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Stwosza 57, 80-952 Gdańsk, Poland. email: andrzej@mat.ug.edu.pl,
http://andrzej.mat.ug.edu.pl

Piotr Szuca, Institute of Mathematics, University of Gdańsk, ul. Wita
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THERE ARE MEASURABLE HAMEL
FUNCTIONS

Abstract

We say that a function f : R → R is a Hamel function if f , considered
as a subset of R2, is a Hamel basis of R2. We show that there is a
Marczewski measurable Hamel function. Additionally, we show that
there is a Hamel function which is both Lebesgue measurable and with
the Baire property.

1 Introduction.

The symbols R and Q stand for the sets of all real and all rational numbers,
respectively. A basis of Rn as a linear space over Q is called a Hamel basis.
The cardinality of a set X we denote by |X|.

A σ-ideal I of subsets of R is family closed under subsets and countably
unions. N denotes the σ-ideal of Lebesgue null sets. M denotes the σ-ideal
of all sets of first category. Recall that a σ-ideal I is Borel generated if there
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exists a family J ⊂ I of Borel sets such that I = {A : A ⊂ B,B ∈ J }. I is
(ccc) if every family of disjoint Borel sets which do not belong to the ideal is
countable.

A set A ⊂ R is Marczewski measurable (A ∈ (s) for short) if for every
perfect set P ⊂ R either P ∩ A or P \ A contains a perfect set. (Recall
that a perfect set is a non-empty closed set without isolated points.) If every
perfect set P ⊂ R contains a perfect subset which misses A, then A is called
Marczewski null (A ∈ (s0) for short). It is known that (s) is a σ-field and
(s0) is a σ-ideal of (s). A function f : R → R is Marczewski measurable if
it is measurable with respect to the σ-field (s) (i.e. if the preimage of any
open set is Marczewski measurable). In [8], Marczewski introduced the σ-
field (s) to show that a function f : R → R is Marczewski measurable if and
only if every perfect P ⊂ R has an uncountable Borel subset Q such that
f � Q is continuous. (It is known that we can replace the word “perfect” with
“uncountable Borel” in the definition of (s) and (s0)—we will use this fact in
the sequel.)

Bor stands for the σ-field of Borel subsets of R. For every σ-ideal I, Bor4I
stands the σ-field of all sets of the form A4B, where A ∈ I, B ∈ Bor, and
A4B denotes the symmetric difference between A and B. It is known that
the σ-field of all Lebesgue measurable sets is equal to Bor4N , and the σ-field
of all sets with the Baire property equals Bor4M.

We say that a function f : R → R is a Hamel function if f , considered
as a subset of R2, is a Hamel basis of R2. The class of Hamel functions
was introduced by P lotka and researched in [4], [5], [6], [7] and [2]. In [4],
the author proved that every function f : R → R is a sum of two Hamel
functions. This implies that there is a Hamel function which is not Lebesgue
measurable (without the Baire property, which is not Marczewski measurable,
respectively).

2 Main Results.

The aim of this paper is to show that there are Hamel functions which are
measurable with respect to some σ-fields. Namely, we show the following
theorems—they answer problems posed by T. Natkaniec (oral communica-
tion).

Theorem 1. There exists a Marczewski measurable Hamel function.

Theorem 2. Suppose that I is a σ-ideal of subsets of R which contains sin-
gletons. Suppose that there exists a Borel set B ∈ I and a Hamel basis H ⊂ B
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with |B \ H| = 2ω. Then there exists a Hamel function which is measurable
with respect to the σ-field Bor4I.

Corollary 3. Suppose that I is a Borel generated (ccc) σ-ideal of subsets of
R which contains singletons. Suppose that there exists a Hamel basis H ∈ I.
Then there exists a Hamel function which is measurable with respect to the
σ-field Bor4I.

If we use Corollary 3 in the case I = N (or I =M) we get the following
corollary. (Recall that the Cantor ternary set contains a Hamel basis, see
e.g. [1].)

Corollary 4. There exists a Lebesgue measurable Hamel function (a Hamel
function with the Baire property, respectively).

3 Proofs.

We will use the following lemma in our proofs.

Lemma 5. [7, Lemma 2] Let H1, H2 ⊆ R be a Hamel bases. Suppose that
h : R \H1 → H2 is a bijection. Then a function H : R→ R defined by:

H(x) =

{
h(x) if x 6∈ H1

0 if x ∈ H1,

is a Hamel function.

