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IK-CONVERGENCE

Abstract

In this paper we introduce IK-convergence which is a common gen-
eralization of the I∗-convergence of sequences, double sequences, and
nets. We show that many results that were shown before for these spe-
cial cases are true for the IK-convergence, too.

1 Historical background and introduction.

The main topic of this paper is convergence of a function along an ideal. As
the dual notion of the convergence along a filter was studied as well, let us
start by saying a few words about the history of this concept.

It was defined for the first time probably by Henri Cartan [6] (see also [5,
p.71, Definition 1]). Although the notion of a limit along a filter was defined
here in the maximal possible generality – the considered filter could be a filter
on an arbitrary set and the limit was defined for any map from this set to a
topological space – the attention of mathematicians in the following years was
mostly focused to two special cases.

In general topology the notion of the limit of a filter on a topological space
X became one of the two basic tools used to describe the convergence in
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general topological spaces together with the notion of a net (see [12, Section
1.6]).

Some authors studied also the convergence of a sequence along a filter. This
notion was rediscovered independently by several authors, we could mention
A. Robinson [34], A. R. Bernstein [4] (these authors used ultrafilters only) or
M. Katětov [21].

The definition of the limit along a filter can be reformulated using ideals
– the dual notion to the notion of filter. This type of limit of sequences was
introduced independently by P. Kostyrko, M. Mačaj and T. Šalát [22] and
F. Nuray and W. H. Ruckle [32] and studied under the name I-convergence
of a sequence by several authors (see also [10, 23, 24]). The motivation for
this direction of research was an effort to generalize some known results on
statistical convergence. Since the notions that we intend to generalize in this
paper stem from one of the results on the statistical convergence, let us describe
in more detail how they evolved.

Motivated by a result of T. Šalát [35] and J. A. Fridy [15] about statistically
convergent sequences, the authors of [22] also defined so called I∗-convergence
(a sequence (xn)∞n=1 being I∗-convergent to x provided that there exist M ∈
F(I) such that the corresponding subsequence converges to x) and asked for
which ideals the notions of I-convergence and I∗-convergence coincide. This
question was answered in [24] where the authors showed that these notions
coincide if and only if the ideal I satisfies the property AP, which we call
AP(I,Fin) here (see also [23, 32]).

Later the analogues of the notion of I∗-convergence were defined and sim-
ilar characterizations were obtained for double sequences (see [8, 25]) and nets
(see [29]).

In this paper we define IK-convergence as a common generalization of all
these types of I∗-convergence and obtain results which strengthen the results
from the above papers. In the last section we also point at neglected relation
between the I-convergence of sequences and double sequences.

Although our motivation arises mainly from the results obtained for se-
quences, we will work with functions. One of the reasons is that using func-
tions sometimes helps to simplify notation. Another reason is that we tried to
obtain the maximal possible generality allowed by the tools we are using.

2 Notation and preliminaries.

In this section we recall some notions and results concerning the I-convergence.
If S is a set, then a system I ⊆ P(S) is called an ideal on S if it is additive,

hereditary, and non-empty, that is,
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(i) ∅ ∈ I,
(ii) A,B ∈ I ⇒ A ∪B ∈ I,
(iii) A ∈ I ∧ B ⊆ A ⇒ B ∈ I.

An ideal on S is called admissible if it contains all singletons, that is, {s} ∈ I
for each s ∈ S. An ideal I on S is called proper if S /∈ I, a proper ideal is
called maximal if it is a maximal element of the set of all proper ideals on S
ordered by inclusion. It can be shown that a proper ideal I is maximal if and
only if (∀A ⊆ S) A ∈ I ∨ S \A ∈ I.

We will denote by Fin the ideal of all finite subsets of a given set S.
The dual notion to the notion of an ideal is the notion of a filter. A system

F ⊆ P(S) of subsets of S is called a filter on S if

(i) S ∈ F ,
(ii) A,B ∈ F ⇒ A ∩B ∈ F ,
(iii) A ∈ F ∧ B ⊇ A ⇒ B ∈ F .

A filter F is called proper if ∅ /∈ F .
The dual notion to the notion of a maximal ideal is the notion of ultrafilter.
A system B ⊆ P(S) is called filterbase if

(i) B 6= ∅,
(ii) A,B ∈ B ⇒ (∃C ∈ B) C ⊆ A ∩B.

If B is a filterbase, then the system

F = {A ⊇ B;B ∈ B}

is a filter. It is called filter generated by the base B.
For any ideal I on a set S the system

F(I) = {X \A;A ∈ I}

is a filter on S. It is called the filter associated with the ideal I. In a similar way
we can obtain ideal from any filter. This yields a one-to-one correspondence
between ideals and filters on a given set.

