
INROADS Real Analysis Exchange
Vol. 36(1), 2010/2011, pp. 195–212

Gerald Beer,∗ Department of Mathematics, California State University Los
Angeles, 5151 State University Drive, Los Angeles, California 90032, USA.
email: gbeer@cslanet.calstatela.edu
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ULTIMATELY INCREASING FUNCTIONS

Abstract
A function g between directed sets 〈Σ,�′〉 and 〈Λ,�〉 is called ul-

timately increasing if for each σ1 ∈ Σ there exists σ2 �′ σ1 such that
σ �′ σ2 ⇒ g(σ) � g(σ1). A subnet of a net a defined on 〈Λ,�〉 [9] is
nothing but a composition of the form a◦g where g is ultimately increas-
ing and g(Σ) is a cofinal subset of Λ. While even for linearly ordered
sets, an increasing net defined on a cofinal subset of the domain need
not have an increasing extension, in complete generality, it must have
an ultimately increasing extension, and conversely when the domain is
linearly ordered. Applications are given in the context of functions with
values in a linearly ordered set equipped with the order topology - in
particular, the extended real numbers. For example, we show that a real
sequence 〈an〉 converges to the supremum of its set of terms if and only
if 〈an〉 is the supremum of the ultimately increasing sequences that it
majorizes.

1 Introduction.

While sequences suffice to describe the basic constructs for a metric space
topology, they fail to do so in the setting of a general topological space. For
example, these two statements which are equivalent in metric spaces
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(1) each open cover of X has a finite subcover;

(2) each sequence in X has a subsequence that converges to a point of X;

are not in the context of a general topological space 〈X,T 〉 [12]. But such an
equivalence holds if we replace sequences by nets, which are functions defined
on more general “ordered” sets than the counting numbers N equipped with
the usual order (see, e.g., [5, 8, 9]). Specifically, a net is a function defined
on a directed set 〈Λ,�〉, where � is a reflexive, transitive relation on Λ such
that whenever λ1 ∈ Λ and λ2 ∈ Λ, there exists λ3 ∈ Λ with both λ1 � λ3 and
λ2 � λ3.

If a is a net defined on 〈Λ,�〉, following the convention used for sequences,
we will often write aλ for a(λ) for each index λ. Of course, a net 〈aλ〉λ∈Λ in
a topological space 〈X,T 〉 is declared convergent to x0 ∈ X provided each
neighborhood of x0 contains the net residually, that is, it contains each aλ for
all λ satisfying λ � λ0 for some index λ0. With this definition in mind, in a
general topological space, condition (1) is equivalent to

(2′) each net in X has a subnet that converges to a point of X,

where by a subnet of a net a with domain 〈Λ,�〉, we mean a composition of
the form a ◦ g where g is a function defined on a second directed set 〈Σ,�′〉
with values in 〈Λ,�〉 with the following property (∗):

(∗) for each λ ∈ Λ, there exists σ1 ∈ Σ such that σ �′ σ1 ⇒ g(σ) � λ.

In the same spirit, a subset of a topological space 〈X,T 〉 is closed if and only
if it is stable under taking limits of convergent nets; a function f defined on
〈X,T 〉 is continuous at a point x0 ∈ X if and only if it takes nets convergent
to x0 to nets convergent to f(x0); convergent nets have unique limits if and
only if T satisfies the Hausdorff separation property, and so forth. Another
adequate theory of convergence can be built around the notion of convergent
filters; the two theories are essentially interchangeable (see, e.g., [5, 13]).

Nets seem on the surface to be so much like sequences that they are often
called generalized sequences. But there is some annoying pathology lurking in
the background. For example, a subnet of a sequence that is also defined on N
need not be a subsequence of the initial sequence: a2, a1, a4, a3, . . . is a subnet
of the sequence a1, a2, a3, a4, . . . because the function g : N→ N defined by

g(n) =

{
n− 1, if n is even

n+ 1, if n is odd

satisfies condition (∗).
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While a function g satisfying condition (∗) need not be increasing in the
usual sense - that is, σ1 �′ σ2 need not ensure g(σ1) � g(σ2) - it is increasing
in the following weaker sense.

Definition 1.1. A function g : 〈Σ,�′〉 → 〈Λ,�〉 is called ultimately increasing
if for each σ1 ∈ Σ there exists σ2 �′ σ1 such that σ �′ σ2 ⇒ g(σ) � g(σ1).

Intuitively, an ultimately increasing net does not go down in value in the
long run (which might be an apt descriptor for typical investment objectives
in these troubled economic times). Notice that the same functions are defined
by replacing ”σ2 �′ σ1” by ”σ2 ∈ Σ” in the definition.

It is the purpose of this note to investigate this property of functions be-
tween directed sets, but just as importantly, to illustrate how the idea imposes
itself on the foundations of analysis. We obtain a number of basic structural
results. For example, we show that each ultimately increasing net defined
on a cofinal subset of a directed set can be extended to a globally defined
ultimately increasing net. In particular, each increasing net defined on a co-
final subset has an ultimately increasing extension, and we show that each
ultimately increasing globally defined net is so obtained when the domain is
linearly ordered. As applications, we show how the concept is intrinsic to
the Monotone Convergence Theorem from calculus, and show how the order
topology for a complete chain is naturally induced by ultimately increasing
nets, e.g., the extended real numbers equipped with its usual topology.

