},

m+9k+1

< loge(m + ory1)  1ogIliyy, 1

< . 17
~ logd(m + ok+1) 10g5(m+gk+1) k+1 (17)
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Form € {0,1,...,na—1}, c(ny+m) = Y12 €l e+ 3 €0y

and
log (c(m +m)/67€8") __ logmax{\;}  _ 1
log d6(m + ny) ~ mlogm +nilogm 2
because
[B/ulny > 2log, max{\,}. (18)

Now suppose k > 1. With regards to the denominator in (17),
k
logs 6(m + ox41) = mia[(k + 1)B/v] + Y miliB/v] +na [B/u] (19)
2
> nis1[(k +1)8/v] + kna[B/u].
For i > 2, ni/u < n;/v = n1[B/u] < n;[iB/v]. Since ([v/u] + 1) Z]f ifn; =
Brk+1,

log; (“’”Q’“)) + g/ (o/u] + 1) = log, (“”“”“)> |

Hrln+9k+1 &0 H;n:;;ikﬂ gsa
Using (4), (18) and (19),
log (c(m + 011)/ TRV €0) _ g f(fo/u] + 1)+ mfB/ul/2 _ 1
log 6(m + og+1) = (R +1)B/v] + kna[B/u] T k+ 1

because (k+1)Bu < ((k+1)8/v—1)v implies (k+1)8 < ([v/u]+1)[(k+1)5/v].

Theorem 6.2. The interval [u,v] is the set of cluster points of
{(loge(m + ox))/logd(m + ok); k€N, me {0,1,...,np+1}}.
We show for m € {0,1,...,ngs1},

3/k+v>2/k+ omax {(log&;)/log7;} = (log c(m + or))/ log 6(m + k)
J 5

and

(log c(m + or))/log 6(m + ok) = je{r,gikril} {(og&;)/log 7} —1/k > u—2/k.

This forces all cluster points to be in [u,v]. As a result of (24) and (25), both
u and v must be cluster points.
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Consider the second fraction in (17). Either

log §;* +mlog &y }
- mef0,1,..., 20
{log 5(or) + mlog Tt m & d Mt} (20)

is increasing or it is decreasing. The change in the terms of this sequence can
be written in abbreviated form as
w+ (m+1lz w+me Tz — Wy

z+(m+1ly  z+my - (z4+ (m+1)y)(z +my) 2D

The sign of (21) is independent of m. The two extremes in (20) are % and
log &% + log fgﬂl

log 6(0k+1)
1/(k+1) and

. Use Proposition 6.2. If £ > 0, then (log &%)/ log d(ok+1) <

logéri1  nig1logéern  logépy1 logd(ox) 1
0< - = < . (22)
log7i+1  logd(ok+1)  logTiiilogd(okt1) —k+1

log &kv1 Mt1log e
log Tj41 log 6(ox+1)

n{logﬁk log §k41 } 1 loge(m + ok)
log 71" log T 11 k  logd(m + o)

If k=0, = 0. Starting with (17), we have

(23)

s
< — 4+ max

log &, 10gfk+1}
- =T

log 7" 1og Tp41

By combining (17) and (22), bounds for the special case m = ny1 are seen in

log€re1 1 log c(or+1) _ log&ria 1
log7py1  k+1 " logd(ors1) logmrgr k417

By (8), if 2]k,

u—1/(k+1) < (logc(or+1))/logd(ok+1) <u+2/(k+1). (24)
By (9), if 2|k + 1,
v—1/(k+1) < (log c(or+1))/10g 0(0r+1) <v+2/(k+1). (25)

The greatest amount of change in (21) is

(log &rt1) log d(or) — (nk log &k) 10g Tht1 ko
— 0. 26
(log d(ok41) + log(Try1)) log d(ok) (26)

The elements of {(logc(p))/logd(p); p € N} which are in [u,v] form a dense
subset of [u,v].
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7 The Construction
In this section, we choose €, C [[7{0,1,...,7, — 1} and set
(oo} (oo}
vy={ulJ N U K.
(=0 p=0+12€Qy,,
K, is defined in (2). At £ =0, set Qo = Qo1 *[[5 {0,1,...,{, — 1} where
©
Qop={6,6+1,....60+0 -1} *H{O,l,...,@,(i) —1}.
i=2

If j > k, we want Hf:j E; to be the empty set 0, i. e., 0 x A=A = Ax0. We
define Y; to be all the points Q(z) = Y2, #(i)6(i) ! where z € Q. Thus,

= U Kcan'+0.amr.

