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186 00 Prague 8, Czech Republic. e-mail: zajicek@karlin.mff.cuni.cz

SIGMA-POROUS SETS IN PRODUCTS OF
METRIC SPACES AND
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IN BANACH SPACES

Abstract

We show that no reasonable classical form of “Fubini type theorems”
can hold for the σ-ideal of σ-porous sets in products of metric spaces
(even in the plane). Then we prove that a “Fubini type theorem” in
a weak decomposition form remains true also for this σ-ideal, and we
illustrate how this fact may be applied to the study of the behavior of
measures on small sets in product spaces. We also prove an analogical
decomposition theorem for σ-directionally porous sets in Banach spaces;
such sets arise naturally as exceptional sets in some questions concerning
differentiability properties of Lipschitz functions on Banach spaces.

1 Introduction

The Fubini theorem in R2 immediately implies the following statements.

(a) If M ⊂ R2 is a Lebesgue measurable set and for all x ∈ R, except a
Lebesgue null set, the section Mx is Lebesgue null, then M is a Lebesgue
null set.

(b) If M ⊂ R2 is of Lebesgue measure zero, then, for all x ∈ R except a (one-
dimensional) Lebesgue null set, the section Mx = {y ∈ R : (x, y) ∈ M}
is Lebesgue null.
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(c) If M ⊂ R2 is a Borel set of Lebesgue measure zero, then M can be
written as M = A∪B, where A,B ⊂ R2 are Borel sets such that, for all
x ∈ R the section Ax = {y ∈ R : (x, y) ∈ A} is Lebesgue null and for all
y ∈ R the section By = {x ∈ R : (x, y) ∈ B} is Lebesgue null.

The question whether Fubini type theorems; i.e., analogies of the state-
ments (a) and (b), hold also for sets small in the sense of Baire category is
answered positively by the well-known Kuratowski-Ulam theorem (cf. [O]).
The statement (c) seems to be mentioned only rarely, probably because it is a
very easy consequence of (b); we are aware only of its use in the definition of
sets null in the sense of Aronszajn (see [A]). It is therefore surprising that for
the σ-ideal of σ-porous sets the analogy of (c) appears as the only correct gen-
eralization of the Fubini theorem; and that this seemingly weak generalization
has also interesting applications.

Let us first consider the classical formulations of Fubini type theorems. It
is well known that the analogy of (a) does not hold for the σ-ideal of σ-porous
sets. In fact, Foran in [F] constructed a continuous function f : R→ R which
has a non-σ-porous graph. Thus the “σ-porous analogue” of (a) is invalid even
for some closed sets M . On the other hand, in the (very) special case when
M is an analytic set of the form M = A× B the analogue of (a) holds. This
follows from [Z4], where it is shown that A×B is non-σ-porous whenever A,B
are Gδ non-σ-porous subsets of R and the fact that each analytic non-σ-porous
subset of R contains a closed non-σ-porous set. The last result was obtained
independently by different methods by J. Pelant and M. Zelený; the proofs
are still unpublished.

In the second section of our article, we give a counterexample showing that
no statement directly analogous to (b) can hold for the σ-ideal of σ-porous
sets. We even show that there exists a set M ⊂ R2 which is porous in a rather
strict sense and R \Mx is Lebesgue null for each x ∈ R except a first category
set.

In the third section we prove our σ-porous analogy of the weak Fubini
theorem (c) saying that if X,Y are metric spaces and M ⊂ X × Y is a Borel
σ-porous set, then there exists a decomposition M = A ∪ B, where A,B are
Borel and all sections Ax and By are σ-porous. In fact, our decomposition
theorem (Theorem 3.8) shows considerably more. A and B are in certain sense
σ-porous “in the direction of Y and X”, respectively.

As a consequence, we obtain the following fact (see Proposition 3.10).
If µ and ν are Radon measures on separable metric spaces X and Y ,

respectively, which are “absolutely continuous” w.r.t. σ-porous sets, then the
Radon product measure µ⊗ ν is “absolutely continuous” w.r.t. σ-porous sets
as well.
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We also obtain decomposition theorems similar to the one described above
for σ-directionally porous sets in separable Banach spaces. It should be noted
that the class of σ-directionally porous sets arises quite naturally in some ques-
tions concerning differentiability properties of Lipschitz functions on Banach
spaces. Here we mention only one sample result from [PZ].

If f is a Lipschitz function defined on a separable Banach space X, then,
for all points a ∈ X except those which belong to a σ-directionally porous set,

the function g(v) := lim suph→0+
f(a+hv)−f(a)

h is convex.
We adopt the following notation.
In a metric space, the open ball with center x and radius r will be denoted

by B(x, r). The distance of two sets A,B is denoted by dist (A,B) . The
closure and the interior of a set A are denoted by A and intA, respectively.
The Lebesgue measure on R is denoted by λ. The linear span of a subset M
of a linear space is denoted by spanM .

Now we recall definitions of some porosity notions and present basic rele-
vant comments.

Definition 1.1. Let (X, ρ) be a metric space, M ⊂ X and a ∈ X. Then we
say that

(i) M is porous at a if there exists c > 0 such that for each ε > 0 there
exists b ∈ X and r > cρ(a, b) such that ρ(a, b) < ε and M ∩B(b, r) = ∅.

(ii) If moreover X is a normed linear space and also a set V ⊂ X is given,
then we say that M is porous at a in direction V if the b ∈ X from
(i) verifying the porosity of M at a can be always found in the form
b = a+ tv, where t ≥ 0 (or, equivalently, t > 0) and v ∈ V . If V = {v},
then we say that M is porous at a in direction v. We say that M is
directionally porous at a if there exists v ∈ X such that M is porous at
a in direction v.