2 Preliminaries.

We initially review some notation and terminology relative to directed and
partially ordered sets. For further details and for unexplained terminology, we
invite the reader to consult [6].

All directed sets 〈Λ,�〉 will be assumed to contain at least two elements.
The notations λ2 � λ1 and λ1 � λ2 will be used interchangeably, and so forth.
A subset Λ0 of Λ is called residual if ∃λ ∈ Λ such that ∀µ � λ, µ ∈ Λ0 and
cofinal if ∀λ ∈ Λ ∃µ � λ with µ ∈ Λ0. Clearly, Λ0 is residual if and only if
Λ\Λ0 is not cofinal. For Λ0 ⊆ Λ, put

↑ Λ0 := {µ ∈ Λ : ∃λ ∈ Λ0 with µ � λ},

and
↓ Λ0 := {µ ∈ Λ : ∃λ ∈ Λ0 with µ � λ},

of course writing ↑ λ for ↑ {λ} and ↓ λ for ↓ {λ}. Evidently, Λ0 is a cofinal
subset of Λ if and only if Λ =↓ Λ0. Both arrow operators are evidently
idempotent and monotone.
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A directed set 〈Λ,�〉 is in addition a partially ordered set if the relation �
is antisymmetric as well as reflexive and transitive. The set of all nonempty
subsets P0(N) of N is directed by B � A provided there exists an injection f
with domain A and codomain B, but 〈P0(N),�〉 fails to be a partially ordered
set. Of course, a directed set becomes a partially ordered directed set modulo
a natural equivalence relation [7, p. 11]. In a partially ordered directed set
〈Λ,�〉, we will write λ1 � λ2 provided λ1 � λ2 but λ1 6= λ2. A partially
ordered directed set 〈Λ,�〉 is called a linearly ordered set or a chain provided
whenever λ1 and λ2 are distinct members of Λ, either λ1 � λ2 or λ2 � λ1

holds. The order topology τord on a linearly ordered set 〈Λ,�〉 is generated by
all sets of the form {µ ∈ Λ : µ � λ} and {µ ∈ Λ : µ ≺ λ} where λ runs over
Λ. For the extended reals [−∞,∞] with the usual order, the order topology
coincides with the usual topology.

We call a partially ordered directed set 〈Λ,�〉 a lattice if each finite subset
has both a greatest lower bound and a least upper bound in Λ. The natural
numbers N with the division order forms a lattice, as does any linearly ordered
set. We call a lattice 〈Λ,�〉 a complete lattice if each nonempty subset E has
both a greatest lower bound and a least upper bound, which we denote by
inf E and sup E in the sequel. For example, the set of all subsets P(X) of a
nonempty set X directed by inclusion is a complete lattice. Although [−∞,∞]
is a complete lattice, R = (−∞,∞) while a lattice is not a complete lattice. A
linearly ordered set that is a complete lattice will be called a complete chain
in the sequel.

We close this section with some examples of ultimately increasing functions.

Example 2.1. In the context of real functions, g(x) = 1
2x + sinx while not

increasing (g′(x) < 0 when x ∈ (2π/3, π)) nevertheless satisfies a uniform
ultimately increasing condition: ∀x ∈ R, g(w) ≥ g(x) whenever w ≥ x+ 4.

Example 2.2. For functions into the Euclidean plane R2 directed by (a1, a2) �
(b1, b2) provided

√
a2

1 + a2
2 ≤

√
b21 + b22, the ultimately increasing condition is

verified if and only if each function value is at least matched in distance from
the origin by a residual set of values.

Example 2.3. Let Λ = {2n7k : (n, k) ∈ N × N} equipped with the usual
order inherited from N, and define g : Λ→ N by g(2n7k) = n+ k. While g is
ultimately increasing, g fails to be increasing as g(98) < g(56).

Example 2.4. The product Λ := {a, b} ×N is linearly ordered by the lexico-
graphic order, a.k.a the dictionary order (see, e.g., [10, 13]). Define g : Λ→ Λ
by

g(a, n) = g(b, n) = (a, n) (n ∈ N).
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While g is not increasing, it is ultimately increasing because if (x, n) ∈ Λ, we
have g(b, k) � g(x, n) whenever k ≥ n.

Example 2.5. Let 〈xn〉 be a strictly increasing convergent real sequence, and
for each n ∈ N, put yn := xn−(xn+1−xn). Then the sequence x1, y1, x2, y2, . . .
viewed as a function from N into R is ultimately increasing but does not satisfy
condition (∗) of the Introduction as it is bounded above by limn→∞ xn.