Definition 2.1. Let I be an ideal on a set S and X be a topological space.
A function f : S → X is said to be I-convergent to x ∈ X if

f−1(U) = {s ∈ S; f(s) ∈ U} ∈ F(I)

holds for every neighborhood U of the point x.
We use the notation

I- lim f = x.
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If S = N we obtain the usual definition of I-convergence of sequences. In
this case the notation I- limxn = x is used.

We include a few basic facts concerning I-convergence for future reference.

Lemma 2.2. Let S be a set, let I, I1 and I2 be ideals on S and let X and Y
be topological spaces.

(i) If I is not proper, that is, if I = P(S), then every function f : S → X
converges to each point of X.

(ii) If I1 ⊆ I2, then for every function f : S → X, we have

I1- lim f = x implies I2- lim f = x.

(iii) If X is Hausdorff and I is proper, then every function f : S → X has at
most one I-limit.

(iv) If g : X → Y is a continuous mapping and f : S → X is I-convergent to
x, then g ◦ f is I-convergent to g(x).

(v) If I is a maximal ideal and X is compact, then every function f : S → X
has an I-limit.

Let us note that the above properties are more frequently stated for filters
rather than ideals. Moreover, the property (iii) is in fact a characterization of
Hausdorff spaces and the property (v) is a characterization of compact spaces.

3 IK-convergence.

3.1 Definition and basic results

As we have already mentioned, we aim to generalize the notion of I∗-convergence
of sequences, introduced in [22] for sequences of real numbers and generalized
to metric spaces in [24]. Since we are working with functions, we modify this
definition in the following way:

Definition 3.1. Let I be an ideal on a set S. Let f : S → X be a function to
a topological space X. The function f is called I∗-convergent to the point x
of X if there exists a set M ∈ F(I) such that the function g : S → X defined
by

g(s) =

{
f(s), if s ∈M
x, if s /∈M

is Fin-convergent to x. If f is I∗-convergent to x, then we write I∗- lim f = x.
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The usual notion of I∗-convergence of sequences is a special case for S = N.
Similarly as for the I-convergence of sequences, we write I∗- limxn = x.

In fact, the I∗-convergence was defined in [22] in a slightly different way
– the Fin-convergence of the restriction g|M was used. It is easy to see that
these two definitions are equivalent. Our approach will prove advantageous
when using more complicated ideals instead of Fin.

In the definition of IK-convergence, we simply replace the ideal Fin by an
arbitrary ideal on the set S.

Definition 3.2. Let K and I be ideals on a set S, let X be a topological
space, and let x be an element of X. The function f : S → X is said to be
IK-convergent to x if there exists a set M ∈ F(I) such that the function
g : S → X given by

g(s) =

{
f(s), if s ∈M
x, if s /∈M

is K-convergent to x. If f is IK-convergent to x, then we write IK- lim f = x.

As usual, in the case S = N we speak about IK-convergence of sequences
and use the notation IK- limxn = x.

Remark 3.3. The definition of IK-convergence can be reformulated in the
form of decomposition theorem. A function f is IK-convergent if and only if
it can be written as f = g+h, where g is K-convergent and h is non-zero only
on a set from I. An analogous observation was made in [7] for the statistical
convergence of sequences and in [31] for the statistical convergence of double
sequences.

Remark 3.4. A definition of IK-convergence following more closely the ap-
proach from [22] would be: there exists M ∈ F(I) such that the function f |M
is K|M -convergent to x where K|M = {A ∩M ;A ∈ K} is the trace of K on
M . These two definitions are equivalent but the one given in Definition 3.2 is
somewhat simpler.

One can show easily directly from the definitions that K-convergence im-
plies IK-convergence.

Lemma 3.5. If I and K are ideals on a set S and f : S → X is a function
such that K- lim f = x, then IK- lim f = x.

The result follows immediately from Lemma 2.2 (ii) and the definition of
IK-convergence.
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Proposition 3.6. Let I, I1, I2, K, K1, and K2 be ideals on a set S such that
I1 ⊆ I2 and K1 ⊆ K2. Let X be a topological space. Then for any function
f : S → X we have

IK1 - lim f = x ⇒ IK2 - lim f = x,

IK1- lim f = x ⇒ IK2- lim f = x.

In what follows we are going to study the relationship between the I-
convergence and IK-convergence. In particular, we will specify the conditions
under which the implications

IK- lim f = x ⇒ I- lim f = x, (3.1)

I- lim f = x ⇒ IK- lim f = x, (3.2)

hold.
We start with the easier implication (3.1). In the case K = Fin this impli-

cation is known to be true for the admissible ideals, that is, for ideals fulfilling
K ⊆ I. We next show that the same is true in general.