(iii) If in the above definitions a fixed c > 0 can be used, we speak about
c-porosity, c-porosity in direction V , c-porosity in direction v and c-
directional porosity.

If M ⊂ X is c-porous at a ∈ X for each 0 < c < 1, then we say that M
is strongly porous at a.

(iv) We say that M is porous (c-porous, porous in direction V ,...) if M is
porous (c-porous, porous in direction V ,...) at each of its points.

(v) We say that M is σ-porous (σ-c-porous, σ-porous in direction V ,...) if it
is a countable union of porous sets (c-porous sets, sets porous in direction
V ,...).
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Note that M is porous at a in direction 0 iff a /∈ M ; in this case M is
c-porous at a in all directions for any c > 0.

Clearly each directionally porous (σ-directionally porous) set is porous
(σ-porous) and it is an easy well-known fact that these concepts coincide in
finite-dimensional spaces (cf. Lemma 4.1, (iv)).

The notion of σ-porosity was introduced by Dolzhenko [D] and since then,
has been used and investigated by many authors; in some applications other
variants of porosity notions are natural (cf. the survey article [Z3]).

Each σ-porous set is clearly a first category set and the Lebesgue density
theorem easily implies that each σ-porous subset of Rn is of Lebesgue measure
zero. Unfortunately, a σ-porous subset of an infinite-dimensional separable
Banach space need not be null in any “natural measure sense”. In fact, in
[PT] an example of an Fσ, σ-porous subset S of a separable Hilbert space H is
constructed in such a way that the complement C := H \S intersects any line
in a set of null one-dimensional Lebesgue measure (on this line); consequently
C is null in the Aronszajn sense and therefore it is also both null for each non-
degenerate Gaussian measure on H (see [Ph]) and of Haar measure zero in
Christensen’s sense (see [Ch] for the definition). A substantial strengthening
of this example has been recently found in [MM].

On the other hand, each Borel σ-directionally porous subset of a separable
Banach space X is null in the Aronszajn sense. This fact can be easily de-
duced from Aronszajn’s theorem, which says that a Lipschitz function on X
is Gâteaux differentiable at all points except those belonging to a set which
is Aronszajn null, and from the easy observation (cf. [Z2], p. 299) that a set
E ⊂ X is directionally porous at a point a ∈ E iff the distance function
d(x) := dist (x,E) is not Gâteaux differentiable at a. Nevertheless, it is in-
teresting to try to deduce this result without any direct or indirect use of
Aronszajn’s Theorem. We therefore point out that an application of our de-
composition theorem for σ-directionally porous sets (Theorem 4.10) supplies
such an alternative argument (see Remark 4.11).

2 Fubini Type Theorems for σ-Porous Sets: Counterex-
amples

Definition 2.1. Let h : [0,∞) → [0,∞) be a continuous function for which
h(0) = 0 and h(x) > x for each x > 0. We shall say that M ⊂ R2 is h-right
porous at a point c = (a, b) ∈ R2 in direction of the x-axis (simply, M is
(h,+)-porous at c) if for each ε > 0 there exist t, r > 0 such that t < ε,
((a+ t− r, a+ t+ r)× (b− r, b+ r)) ∩M = ∅ and h(r) > t.

The notion of a set which is (h,−)-porous at c is defined in the symmetrical
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way.
We say M ⊂ R2 is (h, bil)-porous at c if M is both (h,+)-porous and

(h,−)-porous at c.
The notions of a (h, bil)-porous set and a σ-(h, bil)-porous set are defined

in the obvious way.

Remark 2.2. Let h(x) = x + x2 and M ⊂ R2 be (h,+)-porous at c (or
(h,−)-porous at c). Then clearly M is also strongly porous at c.

Definition 2.3. Let h be as in Definition 2.1, G ⊂ R2 and δ > 0. Then we
define W+(G, h, δ) as the set of all points c = (a, b) ∈ R2 such that there exist
0 < t < δ and r > 0 such that (a + t − r, a + t + r) × (b − r, b + r) ⊂ G and
h(r) > t.

The set W−(G, h, δ) is defined in the obvious symmetrical way.

Remark 2.4. Obviously M is (h,+)-porous at x iff c ∈
⋂∞
k=1W

+(R2 \
M,h, 1k ). The corresponding result is true for (h,−)-porosity.

Lemma 2.5. Let h be as in Definition 2.1, let −∞ < t < s < ∞, −∞ <
v < w < ∞, 0 < η < w−v

2 and δ > 0 be given. Then there exists a number
t < T < s such that

(T, 2s− T )× (v + η, w − η)

⊂ W−((t, T )× (v, w), h, δ) ∩W+((2s− T, 2s− t)× (v, w), h, δ).

Proof. Put ε = min( δ3 , η,
s−t
2 ). Choose T such that s − ε < T < s and

h(ε − (s − T )) > ε + (s − T ); this is clearly possible. Now suppose that
a ∈ (T, 2s − T ) and b ∈ (v + η, w − η) are given. Put p = a − (s − ε) and
r = ε− (s− T ). Then clearly

0 < p < ε+ (s− T ) < 2ε < δ,

h(r) > ε+ (s− T ) > p,

and
V (a− p− r, a− p+ r)× (b− r, b+ r) ⊂ (t, T )× (v, w).

Consequently (a, b) ∈W−((t, T )× (v, w), h, δ). A quite symmetrical argument
gives (a, b) ∈W+((2s− T, 2s− t)× (v, w), h, δ).