3 Structural results.

We first record some obvious properties of ultimately increasing functions that
the reader can verify:

• g : 〈Σ,�′〉 → 〈Λ,�〉 is ultimately increasing if and only if for each σ1 ∈ Σ
there exists σ2 ∈ Σ such that g(↑ σ2) ⊆↑ g(σ1);

• a subnet of a ultimately increasing net is ultimately increasing; in par-
ticular, the restriction of a ultimately increasing net to a cofinal subset
of the domain remains ultimately increasing;

• the composition of an increasing net following an ultimately increasing
net is ultimately increasing;

• if 〈Σ,�′〉 has a largest member σ1, then g : 〈Σ,�′〉 → 〈Λ,�〉 is ultimately
increasing if and only if ∀σ ∈ Σ, g(σ) � g(σ1).

• a net with values in a power set P(X) directed by inclusion is ultimately
increasing if and only if whenever A1, A2, . . . An are values of the net,
then eventually each value contains ∪ni=1Ai;

• the real-valued ultimately increasing functions defined on a fixed directed
set are closed under addition and multiplication by nonnegative scalars;
in particular, a convex combination of ultimately increasing functions is
ultimately increasing;

• a continuously differentiable real function g defined on R is ultimately in-
creasing if and only if ∀a ∈ R,∃r(a) > a such that ∀t ≥ r(a),

∫ t
a
g′(x)dx ≥

0.

It is the not the case that the inverse of an ultimately increasing injective
net be ultimately increasing. Define g : Z→ {0, 1, 2, . . .} by

g(n) =

{
2|n| − 1 if n < 0

2n if n ≥ 0.
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It is clear that g is ultimately increasing and bijective. However, its inverse
is not ultimately increasing because whenever n ∈ N, then whenever k is odd
and k > 2n, we have g−1(k) < g−1(2n).

As we have noted earlier, a subnet of an increasing net need not be in-
creasing. Further, the composition of an ultimately increasing net following
an increasing net need not be ultimately increasing: while g : N → R defined
by g(n) = − 1

n is increasing and f : R→ R defined by f(x) = |x| is ultimately
increasing, f ◦ g is not ultimately increasing.

In the Introduction, we defined a subnet of a net a defined on a directed
set 〈Λ,�〉 as a composition where the outside function was a and the inside
function g defined on a separate directed set was to satisfy condition (∗).
Condition (∗) is nothing but the requirement that g be ultimately increasing
plus an additional property.

Proposition 3.1. For a function g : 〈Σ,�′〉 → 〈Λ,�〉 between directed sets,
the following conditions are equivalent:

(a) g satisfies condition (∗);
(b) g is ultimately increasing and its range is cofinal in Λ.

Proof. (a) ⇒ (b). If g satisfies (∗), clearly g(Σ) is cofinal in Λ, and letting
λ run over the range of g in (∗), by the first bulleted item above, g is also
ultimately increasing.

(b)⇒ (a). Fix λ ∈ Λ. By cofinality of the range, ∃σ0 ∈ Σ with g(σ0) � λ.
Since g is ultimately increasing, ∃σ1 �′ σ0 such that σ �′ σ1 ⇒ g(σ) �
g(σ0) � λ, as required.

While an increasing function defined on an infinite subset of the positive
integers N can be extended to an increasing function on all of N, it is easy to
see that an increasing function defined on a cofinal subset of a general directed
set need not extend to an increasing function defined on the entire directed
set. Consider Σ = {0} ∪ { 1

n : n ∈ N} and Λ = { 1
n : n ∈ N}, both equipped

with the usual order they inherit from R; then the identity map on Λ does
not extend to an increasing function from Σ to Λ. We intend to show that an
increasing function does however extend to an ultimately increasing function.
This is an immediate consequence of the following comprehensive result.

Theorem 3.2. Suppose 〈Σ,�′〉 and 〈Λ,�〉 are two directed sets. Suppose Σ̂

is a cofinal subset of Σ and g : 〈Σ̂,�′〉 → 〈Λ,�〉 is ultimately increasing. Then
g extends to an ultimately increasing function with domain Σ.

Proof. We first create a function hg : Σ̂ → Σ̂ that picks for each σ̂ ∈ Σ̂ an

element hg(σ̂) of Σ̂ such that hg(σ̂) �′ σ̂ and g({µ ∈ Σ̂ : µ �′ hg(σ̂)}) ⊆↑ g(σ̂).
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Let D be the set of all pairs of functions (f, hf ) where the domains of f and
hf are a common subset D(f) of Σ such that the following properties hold

(1) f extends g and hf extends hg on Σ̂;

(2) hf takes values in Σ̂ and for each σ ∈ D(f), hf (σ) �′ σ and f(↑ hf (σ) ∩
D(f)) ⊆↑ f(σ).

Property (2) guarantees that for each (f, hf ) ∈ D , the function f is ul-
timately increasing on its domain D(f). Notice that D is nonempty as it
contains (g, hg). Partially order D by (f1, hf1)� (f2, hf2) provided f2 extends
f1 and hf2 extends hf1 . It is left to the reader to verify that each chain in
D has an upper bound, namely the minimal extension for the function pairs
(f, hf ) in the chain. By Zorn’s lemma, D has a maximal element (f0, hf0). It
remains to show that D(f0) = Σ.