Proof of Theorem 1. Let H1 be a Hamel basis which is Marczewski null
(see [3]). Let H2 be a Hamel basis which contains a perfect set (see [1]). Fix a
Marczewski null set S of size 2ω such that S ∩H1 = ∅. Choose {Pα}α<2ω and
P , pairwise disjoint perfect sets contained in H2 and all homeomorphic to the
Cantor set 2ω. Let {Qα}α<2ω be an enumeration of all perfect subsets of R.

We will construct by induction a family of sets Q∗α and functions fα : Q∗α →
R such that Q∗α is either the empty set or a perfect set. In case of Q∗α = ∅ we
have also fα = ∅.

Assume that we are in the stage γ < 2ω. There are two possibilities:

1. ∀α<γ |Q∗α ∩Qγ | ≤ ℵ0.

2. ∃α<γ |Q∗α ∩Qγ | = 2ω.

Case 1: Choose any perfect Q∗γ ⊆ Qγ \
[⋃

α<γ Q
∗
α ∪H1 ∪ S

]
and more-

over, such that Q∗γ is homeomorphic to the Cantor set 2ω. (This choice is



226 R.Filipów, A.Nowik, P.Szuca

possible since H1 and S are Marczewski null.) Next, let fγ : Q∗γ → Pγ be any
homeomorphism.

Case 2: Put Q∗γ = ∅ and fγ = ∅.
Now define: f∗ =

⋃
γ<2ω fγ . f∗ is a bijection between

⋃
γ<2ω Q

∗
γ and some

subset of
⋃
γ<2ω Pγ . Since |R\

[
H1∪

⋃
γ<2ω Q

∗
γ

]
| = 2ω and |H2\

[⋃
γ<2ω Pγ

]
| =

2ω we can extend f∗ to a bijection f : R \H1 → H2 arbitrary.

Next we use Lemma 5 to obtain a Hamel function H : R→ R.

This function is Marczewski measurable. Indeed, suppose that Q ⊆ R is
any perfect set. Then there exists γ < 2ω such that Qγ = Q.

If Q∗γ 6= ∅ then fγ ⊆ H is a continuous function from perfect subset
Q∗γ ⊆ Qγ into R.

If Q∗γ = ∅ then there exists α < γ such that |Q∗α ∩ Qγ | = 2ω but in this
case f∗α � (Q∗α ∩Qγ) is a continuous function defined on a Borel subset of Qγ
of size 2ω.

Proof of Theorem 2. Let B ∈ I be a Borel set and let H1 ⊂ B be a Hamel
basis with |B \H1| = 2ω. Let H2 ⊆ R be a Hamel basis which contains some
perfect set P . We can also assume that |H2 \ P | = 2ω.

Since the spaces R \ B and P are Borel isomorphic, let b : B → P be a
Borel bijection.

By virtue of |B \ H1| = 2ω and |H2 \ P | = 2ω we can extend b to a
bijection b∗ : R \H1 → H2. Next we use Lemma 5 to obtain a Hamel function
H : R→ R.

We will check that H is Bor4I measurable. Indeed, suppose that U ⊆ R
is an open set. Then

H−1[U ] =

{
(b∗)−1[U ] if 0 6∈ U,
(b∗)−1[U ] ∪H1 if 0 ∈ U.

But we have (b∗)−1[U ]4b−1[U ] ∈ I, therefore H−1[U ] ∈ Bor4I.

Proof of Corollary 3. By Theorem 2 it is enough to show that there is
a Borel set B ∈ I and a Hamel basis H ⊂ B with |B \H| = 2ω.

Let H ∈ I be a Hamel basis. Let E ∈ I be a Borel set with H ⊂ E.

Since R\E is a Borel set of cardinality 2ω, so we can find a pairwise disjoint
family B of cardinality 2ω of Borel subsets of R \B each of size 2ω. Since I is
(ccc) there exists a B0 ∈ B ∩ I.

Then B = E∪B0 ∈ I is a Borel set such that H ⊂ B and |B\H| = 2ω.
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4 Odds and ends.

Given a set X ⊂ R, the porosity of X at a real r ∈ R is defined by

p(X, r) = lim sup
ε→0+

λ(X, (r − ε, r + ε))

ε
,

where λ(X, I) denotes the maximal length of an open subinterval of the interval
I which is disjoint from X. A set X is porous (X ∈ P) iff p(X, a) > 0 for
every a ∈ X. Let σP denote the sigma-ideal generated by the porous sets.
We say that X is a σ-porous set iff X ∈ σP. (For some properties of σ-porous
sets see e.g. [9].)