Lemma 2.6. Let h be a function as in Definition 2.1, let ε, δ, ω > 0 and let
I = (a, b), K = (c, d) be bounded intervals. Then there exists an open interval
J ⊂ I, an open set G ⊂ R2 and a Borel set V ⊂ R2 such that

(i) λ(Gx) ≤ ε for each x ∈ R,
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(ii) λ(Vx) ≤ ω for each x ∈ R and

(iii) (J ×K) \ V ⊂W−(G, h, δ) ∩W+(G, h, δ).

Proof. We may and will suppose ω < d − c. Put s = a+b
2 . Further choose

a natural number n for which d−c
n < ε and put η = ω

2n . Now we will use
Lemma 2.5 n-times; each time with the same h, η, δ and s but each time with
different t, v and w. In the first step we apply Lemma 2.5 to t = t1 = a, v = c
and w = c + d−c

n ; we obtain the corresponding t1 < T = T1 < s. Then,

applying the same lemma to t2 = T1, v = c + d−c
n and w = c + 2(d−c)

n , we
obtain t2 < T = T2 < s, we let t3 = T2, and so on.

If we now put

G :=

n⋃
i=1

((2s− ti+1, 2s− ti)× (c+
i− 1

n
(d− c), c+

i

n
(d− c))

∪
n⋃
i=1

(ti, ti+1)× (c+
i− 1

n
(d− c), c+

i

n
(d− c)),

J :=(tn+1, 2s− tn+1)

and

V :=J × [(c, d) \
n⋃
i=1

(c+
i− 1

n
(d− c) + η, c+

i

n
(d− c)− η)],

then conditions (i), (ii) and (iii) are clearly satisfied.

Proposition 2.7. Let h be as in Definition 2.1, K = (c, d) be a bounded
interval and let ξ > 0. Then there exists a Borel set M ⊂ R×K such that

(i) M is (h, bil)-porous.

(ii) There exists a residual set A ⊂ R such that λ(Mx) > λ(K)− ξ for each
x ∈ A.

Proof. Let I1, I2, . . . be a sequence of all intervals with rational endpoints.
For each natural number n we apply Lemma 2.6 to

I = In,K, δ =
1

n
, ε = ω =

ξ

2n+1
;

we obtain corresponding J = Jn, G = Gn and V = Vn. Put

A = lim sup
n→∞

Jn =

∞⋂
k=1

∞⋃
n=k

Jn and M = (A×K) \ (

∞⋃
n=1

Vn ∪
∞⋃
n=1

Gn).



Sigma Porous Sets in Products of Metric Spaces 301

Obviously A is a residual subset of R and M is a Borel subset of R2. Since

λ(Mx) > λ(K)− (

∞∑
n=1

λ((Vn)x) +

∞∑
n=1

λ((Gn)x) ≥ λ(K)− ξ

for each x ∈ A, we have proved (ii).

If now c ∈ M and a natural number l are given, then we find n > l such
that c ∈ (Jn×K)\Vn. Thus by our construction (cf. Lemma 2.6,(iii)) we have

c ∈W−(Gn, h,
1

l
) ∩W+(Gn, h,

1

l
) ⊂W−(R2 \M,h,

1

l
) ∩W+(R2 \M,h,

1

l
).

From Remark 2.4 we obtain also (i).

Theorem 2.8. Let h be a function satisfying the conditions of Definition 2.1.
Then there exists a Borel σ − (h, bil)-porous set M ⊂ R2 such that the set
{x ∈ R : λ(R \Mx) = 0} is residual.

Proof. Let K1,K2, . . . be a sequence of all intervals with rational endpoints.
By Proposition 2.7 for each n there are a residual set An ⊂ R and a Borel
(h, bil)-porous set Mn ⊂ R × Kn such that λ((Mn)x) > 1

2λ(Kn) for every
x ∈ An. If we put M =

⋃∞
n=1Mn, the Lebesgue density theorem easily

implies that λ(R\Mx) = 0 for each x from the residual set A :=
⋂∞
n=1An.

By Remark 2.2 we immediately obtain the following corollary.

Proposition 2.9. There exists a σ-strongly porous set M ⊂ R2 such that the
set {x ∈ R : λ(R \Mx) = 0} is residual.

The following remark concerns “very porosity” (cf. [Z3]) which is stronger
than porosity and is incomparable with strong porosity.

Remark 2.10. It is easy to prove that {x ∈ R : λ(Mx) > 0} is a first category
set whenever M ⊂ R2 is a subset of an Fσ set of Lebesgue measure zero (in
particular, if M is σ-very porous). Thus the analogue of Proposition 2.9 for
σ-very porous sets does not hold.

3 Directional Porosity in Products of Metric Spaces

In the following, if (X, ρ) and (Y, η) are metric spaces, then we shall denote by
(ρ×η)m and (ρ×η)s the maximum and the sum metric on X×Y , respectively.
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Definition 3.1. Let X,Y be sets and let X ×Y be equipped with a metric ω
and let c > 0. Then we say that a set A ⊂ X × Y is X-directionally c-porous
at a point a = (a1, a2) ∈ X × Y if, for each ε > 0,

there exist b ∈ X and r > 0 such that ω(a, (b, a2)) < ε,

r > cω(a, (b, a2)) and B((b, a2), r) ∩A = ∅.
(1)

The notion of a set Y -directionally c-porous at a is defined in the obvious way.

For proofs we shall need the following technical notion.