Suppose to the contrary that µ ∈ Σ\D(f0). By cofinality of Σ̂ in Σ, choose

σ̂ ∈ Σ̂ with µ �′ σ̂. Put f(µ) := f0(σ̂) = g(σ̂), put hf (µ) := hf0(σ̂) = hg(σ̂),
and let (f, hf ) restricted to D(f0) agree with (f0, hf0). We claim that this
determines an extension of (f0, hf0) that lies in D .

To see that f satisfies (2), we consider two cases for σ ∈ D(f) : (i) σ = µ,
and (ii) σ 6= µ. In case (i), whether or not µ ∈↑ hf0(σ̂) holds, we compute

f(↑ hf (µ)∩D(f)) ⊆ {f(µ)}∪f0(↑ hf0(σ̂)∩D(f0)) ⊆ {f(µ)}∪ ↑ f0(σ̂) =↑ f(µ).

In case (ii) where σ ∈ D(f0), we have

f(↑ hf0(σ) ∩D(f0)) ⊆↑ f0(σ) =↑ f(σ).

But if µ ∈↑ hf0(σ), then hf0(σ) � µ � σ̂, and since σ̂ ∈ D(f0), we get

f(σ) = f0(σ) � f0(σ̂) = f(µ).

This shows that
f(↑ hf (σ) ∩D(f)) ⊆↑ f(σ)

in the second case. Thus, the maximality of (f0, hf0) is violated, and the proof
is complete.

Theorem 3.2 of course yields

Theorem 3.3. Suppose 〈Σ,�′〉 and 〈Λ,�〉 are two directed sets. Suppose Σ̂

is a cofinal subset of Σ and g : 〈Σ̂,�′〉 → 〈Λ,�〉 is increasing. Then g extends
to an ultimately increasing function with domain Σ.
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We now give a partial converse to Theorem 3.3.

Theorem 3.4. Let 〈Σ,�′〉 be linearly ordered and g : 〈Σ,�′〉 → 〈Λ,�〉 be
ultimately increasing. Then g restricted to some cofinal subset of Σ is increas-
ing.

Proof. This is obviously true if Σ has a largest element as g restricted to
any singleton is trivially increasing, so we assume in the following argument
that Σ does not have one.

We define a family of subsets A of Σ as follows:

A := {Γ ⊆ Σ : whenever σ1 ≺′ σ2 in Γ, then ∀σ ∈ Σ, σ �′ σ2 ⇒ g(σ) � g(σ1)}.

Given any σ1 ∈ Σ, that g is ultimately increasing ensures A contains some
subset of Σ with exactly two elements containing σ1: choose σ2 �′ σ1 with
g(↑ σ2) ⊆↑ g(σ1) and choosing σ3 �′ σ2, {σ1, σ3} does the job. Partially order
A by inclusion. It is a simple exercise to show that if C is any linearly ordered
subset of A , then {σ ∈ Σ : ∃Γ ∈ C with σ ∈ Γ} is an upper bound for C in
A . By Zorn’s Lemma, A has a largest member Γ0. It remains to show that
Γ0 is cofinal in Σ. If cofinality fails, we consider two cases for Γ0: (1) Γ0 has
a largest member σL; (2) Γ0 has no largest member.

In case (1), since we are now assuming that Σ has no largest member, σL
is not the largest member of Σ, and there exists α �′ σL such that g(↑ α) ⊆↑
g(σL). But whenever σ ∈ Γ0 with σ ≺′ σL we have g(σL) ∈↑ g(σ), and we
compute

g(↑ α) ⊆↑ g(σL) ⊆↑ (↑ g(σ)) =↑ g(σ).

This proves that Γ0 ∪ {α} ∈ A , in violation of Γ0 being the largest member
of A .

In case (2) take µ /∈↓ Γ0 and let σ1 ∈ Γ0 be arbitrary. There exists σ2 ∈ Γ0

with σ1 ≺′ σ2. Then since ↑ µ ⊆↑ σ2 we have

g(↑ µ) ⊆ g(↑ σ2) ⊆↑ g(σ1).

This shows that Γ0 ∪{µ} ∈ A , and we again reach a contradiction. Clearly, g
restricted to this cofinal element of A is increasing, completing the proof.

Remark 3.5. We note that the proof of Theorem 3.4 breaks down if we
simply try to apply Zorn’s Lemma to the family of subsets Γ of Σ for which g
restricted to Γ is increasing.

Corollary 3.6. Suppose 〈Σ,�′〉 is linearly ordered and g : 〈Σ,�′〉 → 〈Λ,�〉
is ultimately increasing. Then g has an increasing subnet defined on a linearly
ordered set.
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In view of Proposition 3.1, we may state the following corollary.

Corollary 3.7. Suppose 〈Σ,�′〉 is linearly ordered and g : 〈Σ,�′〉 → 〈Λ,�〉
satisfies property (∗). Then g has an increasing subnet defined on a linearly
ordered set that satisfies (∗).