Proposition 3.7. Let I,K be ideals on a set S, let X be a topological space,
and let f be a function from S to X.

(i) If the implication (3.1) holds for some point x ∈ X which has at least
one neighborhood different from X, then K ⊆ I. Consequently, if the
implication (3.1) holds in a topological space that is not indiscrete, then
K ⊆ I.

(ii) If K ⊆ I, then the implication (3.1) holds.

Proof. (i) Suppose that K * I, that is, there exists a set A ∈ K\I. Let x be
a point with a neighborhood U $ X and y ∈ X \ U . Let us define a function
f : S → X by

f(t) =

{
x if t /∈ A,
y otherwise.

Clearly, K- lim f = x and thus by Lemma 3.5 we get IK- lim f = x. As
f−1(X \ U) = A /∈ I, the function f is not I-convergent to x

(ii) Let X be any topological space, x ∈ X and f : S → X. Let K ⊆ I and
IK- lim f = x. By the definition of IK-convergence there exists M ∈ F(I)
such that

C := f−1(X \ U) ∩M ∈ K ⊆ I
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for each neighborhood U of the point x. Consequently,

f−1(X \ U) ⊆ (X \M) ∪ C ∈ I

and thus I- lim f = x.

3.2 Additive property and IK-convergence.

Inspired by [24] and [28] where the case K = Fin and S = N is investigated, we
now concentrate on an algebraic characterization of the ideals I and K such
that the implication (3.2) holds for each function f : S → X. Before doing
this we need to prove some auxiliary results.

Definition 3.8. Let K be an ideal on a set S. We write A ⊂K B whenever
A \B ∈ K. If A ⊂K B and B ⊂K A, then we write A ∼K B. Clearly,

A ∼K B ⇔ A4B ∈ K.

We say that a set A is K-pseudointersection of a system {An;n ∈ N} if
A ⊂K An holds for each n ∈ N.

In the case K = Fin we obtain the notion of pseudointersection and the
relations ⊆∗ and =∗ which are often used in set theory (see [20, p.102]).

It is easy to see that using the symbols ⊂K and ∼K can be understood as
another way of speaking about the equivalence classes of the subsets of S in
the quotient Boolean algebra P(S)/K.

In the following lemma we describe several equivalent formulations of a
condition for ideals I and K which will play crucial role in further study.

Lemma 3.9. Let I and K be ideals on the same set S. The following condi-
tions are equivalent:

(i) For every sequence (An)n∈N of sets from I there is A ∈ I such that
An ⊂K A for all n’s.

(ii) Any sequence (Fn)n∈N of sets from F(I) has a K-pseudointersection in
F(I).

(iii) For every sequence (An)n∈N of sets belonging to I there exists a se-
quence (Bn)n∈N of sets from I such that Aj ∼K Bj for j ∈ N and
B =

⋃
j∈NBj ∈ I.

(iv) For every sequence of mutually disjoint sets (An)n∈N belonging to I there
exists a sequence (Bn)n∈N of sets belonging to I such that Aj ∼K Bj for
j ∈ N and B =

⋃
j∈NBj ∈ I.
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(v) For every non-decreasing sequence A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ . . . of sets
from I there exists a sequence (Bn)n∈N of sets belonging to I such that
Aj ∼K Bj for j ∈ N and B =

⋃
j∈NBj ∈ I.

(vi) In the Boolean algebra P(S)/K the ideal I corresponds to a σ-directed
subset, that is, every countable subset has an upper bound.

Note that (ii) is just a dual formulation of (i). Similarly, (vi) is the for-
mulation of (i) in the language of Boolean algebras. The equivalence of (iii),
(iv), and (v) can be easily shown by the standard methods from the measure
theory. Proof of the equivalence of the remaining conditions is similar to the
proof of Proposition 1 of [3], where the case K = Fin is considered. We include
the proof for the sake of completeness and also to stress that the validity of
this lemma does not depend on the countability of S or the assumption that
K ⊆ I.

Proof. (i)⇒ (v) Let A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ . . . be a non-decreasing sequence
of sets from I. Since each An ∈ I, the condition (i) yields the existence of a
set A ∈ I satisfying An ⊂K A for n ∈ N. Let Bn := A ∩ An. Since Bn ⊆ A,
we have Bn ∈ I. Moreover, Bn4An = An \ A ∈ K, thus Bn ∼K An. Finally,
B =

⋃
j∈NBj ⊆ A ∈ I, as required.

(iii)⇒ (i) Let (An)n∈N be a sequence of sets belonging to I. By (iii) there
exists a sequence (Bn)n∈N of sets from I such that for all n we have Bn ∼K An
and A :=

⋃
n∈NBn ∈ I. From An4Bn ∈ K and Bn ⊆ A we get An ⊂K A,

which proves (i).