Definition 3.2. Let (X, ρ), (Y, η) be metric spaces and let cx, cy > 0. Then
we say that a set A ⊂ X × Y is X-directionally (cx, cy)-porous at a point
a = (a1, a2) ∈ X × Y if, for each ε > 0,

there exist b ∈ X and r, s > 0 such that ρ(a1, b) < ε,

r > cxρ(a1, b), s > cyρ(a1, b) and (B(b, r)×B(a2, s)) ∩A = ∅.
(2)

The notion of Y -directional (cx, cy)-porosity is defined in an obvious way.

The corresponding notions of X-directionally (or Y -directionally) c-porous
(or σ-c-porous, or (c1, c2)-porous, or σ-(c1, c2)-porous) sets are defined in the
obvious way.

Remark 3.3. It is easy to see that the notion ofX-directional (cx, cy)-porosity
is a special case of X-directional c-porosity. In fact, it is easy to see that A
is X-directionally (cx, cy)-porous in X × Y (where X,Y are equipped with
metrics ρ, η, respectively) iff A is X-directionally cx-porous in (X × Y, ω),
where ω = (ρ× cy

cx
η)m.

To prove the existence of “small” Borel covers of “small” sets we shall need
the following technical notions.

Definition 3.4. Let (X×Y, ω) be a metric space, A ⊂ X×Y and let c, ε > 0
be given. Then we define R(A, c, ε) as the set of all points a = (a1, a2) ∈ X×Y
for which (1) holds.

Definition 3.5. Let (X, ρ) and (Y, η) be metric spaces, A ⊂ X × Y and let
cx, cy, ε > 0 be given. Then we define Q(A, cx, cy, ε) as the set of all points
a = (a1, a2) ∈ X × Y for which (2) holds.

Lemma 3.6. Let (X, ρ), (Y, η) be metric spaces and let X × Y be equipped
with a metric ω which is (topologically) equivalent to (ρ×η)m. Let A ⊂ X×Y
and c, cx, cy, ε > 0 be given. Then each of the following holds.
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(i) R(A, c, ε) and Q(A, cx, cy, ε) are open sets in (X × Y, ω).

(ii) A is X-directionally c-porous at a point a = (a1, a2) ∈ X × Y iff

a ∈
⋂
ε>0

R(A, c, ε) =

∞⋂
n=1

R(A, c,
1

n
).

(iii) A is X-directionally (cx, cy)-porous at a point a = (a1, a2) ∈ X × Y iff

a ∈
⋂
ε>0

Q(A, cx, cy, ε) =

∞⋂
n=1

Q(A, cx, cy,
1

n
).

(iv) If A is X-directionally c-porous ((cx, cy)-porous), then there exists a Gδ
set Ã ⊃ A (A∗ ⊃ A) which is X-directionally c-porous ((cx, cy)-porous).

(v) If A is σ-X-directionally c-porous ((cx, cy)-porous), then there exists a

Gδσ set Ã ⊃ A (A∗ ⊃ A) which is σ-X-directionally c-porous ((cx, cy)-
porous).

Proof. The statements (i), (ii) and (iii) are obvious. If A is X-directionally
c-porous, we put Ã = A∩

⋂∞
n=1R(A, c, 1/n). By (i), Ã is a Gδ set. By (ii) and

by the obvious fact, that if A is X-directionally c-porous at a point a, then
any subset of A is X-directionally c-porous at a, we obtain that A ⊂ Ã and Ã
is X-directionally c-porous. This proves the first part of (iv). The second part
is an immediate consequence of the first one and Remark 3.3. The assertion
(v) follows easily by (iv).

Lemma 3.7. Let (X, ρ), (Y, η) be metric spaces , let X × Y be equipped with
the sum metric ω = (ρ × η)s, and let 0 < α < 1

2 be given. Then each of the
following holds.

(i) If a set A ⊂ X×Y is (1−α)-porous at a point a = (a1, a2) ∈ X×Y , then
either A is X-directionally (1− 2α)-porous at a or A is Y -directionally
(1− 2α)-porous at a.

(ii) If A is (1− α)-porous, then we can write A = A1 ∪A2, where A1 is X-
directionally (1− 2α)-porous and A2 is Y -directionally (1− 2α)-porous.

Proof. Suppose that the assertion of (i) is not true. Then there exists ε > 0
such that

r1 ≤ (1− 2α)ρ(a1, x1) if B((x1, a2), r1) ∩A = ∅ and ρ(a1, x1) < ε (3)
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and

r2 ≤ (1− 2α)η(a2, x2) if B((a1, x2), r2) ∩A = ∅ and η(a2, x2) < ε. (4)

By our assumption we can find a point x = (x1, x2) and r > 0 such that
ω(a, x) < ε,B(x, r) ∩A = ∅ and

r > (1− α)ω(a, x) = (1− α)(ρ(a1, x1) + η(a2, x2)). (5)

Put r1 = r − η(a2, x2) and r2 = r − ρ(a1, x1). Clearly we have (if r1 > 0)
B((x1, a2), r1) ⊂ B(x, r) ⊂ (X × Y ) \A and ρ(a1, x1) < ε. Thus (3) implies

r − η(a2, x2) ≤ (1− 2α)ρ(a1, x1).

By a symmetrical argument, (4) implies

r − ρ(a1, x1) ≤ (1− 2α)η(a2, x2).