4 Sequences and nets that are convergent to their suprema.

The elementary Monotone Convergence Theorem of one-variable calculus says
that an increasing sequence 〈an〉 of real numbers converges to the extended
real number sup{an : n ∈ N}. But clearly a real sequence can converge to
the supremum of its set of terms without being increasing. In this section we
expose the characteristic features of sequences that converge to the supremum
of their set of terms, a theory in which ultimately increasing sequences play
a fundamental role. Since most of the analysis can be executed for nets with
values in a complete chain, we work at this more general level. We produce
multiple characterizations of nets that converge to their suprema.

As a first result, we show that an ultimately increasing net with values in
a complete chain must converge to the supremum of its values.

Proposition 4.1. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete
chain. Then each ultimately increasing net 〈aσ〉σ∈Σ in Λ converges in the
order topology to sup{aσ : σ ∈ Σ}.
Proof. If the supremum of the set of terms is the smallest element of Λ, then
the net is constant and there is nothing to prove. Otherwise, let λ ≺ sup{aσ :
σ ∈ Σ} be arbitrary. By the definition of supremum, there exists σ1 with
aσ1 � λ, and then σ2 such that σ �′ σ2 ⇒ aσ � aσ1 . Thus µ ∈↑ σ2 ⇒ λ ≺
aµ � sup{aσ : σ ∈ Σ} as required.

Proposition 4.2. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete
chain. Suppose that {〈biσ〉σ∈Σ : i ∈ I} is a family of ultimately increasing nets
in Λ and for each σ ∈ Σ, put aσ := supi∈I b

i
σ. Then 〈aσ〉σ∈Σ converges in the

order topology to the supremum of its values.

Proof. Put λ̂ := sup {aσ : σ ∈ Σ}, and let λ ≺ λ̂ be arbitrary. Choose an
index σ1 such that aσ1 � λ. Next pick i ∈ I such that biσ1

� λ. Choosing
σ2 �′ σ1 such that ∀σ �′ σ2, b

i
σ � biσ1

, we have σ �′ σ2 ⇒ aσ � λ. It now
follows that lim infσ∈Σ aσ � λ, and as lim supσ∈Σ aσ � sup {aµ : µ ∈ Σ}, the
net converges to sup {aµ : µ ∈ Σ}.

We next give our first characterization of those nets that converge to the
supremum of their set of values. It is fairly transparent; more interesting ones
will follow.
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Theorem 4.3. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete chain.
Suppose 〈aσ〉σ∈Σ is a net in Λ. The following conditions are equivalent:

(1) 〈aσ〉σ∈Σ is convergent in the order topology to sup {aσ : σ ∈ Σ};

(2) 〈aσ〉σ∈Σ majorizes an increasing net 〈bσ〉σ∈Σ for which

sup {aσ : σ ∈ Σ} = sup {bσ : σ ∈ Σ};

(3) 〈aσ〉σ∈Σ majorizes an ultimately increasing net 〈bσ〉σ∈Σ for which

sup {aσ : σ ∈ Σ} = sup {bσ : σ ∈ Σ}.

Proof. (1)⇒ (2). For each σ ∈ Σ, put bσ = inf{aµ : µ �′ σ}. Then 〈bσ〉σ∈Σ

is an increasing net convergent to sup {bσ : σ ∈ Σ}. But by the definition of
the net, it also converges to lim infσ∈Σ aσ = limσ∈Σ aσ = sup {aσ : σ ∈ Σ}.

(2)⇒ (3). This is obvious.

(3) ⇒ (1). By Proposition 4.1 and condition (3), 〈bσ〉σ∈Σ converges to
sup {aσ : σ ∈ Σ}. But clearly

limσ∈Σ bσ � lim infσ∈Σ aσ � lim supσ∈Σ aσ � sup {aσ : σ ∈ Σ},

from which condition (1) follows.

Since the infima of the values of each tail of a convergent sequence is finite,
we obtain this consequence of Theorem 4.3.

Corollary 4.4. Let 〈an〉 be a real sequence. The following are equivalent:

(1) limn→∞an = sup {an : n ∈ N};

(2) 〈an〉 majorizes an increasing sequence 〈bn〉 such that sup {an : n ∈ N} =
sup {bn : n ∈ N};

(3) 〈an〉 majorizes an ultimately increasing sequence 〈bn〉 such that sup {an :
n ∈ N} = sup {bn : n ∈ N}.

That 〈an〉 majorizes an increasing sequence 〈bn〉 with limn→∞an − bn = 0
is not enough to guarantee that condition (1) of Corollary 4.4 holds.
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Example 4.5. Consider the real sequence 〈an〉 whose list of terms is 1
2 , 0, 0, 0, . . ..

Then the increasing sequence 〈bn〉 whose list of terms is− 1
2 ,−

1
2 ,−

1
3 ,−

1
4 ,−

1
5 , . . .

satisfies an−bn = 1
n . However, 〈an〉 fails to converge to 1

2 = sup {an : n ∈ N}.

While Theorem 4.3 does not support conferring special status to ultimately
increasing nets, the next result and its consequences certainly do.