p=1 :EGQO,@J

The intervals in Z,, for a general p are defined in (30), but the first selection
is
i ={wr ' + 0,77 we {016+ G — 1}

Before the second selection is made, {0,1,...,& + ¢ — 1} is split into two sets.
' ={0,1,...,& — 1} and Qo1 = {&,& +1,..., & + G — 1}

Then I'y is split into the two sets
F,={0,1,...,&/2—1}and Ay ={&/2,&/2+1,...,& — 1}

Order the sequences in []{0,1,...,7, — 1} lexicographically, i. e., z < w
means 3 j = min{i € {1,...,p}; x(¢) # w()} and z(j) < w(j). For £ €
{1,...,8}, set Ty = {0,1,...,&27 — 1} % [[4{0,1,...,2¢, — 1} and then
split 'y into Fy and Ay in such a way that

#Fg/z =#F, =#A;, and x < y if (x,y) € Fy x Ay.

For example, Fs = {0}+][5{0,1,...,26,—1}, Ag = {1}+][5{0,1,...,26,—1}
and

8
Is={0,1} « [ J{0,1,...,2¢, — 1}. (27)
2
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Suppose, for £ € N, I'y has been defined. Let F; and Ay be subsets of T’y
defined so

#Fg/2 =#F,=#A;, and x < y for (Qj,y) € Fy x Ay.

Define I'yy1 = Fy + {0,1,...,2¢,441) — 1}. Once Ay is defined the extensions
of its elements are for p > /¢

P
Qo= Arx{0,1,..., 201 — 1} * [J{0,1,..., ¢ — 1} (28)
42
Each nonnegative integer can be written uniquely as
P—1

C=p+ @B+ 1)+ Y (iB+ Dn,
1

wherep € N, p € {0,1,...,¢6} and v € {0,1,...,ny—1}. With this notation
for £,

Ytoyp—1 ¢
Te= J[ {o}={o,1,....2¢,27" =1}« ] {0.1,...,2¢ —1}.
1 Y+24+0y -1

Note that o(14+y404_1) = @. For £ € {0,1,..., 8}, T[T {0} = [[}{0} =
(). See (27). The splitting of I'y occurs in the v+ 1 + 0,1 set, i. e.,

Y+oyp—1 ¢
Fo= [ {oy={0.1,....e,27 =1} J[ {0.1,...,26, -1}
1 Y+24+0y -1
and
YF+oyp—1 0
Ap= [ forsfe2,... 2627 =13« [ {0,1,...,2¢, -1} (29)
L Y+2+0p—1

+1top— £+1
If = B, Topr = T[T 7270} * [T 004, {01,026, — 1} For £ €
{0} UN, define Qy = Qo1+ [[5,{0,1,..., ¢ — 1}
Since the ratio of the cardinality of T'yy1 to that of I'y is £, (p41) and #I'1 =
&1, 2# A, = Hi &,. We can calculate the cardinality of €, from (28). Recall
that ¢(p) is defined in (3).
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Proposition 7.1. For any positive integer p and ¢ < p,

4 ©
#up=[[% [I¢ andc(p) =# [ F,uA,U | Qo

1 £+1 0<k<p
The intervals Z,, are defined to be
{KI; zeF,ud,u | QM,} (30)
je{0,1,....,p—1}

Set Yo = (oZr11 Useq, , Ko which by (29) is a subset of

Y+oyp—1
U{Kwi we ] {0}#{27",...,2627" — 1}}
1
_ [ &2 p271
L0yt op1) 01+ +op1]

Set Y = {0} U2, Ve = m;oﬂ UxeF@uAK,uUOSK@ Q,, K-

Jse

8 The Ratio log #,/logd(p)
Lemma 8.1. Suppose ¢ € N and £ € {p4—1,04-1 +1,...,04 —1}. Then
{(log #€2 o, + mlog Crs1)/log 6(m + 0k); k=2 ¢q, m €{0,1,... ,nks1}}
has the cluster point x if and only if x € [s,t].
We show for k > g and m € {0,1,...,nx41},
s = 2/k < (log #Q.mo,)/logd(m + o) <t 4 3/k. (31)
Since k > ¢, for m € {0,1,...,ngy1},
q—1 ‘ 04 k
#Qmion = [T 1] & T1¢- TTGC -G
1 14041 £41 g+l

When m = ng41,

0g #0001 10gCre1 _ log #Qy o, logCryr logd(ok)
logd(ok+1)  logTit1  logd(owt1)  logTii1logd(okt1)
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This vanishes as k goes to infinity. Since (15) holds and #Qy,, < 6(0k),