Adding the last two inequalities, we obtain

r ≤ (1− α)(ρ(a1, x1) + η(a2, x2)),

which contradicts (5). Thus (i) is proved.
To prove (ii), it is clearly sufficient to define A1 (A2) as the set of points

in A at which A is X-directionally (Y -directionally) (1− 2α)-porous.
Using the above lemma and Theorem 4.5 of [Z1] according to which, for

any 0 < c < 1, any σ-porous subset of a metric space is σ-c-porous, we easily
obtain the following decomposition theorem.

Theorem 3.8. Let (X, ρ), (Y, η) be metric spaces and let X × Y be equipped
with the sum metric. Let A ⊂ X × Y be a σ-porous set and let 0 < c < 1 be
given. Then we can write A = A1∪A2, where A1 is σ-X-directionally c-porous
and A2 is σ-Y -directionally c-porous.

Proof. Find ε > 0 such that c < 1−2ε. By Theorem 4.5 of [Z1], A is σ-(1−ε)-
porous set. Using this fact and Lemma 3.7,(ii), we obtain our assertion.

Remark 3.9. (i) If A is Borel, then the sets A1, A2 in Theorem 3.8 can be
chosen to be Borel. In fact, we can write A = (A∩ Ã1)∪ (A∩ Ã2), where
Ã1, Ã2 are Gδσ covers from Lemma 3.6,(v).

(ii) Of course, A1 (A2) has the property that all sections (A1)y ((A2)x) are
σ-porous subsets of X (Y ).
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If P is a metric space and µ is a measure on P , we say that µ is absolutely
continuous w.r.t. σ-porous sets if µ(M) = 0 for each σ-porous set M ⊂ P .
Note that every Radon measure on R which is absolutely continuous w.r.t.
Lebesgue measure is clearly absolutely continuous w.r.t. σ-porous sets but the
opposite implication does not hold (see [T]).

Remark 3.9 easily implies the following proposition which seems to be of
some independent interest and which suggests that Theorem 3.8 is in fact a
substitute for the (invalid) “Fubini type” theorem for σ-porous sets.

Proposition 3.10. Let µ and ν be Radon measures on separable metric spaces
X and Y , respectively, which are absolutely continuous w.r.t. σ-porous sets.
Then the Radon product measure µ⊗ν is absolutely continuous w.r.t. σ-porous
sets as well.

If we use Theorem 3.8 in R2 equipped with the Euclidean norm, we easily
obtain the following result, in which we put e1 = (1, 0) and e2 = (0, 1).

Proposition 3.11. Let A ⊂ R2 be a σ-porous set and let 0 < c < 1√
2

. Then

A = A+
1 ∪A

−
1 ∪A

+
2 ∪A

−
2 ,

where A+
i (A−i ) is a set which is σ-c-porous in direction ei(−ei), i = 1, 2.

Remark 3.12. If we consider A = {(x, x) : x ∈ R}, we easily observe (using
the Baire category theorem) that the assertion of Proposition 3.11 does not
hold for c = 1√

2
.

Remark 3.13. Lemma 3.7 and subsequently also Theorem 3.8 can be easily
generalized to the case of the product of several metric spaces. Further we can
easily generalize Proposition 3.11 to Rn (with the assumption 0 < c < 1√

n
).

In the proof of Theorem 3.8 we applied the method of “enlargement of
the porosity index” established in Proposition 4.1 from [Z1] (which implies
Theorem 4.5 from [Z1]) to the sum metric in the product of two metric spaces.
In the following lemma and its consequence Proposition 3.15 we now show
how this method may be generalized in the special situation of product spaces
and directional porosity. These results will be used in the following section
(see (4.12)–(4.15)).

Lemma 3.14. Let (X, ρ) and (Y, η) be metric spaces, 1 > cx > 0, cy > 0
and let A ⊂ X × Y be an X-directionally (cx, cy)-porous set. Then A is σ-X-
directionally (

√
cx,

cy
2 )-porous set.
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Proof. Put A0 = A ∩
⋂∞
n=1Q(A,

√
cx,

cy
2 ,

1
n ). By Lemma 3.6,(iii) we have

that A0 is an X-directionally (
√
cx,

cy
2 )-porous set. Since A \A0 =

⋃∞
n=1 (A \

Q(A,
√
cx,

cy
2 ,

1
n )), it is sufficient to prove that each of the sets An := A \

Q(A,
√
cx,

cy
2 ,

1
n ) is X-directionally (

√
cx,

cy
2 )-porous. To this end choose an

arbitrary natural number n, 0 < ε < 1
n and (x, y) ∈ An. It is sufficient to

prove that

(x, y) ∈ Q(An,
√
cx,

cy
2
, ε). (6)

Since (x, y) ∈ A, we know that (x, y) ∈ Q(A, cx, cy, ε) and therefore we can
choose b ∈ X and r, s > 0 such that ρ(x, b) < ε, r > cxρ(x, b), s > cyρ(x, b)
and (B(b, r) × B(y, s)) ∩ A = ∅. Since r > cxρ(x, b), we can choose r∗ > 0
such that

√
cxρ(x, b) < r∗ < ρ(x, b) and r >

√
cxr
∗. To prove (6), it is clearly

sufficient to prove that An ∩ (B(b, r∗) × B(y, s2 )) = ∅. Assuming that this is
not the case, we choose an (x1, y1) ∈ An ∩ (B(b, r∗)×B(y, s2 )). Clearly,

B(b, r)×B(y1,
s

2
) ⊂ B(b, r)×B(y, s) ⊂ (X × Y ) \A.

Since

ρ(x1, b) < r∗ < ρ(x, b) < ε <
1

n
,

r >
√
cxr
∗ >
√
cxρ(x1, b)

and
s

2
>
cy
2
ρ(x, b) >

cy
2
r∗ >

cy
2
ρ(x1, b),

we conclude that (x1, y1) ∈ Q(A,
√
cx,

cy
2 ,

1
n ), which contradicts the fact that

(x1, y1) ∈ An.