Proposition 4.6. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete
chain. Suppose 〈aσ〉σ∈Σ is a net in Λ such that ∀σ ∈ Σ, aσ ≺ sup{aµ : µ ∈ Σ}.
Then 〈aσ〉σ∈Σ is τord-convergent to sup{aσ : σ ∈ Σ} if and only if the net is
ultimately increasing.

Proof. Sufficiency follows from Proposition 4.1. For necessity, suppose the
net fails to be ultimately increasing. Then there exists σ1 and a cofinal subset
Ω of Σ such that ∀ω ∈ Ω, aω ≺ aσ1

. As a result, with λ := aσ1
≺ sup{aσ :

σ ∈ Σ}, it is not the case that aσ exceeds λ eventually.

Example 4.7. The sequence defined by a1 = 1 and an = 1 − 1
n for n ≥ 2

converges to the supremum of its terms but fails to be ultimately increasing
(note that the supremum is achieved).

We now come to our favorite result of this paper.

Theorem 4.8. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete chain.
Suppose 〈aσ〉σ∈Σ is a net in Λ. Then 〈aσ〉σ∈Σ converges to sup{aµ : µ ∈ Σ}
if and only if 〈aσ〉σ∈Σ is the supremum of the ultimately increasing nets based
on Σ that it majorizes.

Proof. Sufficiency is a consequence of Proposition 4.2. For necessity, suppose
limσ∈Σ aσ = sup{aµ : µ ∈ Σ}. If the net is already ultimately increasing there

is nothing to show. Otherwise, put λ̂ := sup{aµ : µ ∈ Σ}. Since the net is

assumed not to be ultimately increasing, we first notice that λ̂ cannot have an
immediate predecessor in Λ, else by convergence, the net would assume the
value λ̂ on a residual subset and thereby be ultimately increasing.

Let B denote the set of ultimately increasing nets majorized by 〈aσ〉σ∈Σ.
Since Λ has a smallest member, B is nonempty. It suffices to show that for
each σ0 ∈ Σ whenever λ ≺ aσ0 , there exists 〈cσ〉σ∈Σ ∈ B with cσ0 � λ. For
each σ ∈ Σ, put bσ = inf{aµ : µ �′ σ}, defining an increasing net that is

majorized by 〈aσ〉σ∈Σ and that is convergent to λ̂. If aσ0 = λ̂, pick λ1 with

λ ≺ λ1 ≺ λ̂ and define 〈cσ〉σ∈Σ by

cσ =

{
λ1 if σ = σ0

bσ otherwise,
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and in the case that aσ0 ≺ λ̂, let

cσ =

{
aσ0

if σ = σ0

bσ otherwise.

Either way, since cσ0
≺ λ̂, 〈cσ〉σ∈Σ is ultimately increasing and has the re-

quired property when σ = σ0.

Corollary 4.9. Suppose 〈an〉 is a real sequence. Then limn→∞an = sup {an :
n ∈ N} if and only 〈an〉 is the supremum of the ultimately increasing sequences
that it majorizes.

There is a related characterization of real sequences that are convergent to
their suprema that is perhaps more appealing.

Theorem 4.10. A real sequence 〈an〉 satisfies limn→∞an = sup {an : n ∈ N}
if and only if it is the uniform limit of a sequence of ultimately increasing
sequences.

Proof. Suppose for each j ∈ N, 〈bjn〉n∈N is an ultimately increasing sequence
with supn∈N |bjn − an| < 1

j . For each n and j put cjn := bjn − 1
j . Then for each

n, an = supj∈N cjn, so by Proposition 4.2, 〈an〉 converges to its supremum.
Conversely, suppose 〈an〉 converges to its supremum. Let ε > 0 be arbitrary,
and for each n put bεn = an−2−nε. Then by Proposition 4.6, 〈bεn〉 is ultimately
increasing and ||〈bεn〉 − 〈an〉||∞ < ε.

For a real-valued function f defined on a Hausdorff space that is locally
bounded below, there is a largest real-valued lower semicontinuous function
g majorized by f (called the lower envelope of f) [9, pg. 102]. Under mild
conditions on the space, the lower envelope is the supremum of the continuous
real-valued functions that f majorizes, provided f majorizes one at all [5, pg.
88]. We now present as a consequence of Theorem 4.8 a parallel result for nets
that converge to their supremum.

Proposition 4.11. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete
chain. Suppose 〈aσ〉σ∈Σ is a net in Λ. Then there is a largest net 〈a∗σ〉σ∈Σ

majorized by 〈aσ〉σ∈Σ that is convergent to the supremum of its set of values.

Proof. Put λ0 := inf {aσ : σ ∈ Σ}. Then the net with constant value λ0 is an
ultimately increasing net majorized by 〈aσ〉σ∈Σ. Letting B be as in the proof of
Theorem 4.8, we see that B is nonempty. Let a∗ be the supremum of the set of
nets in B, that is, put a∗σ := sup{bσ : b ∈ B}. By Proposition 4.2 or Theorem
4.8, 〈a∗σ〉σ∈Σ converges to the supremum of its values. Suppose 〈cσ〉σ∈Σ were



Ultimately Increasing Functions 207

another such net majorized by 〈aσ〉σ∈Σ. If for some σ0 ∈ N, cσ0 � a∗σ0
, then

again by Theorem 4.8 there exists an ultimately increasing net 〈dσ〉σ∈Σ such
that ∀σ, dσ � cσ and a∗σ0

≺ dσ0
. But clearly 〈dσ〉σ∈Σ ∈ B, and a contradiction

ensues.