1
E+1

log #Qf,akﬂ _ log Cr41
logd (ok+1)  log T

(32)

For m € {0,1,...,nk41}, we claim that

log #Qmip o 0BG +log Gy o [ log Gt logGrt | gy
logd(m+ or) — logd(m+or) — log 6(ok+1) log d(ok)

In order to get this substitute in (21) w = log (;'*, = log Ck+1, z = log 0(ox)

and y = log 7x4+1. Under these new variables, (21) still vanishes as 2,
Either

log ¢;/* + mlog (41 }
;meq0,1,...,n
{10g5(9k) +mlog Tk 41 { e+1}

is increasing or it is decreasing. Bounds that are lower than the ones in (33)

are
. [logCry1 log(y

min ,
log 741" log 7y

}—1/k>s—2/k. (34)

They come from (22) when ¢ replaces £ and then from (6).
For an upper bound,

log #Qé,m-hgk < 211671 Uz IOg Ez
logd(m+ox) =  logox (35)
{ log (;1* 4+ mlog (k41 }
+ max .
me{0,1,...nx11} | logd(ok) + mlog ki1

Using (15) twice in (35) and then (22) with ¢ replacing &,

log #Q i, 2 { log (k1 log G }

< — + max ,
logd(m + ox) k log Ti11’ log T3

By (7),
log #QZ m+ok 3
— b 36
log §(m + o) k (36)

As in the calculation of (26), the elements of {(log # ,)/logd(p); p € N}
which are in [s,t] form a dense subset of [s, t].
By combining (34) and (36), we get

§(m =+ Qk+1)7t73/k < (#Qé,m+gk+1)71 < J(m + Qk+1)78+2/k' (37)
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By (6) and (32), if 2|k,
0(onr1) "M < (#p0,4,) T < 0opsr) T D, (38)
By (7) and (32), if 2|k + 1,

S(0r41) T < (#Qp g,4,) T < O(0pr) T/ B, (39)

9 Verification of the Dimensions

Instead of calculating (log N,-(Y))/logr directly (logc(p))/logd(p) can be
used.

log c(p) + log N,-(Y) } @i%o 0.

Lemma 9.1. Supé(@+1)71§T§5(£")71 { log 6(p) logr

For £ € {0,1,...,p — 1} and & € Qy ,, the intervals

{Km*w§ w e {O, 1,... >Ctp(p+1) — 1}}

are contiguous elements of Z, 1. For x € F, U A, there are either 2§ 1)
or 2(,(p+1) contiguous intervals in Z,y; that are also in K. N,.(Y') is nonde-
creasing with decreasing r. If r € (6(p +1)7%,6(p) 71,

c(p) < Ns(p)-1(Y) < No(Y) < Nso1y1(Y) < e(9) (28 (p11) +2)-
We get lower and upper bounds,

loge(p) _ log N (Y) _ loge(p) +108(2 + T(p11))
logd(p+1) = —logr — log 6(p)
and |—(log N;.(Y'))/logr — (log c(p))/ log §(p)|
log(2 + Tp(p11))  loge(p)  logTy(pr) }
< max , . 40
- { log 0(p) logd(p +1) logd(p) (40)

The first element in (40) vanishes with increasing p due to (13). The second
vanishes due to (4), (13) and the fact that &; < 7;.

Theorem 9.1. v =dimgY andv = dimgY.

By Theorem 6.2, the cluster points of {(logc(p))/logd(p); © € N} make
up the interval [u,v]. The inequalities in (24) and (25), show

710g clonr+1) = u and limsup 710g clort1) =0

lim inf
log 6(ox+1) log 6(ok+41)
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Theorem 9.2. Suppose ¢ € N and £ € {041,041+ 1,...,04 — 1}. Then
dimpY, = s and dimpY, =¢.

For p > o, and 7 € (6(p + 1)1, 8(p) 7], we have #Qy, < N, (V) <
#Q. o - (2¢p(p+1) +2) and

IOg #Qé,p < IOg Nr(n) < IOg #Qf,p + IOg(ZCap(p—&-l) + 2)
logd(p+1) = —logr — log §(p)

As in Lemma 9.1,

sup_ {|(log #0x,)/ log () + (log N, (¥7) / ogr} = 0.
S(p+1)~1<r<d(p) 1

By (31), both dimzY; and dimpY; must be in [s,#]. The inequalities in (38)
and (39) confirm that the lower box dimension must be s and the upper box
dimension must be ¢.