Proposition 3.15. Let (X, ρ), (Y, η) be metric spaces, let cx, cy > 0, 0 < α <
1, and let A ⊂ X × Y be a σ-X-directionally (cx, cy)-porous set. Then there
exists β > 0 such that A is σ-X-directionally (α, β)-porous.

Proof. We may suppose cx < 1. Choose a natural number n so large that
(cx)2

−n

> α and put β = 2−ncy. Then, applying Lemma 3.14 n-times, we
obtain that A is σ-X-directionally (α, β)-porous.

4 Sigma-Directionally Porous Sets in Banach Spaces

We start with the following easy properties of directional porosity.

Lemma 4.1. Let X be a normed linear space, M ⊂ X,V ⊂ X,W ⊂ X, a ∈ X
and c > 0. Then the following assertions hold.
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(i) If 0 /∈ V , then M is porous (c-porous) at a in direction V iff M is porous
(c-porous) at a in direction Vn, where Vn = { v

‖v‖ : v ∈ V }. M is porous

(c-porous) at a in direction v iff it is porous (c-porous) at a in direction
{tv : t ≥ 0}.

(ii) If V = V1 ∪ V2 ∪ ... ∪ Vn and M is c-porous at a in direction V , then
there exists 1 ≤ i ≤ n such that M is c-porous at a in direction Vi. If
M is porous (c-porous) in direction V , then we can write M =

⋃n
i=1Mi,

where Mi is porous (c-porous) in direction Vi.

(iii) Let V,W ⊂ {x ∈ X : ‖x‖ = 1}, 0 < ω < c and let dist (v,W ) < c− ω for
each v ∈ V . Let M be c-porous at a in direction V . Then M is ω-porous
at a in direction W .

(iv) If V is a compact subset of {x ∈ X : ‖x‖ = 1}, then M is porous at a in
direction V iff there exists v ∈ V such that M is porous at a in direction
v. In particular, if X is a finite-dimensional space, then M is porous at
a iff M is directionally porous at a.

Proof. The statement (i) and the first part of (ii) are obvious. To prove the
second part of (ii) it is sufficient to define Mi as the set of points in M at
which M is porous (c-porous) in direction Vi.

To prove (iii), choose an arbitrary ε > 0. Since M is c-porous at a in
direction V , there exist t ≥ 0, v ∈ V and r > 0 such that B(a+ tv, r) ∩M =
∅, ‖tv‖ = t < ε and r > c‖tv‖ = ct. Find w ∈ W such that ‖v − w‖ < c − ω
and put b∗ = a + tw, r∗ = r − t‖v − w‖. Then ‖b∗ − a‖ = ‖tw‖ = t <
ε, ω‖tw‖ = ωt = ct − (c − ω)t < r − t‖v − w‖ = r∗ and B(b∗, r∗) ∩M = ∅ ,
since clearly B(b∗, r∗) ⊂ B(a + tv, r). Thus M is ω-porous at a in direction
W .

To prove (iv) suppose that V ⊂ {x ∈ X : ‖x‖ = 1} is a compact set and
M is c-porous at a in direction V . Find points w1, w2, ..., wn from V such
that dist (v,W ) < c

3 for each v ∈ V , where W = {w1, ..., wn}. By (iii) M is
c
3 -porous at a in direction W ; thus by (ii) M is directionally porous at a.

The following notation is useful.

Definition 4.2. Let X be a normed linear space, A ⊂ X,Z ⊂ X, c > 0 and
ε > 0. Then we denote by P (A,Z, c, ε) the set of all points a ∈ X for which
there exist z ∈ Z, t ≥ 0 and r > 0 such that B(a + tz, r) ∩ A = ∅, ‖tz‖ < ε
and r > c‖tz‖.

Lemma 4.3. Let X be a normed linear space, A ⊂ X,Z ⊂ X, a ∈ X, c > 0
and ε > 0. Then the following assertions are true.
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(i) P (A,Z, c, ε) is an open set.

(ii) A is c-porous at a in direction Z iff

a ∈
⋂
ε>0 P (A,Z, c, ε) =

⋂∞
n=1 P (A,Z, c, 1

n ).

(iii) A is porous at a in direction Z iff

a ∈
⋃∞
k=1

⋂∞
n=1 P (A,Z, 1k ,

1
n ).

(iv) If A is c-porous in direction Z, then there exists a Gδ-set Ã ⊃ A which
is c-porous in direction Z.

(v) If A is porous (σ-porous) in direction Z, then there exists a Gδσ-set
A∗ ⊃ A which is porous (σ-porous) in direction Z.

(vi) If A is porous in direction Z (directionally porous), then we can write
A =

⋃∞
k=1Ak, where each Ak is 1

k -porous in direction Z ( 1
k -directionally

porous).

Proof. The statements (i), (ii) and (iii) are obvious.
If A is c-porous in direction Z, we put Ã = A∩

⋂∞
n=1 P (A,Z, c, 1

n ). If A is
porous in direction Z, then we put

A∗ := A ∩
∞⋃
k=1

∞⋂
n=1

P (A,Z,
1

k
,

1

n
).