Some care must be taken to obtain as a special case a result for real se-
quences, as a real sequence need not majorize an ultimately increasing one.
The correct formulation is as follows.

Corollary 4.12. Let 〈an〉 be a real sequence. The following conditions are
equivalent:

(1) inf {an : n ∈ N} > −∞;

(2) 〈an〉 majorizes an ultimately increasing sequence 〈bn〉;

(3) there is a largest sequence 〈a∗n〉 majorized by 〈an〉 convergent to
sup {a∗n : n ∈ N}.

We are not enamored with our proof of Proposition 4.11, as it obscures
the essential nature of the largest net convergent to its supremum underneath
〈aσ〉σ∈Σ. This nature is made clear by our next result.

Theorem 4.13. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete
chain. Suppose 〈aσ〉σ∈Σ is a net in Λ. If we put

a∗σ := min {aσ, lim infµ∈Σ aµ} (σ ∈ Σ),

then 〈a∗σ〉σ∈Σ is the largest net majorized by 〈aσ〉σ∈Σ that is convergent to the
supremum of its set of values.

Proof. Suppose 〈aσ〉σ∈Σ majorizes 〈bσ〉σ∈Σ where the latter is convergent to
sup{bµ : µ ∈ Σ}. Evidently,

sup{bµ : µ ∈ Σ} = limσ∈Σ bσ � lim infσ∈Σ aσ,

and so for each σ ∈ Σ we have bσ � min {aσ, lim infµ∈Σ aµ}. It is left as an
easy exercise to verify that for a∗σ as defined, we have sup {a∗σ : σ ∈ Σ} =
limσ∈Σ a∗σ = lim infσ∈Σ aσ.

Theorem 4.13 yields a third characterization of nets convergent to their
suprema, and arguably the most important one, as elementary as it may be.
The reader is invited to give a self-contained proof.

Corollary 4.14. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete
chain. Then a net 〈aσ〉σ∈Σ in Λ is convergent to the supremum of its set of
values if and only if ∀σ ∈ Σ, aσ � lim infµ∈Σ aµ.
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We note that the condition ∀σ ∈ Σ, aσ � lim infµ∈Σ aµ in the statement
of Corollary 4.14 is clearly equivalent to either of the following statements: (i)
sup{aσ : σ ∈ Σ} � lim infσ∈Σ aσ, or (ii) sup{aσ : σ ∈ Σ} = lim infσ∈Σ aσ.

In response to the shortcomings of Example 4.7, we present

Proposition 4.15. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete
chain. Suppose 〈aσ〉σ∈Σ is a net in Λ, such that sup{aσ : σ ∈ Σ} is not
achieved cofinally. Then 〈aσ〉σ∈Σ is τord-convergent to sup{aσ : σ ∈ Σ} if and
only if for some σ0 ∈ Σ, the net restricted to ↑ σ0 is ultimately increasing and
sup{aσ : σ ∈↑ σ0} = sup{aσ : σ ∈ Σ}.

Proof. Sufficiency follows immediately from Proposition 4.1 without the ini-
tial assumption on the net. For necessity, we can find σ0 ∈ Σ such that the
net restricted to ↑ σ0 does not achieve the value sup{aσ : σ ∈ Σ}. Since the
limit of the net so restricted must still be sup{aσ : σ ∈ Σ}, we must have
sup{aσ : σ ∈↑ σ0} = sup{aσ : σ ∈ Σ}. Apply Proposition 4.6.

Example 4.16. The sequence 1, 1
2 , 1,

2
3 , 1,

3
4 , . . . while convergent to 1 fails to

be ultimately increasing on any residual subset of N.

Corollary 4.17. Let 〈Σ,�′〉 be a directed set and let 〈Λ,�〉 be a complete

chain. Suppose 〈aσ〉σ∈Σ is a net in Λ that is τord-convergent to some λ̃. Then

λ̃ = sup{aσ : σ ∈ Σ} if and only if one of the conditions below holds:

(1) aω = sup{aσ : σ ∈ Σ} for a cofinal set of indices ω;

(2) for some σ0 ∈ Σ, the net restricted to ↑ σ0 is ultimately increasing and
sup{aσ : σ �′ σ0} = sup{aσ : σ ∈ Σ}.

There is of course a second Monotone Convergence Theorem in real analy-
sis, that of integration theory: if 〈fn〉 is an increasing sequence of nonnegative
measurable functions pointwise convergent to f almost everywhere on a mea-
surable set E, then

∫
E
f = limn→∞

∫
E
fn. By virtue of Proposition 4.1, the

standard proof via Fatou’s Lemma (see, e.g. [11, pg. 78]) goes through if we
replace the increasing assumption by the requirement that ∀x ∈ E, 〈fn(x)〉 is
an ultimately increasing sequence of extended nonnegative reals.