9.1 Hausdorff Dimensions

The product topology for [17°{0,1,...,7,—1} has as a basis the sets {A,; w €
Ugzr T17{0, 1,7, — 1}}. In this topology, Q¢ is compact.

Lemma 9.2. If T C U;O:1 Qo and {Ay; w € T} covers Sy,
1< (#u) " (41)
weT

For distinct w and =, Ay, NA, # 0 = Ay C Ay or A, C Ay i. e, either x is
an extension of w or w is an extension of z. For x € Qp, {Ay; w €T, z € Ay}
has a minimal element A(,) in the sense that f(z) € T, z € Ay, and

weT, zEA,

The set {Ay); © € Q} must be a finite cover of €, and its elements are
pairwise disjoint.

Theorem 9.3. If g€ N and £ € {04-1,04-1+1,...,04 — 1}, s = dimy Y.

Suppose s/2 > & > 0 and ko = max{1l + [2v/eu],q,2 + [2/¢]}. If k > ko,
e > 2/(k —1). For such k, convert part of (37) into

(#Qmto,) " < O(m+op) " (42)
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Pick h < §(ok,) . Let R be a cover of Y, with the diameter of each E € R
less than h. In order to find a lower bound for H*~2¢Y,, we look for a lower
bound for (diamFE)*~2¢. As a way of approximating the diameter of E find
the positive integer g(E) for which 6(g(E) + 1)™! < diam E < 6(g(E))~ .
Associated with E is a cover of the sequences Q!(E). Let

Vg ={w € Q ym+1; QAw) NE # 0}

The intervals {Q(Ay); w € Yp} cover £ and Q = Uper Uyew, Aw- Recall
that 2¢; < 7; for any j. There is at least one, but at most three intervals in

{Q(Aw), w e QZ,g(E)7 Q(Aw) NnE 75 @}

If there is only one, #V g < 2(,(4(E)+1)- If there are at least two, #¥p <
2 + 2, (g(E)+1)- This forces the first inequality in

#FUE/2 <1+ TogE)+1)/2 < Toge)+1) < 0(9(E))*. (43)

The second comes from 71 > 22/(1=%) > 2. There is a positive integer k so that
g(E) > o > 0k, Since 2v/uk < e, inequality (13) forces the last inequality
in (43). We have

(diam E)*™2¢ > §(g(E) + 1)7*8(g(E) +1)° > §(g(E) + 1) * T4z /2.

Finally dimyY; > s, because using (42),

QH Yy > inf{ > > (#Qg(my1) "5 Yo C UR, diam E < 6(ok,) '} > 1.
FEeER wevg

On the other hand dimyY; < dimpY, < s.

9.2 Packing Dimensions
The following helps define some packings. Given k € N and m € {0,1}, let
Aem = {w € Q.5 2|(w(or) +m)}.
If z and w are distinct sequences in Ay ,,, and if 2’ € A, and w’ € A, then
0 = Bs(o)-1/4(Q(w")) N Bj(gy)-1/4(Q(2))-
Let Ak,m|E = {UJ S Ak,m; Q(Aw) NnE 7é @}
Theorem 9.4. If g € N and £ € {04—1,04-1 +1,...,04 — 1}, t = dimpY,.
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Under the assumption ¢ — dimpY; > € > 0, P'=¢Y, = 0 there must be
a countable set {J;; i € M} for which Y, = U;cpq Ji and Y,c 0 PS 7T <
2072 Tet d : M — N be such that 2|d(i) and d(i) > max{l + [2/¢], q}.
By (39), (#Q.0,0)) 7" < 0(0ai)) ™40 < 6(0q()) 7. For w € Aqgiyolui,
let I, be a closed ball with radius §(gq(;))~'/4 and center in Q(Ay) N J;.
Then {I.,; w € Aq@)0ls, } is a 6(0q()) " /2-packing of J;. The same holds for
Ad(i),l J; and

t—
2P5(Qi(i))_1/2ji 2 (#Ad(i),o

7.)(0(0aiy)/2) 7=,

A cover of Qp is ;e v {Aw; w € Agiyols, U Ageyal, ), (41) holds and

7 + # A1

1< #(Agay 000 U Ay al0,) (#Q.000,)
M

Each d(7) is arbitrarily small and it can be assumed that
t—e . t—e—2
Z P5(Qd(i>)*l/2‘]Z <2 :
iceM

This creates a contradiction. The packing dimension of Y; is not less than t.

Finally we claim that if ¢ > 0, P*¢Y, = 0. Since Yy is a cover of itself,
Pl*eY, > P'*¢Y,. By combining Proposition 4.2 and Theorem 9.2, we have
Py, =0.
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