By (i) Ã is a Gδ set and A∗ is a Gδσ-set. By (ii), (iii) and by the obvious fact,
that if A is porous (c-porous) at a point a in direction Z, then any subset of
A is porous (c-porous) at a in direction Z, we obtain that Ã ⊃ A, A∗ ⊃ A, Ã
is c-porous in direction Z and A∗ is porous in direction Z. This proves (iv)
and the statement of (v) concerning porosity; it then easily implies the second
statement of (v) concerning σ-porosity. To prove (vi), it is clearly sufficient to
define Ak as the set of all points in A at which A is 1

k -porous in direction Z
( 1
k -directionally porous).

For the brevity of formulations, we now define an auxiliary notion of ad-
missible pair of sets.

Definition 4.4. Let X be a normed linear space and let E,F ⊂ X be given.
We say that E,F is an admissible pair, if there exists η > 0 such that

‖e+ f‖ ≥ ηmax(‖e‖, ‖f‖) whenever e ∈ E, f ∈ F.



Sigma Porous Sets in Products of Metric Spaces 309

Remark 4.5. Obviously, if there exist two topologically complementary closed
spaces V1, V2 ⊂ X such that E ⊂ V1 and F ⊂ V2, then E,F is an admissible
pair.

Lemma 4.6. Let X be a normed linear space, E,F ⊂ X be an admissible
pair, c > 0 and let A ⊂ X be c-porous in direction E + F . Then A can be
written in the form A = A1 ∪ A2, where A1 is porous in direction E and A2

is σ-porous in direction F .

Proof. Let η > 0 be a number corresponding to E,F from Definition 4.4 and
put A1 = A ∩

⋂∞
m=1 P (A,E, cη2 ,

1
m ). By Lemma 4.3,(ii) we obtain that A1 is

cη
2 -porous in direction E. Thus it is sufficient to prove that

A \A1 =
∞⋃
m=1

(A \ P (A,E,
cη

2
,

1

m
)) is σ-porous in direction F.

To this end we shall show that each set Dm := A\P (A,E, cη2 ,
1
m ) is cη

2 -porous
in direction F . To prove this, choose arbitrary x ∈ Dm and 0 < ε < 1

m . We
need to prove that

x ∈ P (Dm, F,
cη

2
, ε). (7)

Since x ∈ A, we know that A is c-porous at x in direction E + F and conse-
quently we can find e ∈ E, f ∈ F, t > 0 and r > 0 such that

B(x+ t(e+ f), r) ∩A = ∅, ‖t(e+ f)‖ < εη and r > c‖t(e+ f)‖.

By the definition of η,

max(‖te‖, ‖tf‖) ≤ 1

η
‖te+ tf‖ < ε <

1

m
. (8)

To prove (7), it is sufficient to show that B(x+tf, r2 )∩Dm = ∅, since (8) implies
‖tf‖ < ε and also r

2 >
c
2‖t(e + f)‖ ≥ cη

2 ‖tf‖. Thus suppose to the contrary
that there is a y ∈ B(x+ tf, r2 )∩Dm. Clearly B(y+ te, r2 ) ⊂ B(x+ t(e+f), r)
and therefore B(y + te, r2 ) ∩A = ∅. Since (8) implies ‖te‖ < 1

m and

r

2
>
c

2
‖t(e+ f)‖ ≥ cη

2
‖te‖,

we obtain that y ∈ P (A,E, cη2 ,
1
m ), which contradicts the fact that y ∈ Dm.

Lemma 4.6 and Lemma 4.3,(vi) clearly imply the following proposition.
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Proposition 4.7. Let X be a normed linear space and let E,F ⊂ X be an
admissible pair. Then each A ⊂ X which is σ-porous in direction E + F can
be written in the form A = A1 ∪A2, where A1 is σ-porous in direction E and
A2 is σ-porous in direction F .

Proposition 4.8. Let X be a normed linear space and let its finite dimen-
sional subspace V be spanned by v1, . . . , vn. Let A ⊂ X be σ-porous in direction
V . Then we can write A =

⋃n
k=1(A+

k ∪A
−
k ), where A+

k , A
−
k are sets σ-porous

in directions vk,−vk, respectively.

Proof. We shall proceed by induction. For n = 1 we infer the statement from
Lemma 4.1, (i) and (ii).

Assume now that n > 1 and the statement holds with n replaced by n− 1.
Suppose that V , v1, . . . , vn , and A are as in the assumptions of the proposition,
and that, without loss of generality, v1, . . . , vn are linearly independent. Since
V = E + F , where E = span {v1, . . . , vn−1} and F = span {vn}, and the pair
E,F is clearly admissible, Proposition 4.7 and the induction assumption easily
imply the assertion.

Now we are ready to deduce the announced decomposition results for di-
rectionally porous sets.

Proposition 4.9. Let V = span {v1, v2, . . . } be a subspace of a normed linear
space X. Let A ⊂ X be a set such that for each point a ∈ A there exists va ∈ V
such that A is porous at a in direction va. Then we can write A =

⋃∞
n=1(A+

n ∪
A−n ), where A+

n , A
−
n are sets σ-porous in directions vn,−vn, respectively.

Proof. We may and will suppose ‖va‖ = 1. Let Ak,n be the set of all points
a ∈ A, at which A is 1

k -porous in direction va and

dist (va, span {v1, . . . , vn} ∩ {v ∈ X : ‖v‖ = 1}) < 1

2k
.

It is easy to see that A =
⋃∞
k,n=1Ak,n. Lemma 4.1, (iii) (applied to V := {va},

W := span {v1, . . . , vn} ∩ {v ∈ X : ‖v‖ = 1}, c := 1
k , ω := 1

2k ) easily
implies that Ak,n is porous in direction span {v1, . . . , vn}. Thus Proposition 4.8
immediately gives our assertion.