Let E be a σ-ideal generated by closed Lebesgue null sets, and let N ∩M
denote the σ-ideal of sets which are both Lebesgue null and of the first category.
It is known that σP, E ⊂ N ∩M, and σP 6⊂ E , E 6⊂ σP.

If we use Theorem 2 in the case I = σP, E or N ∩M we get the following
corollary.

Corollary 6.

1. There exists a Hamel function which is measurable with respect to the
σ-field Bor4σP.

2. There exists a Hamel function which is measurable with respect to the
σ-field Bor4E.

3. There exists a Hamel function which is measurable with respect to the
σ-field Bor4(N ∩ M) (i.e. a Hamel function which is both Lebesgue
measurable and with the Baire property).

Proof. (1). The Cantor ternary set C ⊂ [0, 1] is σ-porous and contains a
Hamel basis H ⊂ C. Let A ⊂ R \C be a Borel σ-porous set of cardinality 2ω.
Now, we can use Theorem 2 with B = C ∪A.

(2). The Cantor ternary set C ⊂ [0, 1] belongs to E and contains a Hamel
basis H ⊂ C. Let A ⊂ R \ C be a Borel set which belongs to E and is of
cardinality 2ω. Now, we can use Theorem 2 with B = C ∪A.

(3). Since E ⊂ N ∩M, so every function which is Bor4E measurable is
also Bor4(N ∩M) measurable.

Remark. In case of N ∩M we can also use Corollary 3 (since this ideal is Borel
generated and (ccc)). However, in case of σP and E we cannot use Corollary 3
since it is known that these ideals are not (ccc).

We can also construct a Hamel function which is measurable in one sense
and non-measurable in another.
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Proposition 7. 1. There exists a Lebesgue measurable Hamel function with-
out the Baire property.

2. There exists a Lebesgue nonmeasurable Hamel function with the Baire
property.

Proof. We will show the first case and the second one can be shown similarly.

Let H1 be a Hamel basis which is Lebesgue null and does not have the
Baire property. Let B ∈ N be a Borel set with H ⊂ B and |B \ H| = 2ω.
Now, we proceed as in the proof of Theorem 2 and construct a Hamel function
H : R→ R. Then H is Lebesgue measurable. On the other hand, H−1({0}) =
H1, so H does not have the Baire property.

Finally, we show that Theorem 1 does not follow from Theorem 2.

Proposition 8 (folklore). (s) 6= Bor4I for every σ-ideal I.

Proof. We provide a proof for the completeness. Suppose, for the sake of
contradiction, that there is a σ-ideal I with (s) = Bor4I. We have two cases.

1. I \ (s0) 6= ∅.

2. I ⊂ (s0).

In the first case, take an A ∈ I \ (s0). Since A ∈ (s) so there is a perfect
set P ⊂ A. Now, take a set B ⊂ P with B /∈ (s). On the other hand,
B ∈ I ⊂ Bor4I, a contradiction.

Now, we consider the second case. Let f : R → R× R be a Borel isomor-
phism. It is not difficult to show, that A ∈ (s) iff f(A) ∈ (s2) and A ∈ (s0) iff
f(A) ∈ (s20). Here (s2) and (s20) stand for the σ-field of Marczewski measur-
able subsets of the plane and σ-ideal of Marczewski null subsets of the plane,
which are defined similarly to (s) and (s0).

Let K = {f(A) : A ∈ I}. Then K is a σ-ideal and (s2) = Bor24K. Here
Bor2 stands for the σ-field of Borel subsets of the plane.

Let Z ∈ (s0) be a set of cardinality 2ω. Since {X×R : X ⊂ Z} ⊂ (s2) is of
cardinality 22

ω

, |Bor| = 2ω, and for each X ⊂ Z there is a Borel set BX ⊂ R
and an AX ⊂ R, AX ∈ I with X × R = f(BX)4f(AX), so there are two
distinct sets X1, X2 ⊂ Z, a Borel set B ⊂ R and two sets A1, A2 ∈ I such that
X1×R = f(B)4f(A1) and X2×R = f(B)4f(A2). Let W = (X1×R)4(X2×
R) = f(A1)4f(A2) = f(A14A2). Then f−1(W ) = A14A2 ∈ I ⊂ (s0).
On the other hand, since X1 6= X2, so W /∈ (s20). Thus f−1(W ) /∈ (s0), a
contradiction.
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et la classe correspondante d’ensembles, Fund. Math., 24, (1935), 17–34.
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