5 Ultimately increasing nets and the order topology.

Dualizing the notion of ultimately increasing net, we declare a net g from
〈Σ,�′〉 to 〈Λ,�〉 to be ultimately decreasing if for each σ1 ∈ Σ there exists
σ2 �′ σ1 such that σ �′ σ2 ⇒ g(σ) � g(σ1). Of course g is called ultimately
monotone if either g is ultimately increasing or ultimately decreasing. We
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close this note by describing how the ultimately monotone nets determine the
order topology τord on a complete chain.

Given a topology T on a set X, a net 〈aλ〉λ∈Λ in X determines a certain
set of points to which it converges. For example, if T = {X, ∅}, then the set
of points to which each net in X converges is X itself. At the other extreme,
if T is the power set of X, then a net 〈aλ〉λ∈Λ converges to x0 ∈ X if and only
if aλ = x0 eventually, so the set of points to which a net converges is either
empty or a singleton. Whatever the topology may be, in general

(1) if 〈aλ〉λ∈Λ is a constant net, then the net converges to the repeated value,

and

(2) if 〈aλ〉λ∈Λ converges to x0 ∈ X, then the same is true for each subnet.

Abstracting from this situation, by a convergence on a set X we mean a rule
that assigns to each net in X a possibly empty subset of X - to be viewed as
the set of points to which the net converges - in a way such that conditions
(1) and (2) above are satisfied. A priori, there is no reason that a particular
convergence be topological - that is, be induced by a topology T on X. There
are well-known necessary and sufficient conditions for this to occur, the most
subtle of which is an iterated limit condition for the convergence [9, p. 74].

If Q is a convergence on X we will represent the convergence of 〈aλ〉λ∈Λ

to x0 with respect to Q by

〈aλ〉λ∈Λ
Q→ x0.

If P is a second convergence on X we say that Q is finer than P, or P is
coarser than Q, if for each net 〈aλ〉λ∈Λ in X and for each x ∈ X,

〈aλ〉λ∈Λ
Q→ x⇒ 〈aλ〉λ∈Λ

P→ x.

Identifying a topology T with the convergence it determines, we can speak
of a topology as being either finer or coarser than a particular convergence on
X. For two topologies T1 and T2 on X, under this identification, we have T1

is finer than T2 as convergences if and only if T2 ⊆ T1 as topologies.
Whether or not a convergence Q in X is induced by a topology, as perhaps

first noticed by Choquet [2, p. 86], there is always a largest topology τQ on
X that is coarser than Q. Called either the modification or the topologization
of Q, the closed sets of τQ can easily be shown to consist of those subsets
A of X that are stable under taking Q-limits of nets in A (see [3, Lemnma
2.1], and for convergence of filters instead of nets, [1, Thm 1.3.9] or [4, p.
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123]). If a convergence is induced by a topology, then that topology must be
its modification.

This brings us back to ultimate monotonicity.
Let 〈Λ,�〉 be a complete chain. We intend to show that the convergence

Q on 〈Λ,�〉 described by 〈aσ〉σ∈Σ
Q→ λ if and only if 〈aσ〉σ∈Σ is ultimately

monotone and convergent to λ in the order topology, while not topological, has
the order topology τord as its modification. Note that if we replace ”ultimately
monotone” by ”monotone” in the prescription, what is obtained fails to be a
convergence, as a subnet of a monotone net need not be monotone.

Clearly, τord is coarser than Q because each Q-convergent net converges in
the order topology. We next show that if A is a closed set as determined by
τQ and 〈aσ〉σ∈Σ is a net in A convergent with respect to the order topology
to λ, then there is another net in A that is Q-convergent to λ. In view of the
structure of the closed sets of the modification, this will imply that τQ ⊆ τord

and hence τQ = τord.
To this end, suppose 〈aσ〉σ∈Σ is a net in A that is τord-convergent to λ.

For each σ ∈ Σ, put
bσ := sup{aω : ω ∈↑ σ}.

By convergence in the order topology, it is clear that ∀σ ∈ Σ, bσ � λ, and
that 〈bσ〉σ∈Σ is a decreasing net convergent to λ. But for each σ ∈ Σ there
is an ultimately increasing net with values in {aω : ω ∈↑ σ} ⊆ A convergent
to bσ: in the case that the supremum is achieved, we can use a constant net,
and if not, let the net be defined on the linearly ordered set 〈{µ : µ ≺ bσ},�〉,
assigning to each µ ≺ bσ some aω where ω �′ σ and aω � µ.

The above argument shows that each bσ lies in A. As the net 〈bσ〉σ∈Σ is a
decreasing net τord-convergent to λ, 〈bσ〉σ∈Σ is Q-convergent to λ, as required.

We note in closing that the convergence associated with τord is in general
properly coarser than Q, because certain τord-convergent nets need not be Q-

convergent, e.g., in [−∞,∞] the sequence 〈 (−1)n

n 〉n∈N while convergent in the
order topology is not Q-convergent.
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