The following theorem captures the most interesting special case of Propo-
sition 4.9.

Theorem 4.10. Let X be a separable normed linear space and let (vn)∞1
be a complete sequence in X (i.e., span {v1, . . . } = X). Let A ⊂ X be a
σ-directionally porous set. Then we can write A =

⋃∞
n=1(A+

n ∪ A−n ), where
A+
n , A

−
n are sets σ-porous in directions vn,−vn, respectively.
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Remark 4.11. We can demand in Proposition 4.9 and Theorem 4.10 that
the sets A+

n , A
−
n are Borel if A is Borel. In fact, on account of Lemma 4.3,(v)

we see that they can be replaced by sets (A+
n )∗ ∩ A and (A−n )∗ ∩ A. This

observation immediately implies that each Borel σ-directionally porous subset
of a separable Banach space is null in the Aronszajn sense - the fact which
was deduced in Introduction from Aronszajn’s differentiability theorem.

Remark 4.12. Our method of proof of the decomposition results, based on
Lemma 4.6, works also in cases when we want to distinguish between the “one-
sided” and the “bilateral” directional porosity in Banach spaces; in such cases
we may apply Proposition 4.7.

In certain other circumstances, it is possible to use Proposition 3.15 instead
of Lemma 4.6. For example, Proposition 4.8 may be easily obtained by using
Proposition 3.15 in (X1 × · · · × Xn) × Y , where X1 × · · · × Xn is equipped
with the sum metric, and a generalization of Lemma 3.7. This provides an
alternative approach to the proof of Theorem 4.10.

We will now strengthen Theorem 4.10 by showing that the sets A+
n , A

−
n can

be chosen to be even “more σ-porous” in the sense of the following definition.
This application of Proposition 3.15 is different from that indicated in the
preceding remark, since our arguments use Proposition 3.15 together with
Theorem 4.10.

Definition 4.13. Let X be a normed linear space and let a, v ∈ X. If c, γ > 0
and A ⊂ X are given, then we say that A is [c, γ]-porous at a in direction v if for
each ε > 0 there exist t ≥ 0 and r, s > 0 such that ‖tv‖ < ε, r > ct, s > γ‖tv‖
and

B(a+ (t+ τ)v, s) ∩A = ∅ for each − r ≤ τ ≤ r. (9)

We say that A is [c, γ]-porous in direction v if A is [c, γ]-porous at each of
its points.

Theorem 4.14. Let X be a separable normed linear space, 0 < c < 1 and let
(vn)∞1 be a complete sequence in X (i.e., span {v1, . . . } = X). Let A ⊂ X be
a σ-directionally porous set. Then we can write A =

⋃∞
k=1 Ck, where for each

k there exist γk > 0, an index n and vk ∈ X such that vk ∈ {vn,−vn} and the
set Ck is [c, γk]-porous in direction vk.

Proof. We may assume that vn 6= 0 for each n. On account of Theorem 4.10
and Lemma 4.3,(vi) we may suppose that A is c-porous in direction v, where
c > 0 and v = vn or v = −vn for some n. Let P be a norm one projection of
X onto V := span {v}, and let W be the kernel of P .
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Put α = c+1
2 = c+ 1−c

2 . For any a = a1 + a2, where a1 ∈ V and a2 ∈ W ,
and for any r > 0 the ball B(a, r) contains the sum of balls BV (a1, r/2) and
BW (a2, r/2), where the symbols BV and BW are used for balls in V and W ,
respectively. Thus we infer that, in the natural identification of X = V ⊕W
with V ×W , the set A is V -directionally (c/2, c/2)-porous, and we conclude
from Proposition 3.15 that there is β > 0 such that A =

⋃∞
n=1An for some

V -directionally (α, β)-porous sets An.
Fix an index n and choose arbitrary a ∈ An and ε > 0. Let a = a1 + a2,

where a1 ∈ V and a2 ∈ W . Since An is V -directionally (α, β)-porous, we can
find b ∈ V , r∗ > α‖b − a1‖ and s∗ > β‖b − a1‖ such that ‖b − a1‖ < ε and
(BV (b, r∗)×BW (a2, s

∗)) ∩An = ∅.
Now let t 6= 0 be such that b− a1 = tv. Further put

γ = min(
1− c

8
,
β

4
), r = (

3c+ 1

4
)|t| and s = 2γ‖tv‖.

Then clearly ‖tv‖ < ε, r > c|t| and s > γ‖tv‖; so, to finish the proof, it suffices
to show that B(a+(t+τ)v, s) ⊂ BV (b, r∗)+BW (a2, s

∗) whenever −r ≤ τ ≤ r.
But this is clear, because for any −r ≤ τ ≤ r and z ∈ B(a+(t+τ)v, s) we have
that z = P (z) + (z−P (z)), where P (z) ∈ V , z−P (z) ∈W , P (z) ∈ BV (b, r∗)
since

‖P (z)−b‖ ≤ ‖τv‖+‖z− (a+(t+τ)v)‖ < (
3c+ 1

4
+2γ)‖tv‖ ≤ α‖b−a1‖ < r∗

and z − P (z) ∈ BW (a2, s
∗) since

‖z − P (z)− a2‖ =‖(z − (a+ (t+ τ)v))− P (z − (a+ (t+ τ)v))‖
<2s ≤ β‖b− a1‖ < s∗.

Remark 4.15. For convenience, we have stated the strengthened version of
Theorem 4.10 only. The above proof, however, gives also the corresponding
strengthening of Proposition 4.9.
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