It is also easy to see that in condition (ii) it suffices to consider only se-
quences of sets from a filterbase. This reformulation of (ii) can be sometimes
easier to prove.

Definition 3.10. Let I, K be ideals on a set S. We say that I has the additive
property with respect to K, or more briefly that AP(I,K) holds, if any of the
equivalent conditions of Lemma 3.9 holds.

The condition AP from [24], which characterizes ideals such that I∗-
convergence implies I-convergence, is equivalent to the condition AP(I,Fin).
Let us note that ideals fulfilling this condition are often called P-ideals (see
for example [3] or [14]).

In the following two theorems we show that the condition AP(I,K) is the
correct generalization of conditions AP from [24], [28] and [8]. In particular,
as special cases of our results we obtain Theorem 3.1 of [24], Theorem 8 of
[29] and Theorem 2 of [8].
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Although we do not consider arbitrary topological spaces, we feel that the
restriction to the first countable spaces is sufficient for most applications. For
example, in [24] the authors work only with metric spaces and in [28] the case
that X is a first countable T1-space is considered.

Theorem 3.11. Let I and K be ideals on a set S and let X be a first countable
topological space. If the ideal I has the additive property with respect to K, then
for any function f : S → X the implication (3.2) holds. In other words, if the
condition AP(I,K) holds, then the I-convergence implies the IK-convergence.

Proof. Let f : S → X be an I-convergent function and let x = I- lim f .
Let B = {Un;n ∈ N} be a countable base for X at the point x. By the
I-convergence of f we have

f−1(Un) ∈ F(I)

for each n, thus by Lemma 3.9 there exists A ∈ F(I) with A ⊂K f−1(Un),
that is, A \ f−1(Un) ∈ K for all n’s.

Now it suffices to show that the function g : S → X given by g|A = f |A
and g[S \A] = {x} is K-convergent to x. As for Un ∈ B we have

g−1(Un) = (S \A) ∪ f−1(Un) = S \ (A \ f−1(Un)),

and the set A \ f−1(Un) belongs to K, its complement g−1(Un) lies in F(K),
as required.

Let us recall that a topological space X is called finitely generated space
or Alexandroff space if any intersection of open subsets of X is again an open
set (see [1]). Equivalently, X is finitely generated if and only if each point of
x has a smallest neighborhood. Finitely generated T1-spaces are precisely the
discrete spaces.

Theorem 3.12. Let I, K be ideals on a set S and let X be a first countable
topological space which is not finitely generated. If the implication (3.2) holds
for any function f : S → X, then the ideal I has the additive property with
respect to K.

Proof. Let x ∈ X be an accumulation point of X which does not have a
smallest neighborhood. Let B = {Ui; i ∈ N ∪ {0}} be a countable base at x
such that Un % Un+1 and U0 = X. Suppose we are given some countable
family An of mutually disjoint sets from I.

For each n ∈ N choose an xn ∈ Un−1 \ Un. Let us define f : S → X as

f(s) =

{
xn if s ∈ An,
x if s /∈

⋃
n∈NAn.
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We have f−1(X \ Un) =
⋃n
i=1Ai ∈ I, hence I- lim f = x. By the as-

sumption, IK- lim f = x, which means that there is A ∈ F(I) such that the
function g : S → X given by g|A = f |A and g[S \A] = {x} is K-convergent to
x. This yields

g−1(X \ Un) =

(
n⋃
i=1

Ai

)
∩A =

n⋃
i=1

(Ai ∩A) ∈ K.

From this we have Ai ∩A ∈ K, thus Bi := Ai \A ∼K Ai.
Note that, at the same time

⋃
i∈N

Bi =

(⋃
i∈N

Ai

)
\A ⊆ S \A ∈ I.

We have shown (iv) from Lemma 3.9.

Remark 3.13. Let us note that we have in fact proved a slightly stronger
result: Whenever x is an accumulation point of X such that there exists a
countable basis at x, the point x does not have a smallest neighborhood and
the implication (3.2) holds for each function f : S → X which is IK-convergent
to x, then the ideal I has the additive property with respect to K.

We next provide an example showing that Theorem 3.11 does not hold in
general for spaces which are not first countable.

Example 3.14. Pointwise I-convergence of sequences of continuous real func-
tions was studied in [18] and [19]. It can be understood as convergence of
sequences of elements of the space Cp(X) of all real continuous function en-
dowed with the topology of pointwise convergence. The authors of [18, 19]
defined and studied the I-convergence property which, using our terminology,
can be formulated as follows: A topological space X has the I-convergence
property if (3.2) holds in the space Cp(X) for S = N and K = Fin.

It is known that Cp(X) is first countable if and only if X is countable, see
[30, Theorem 4.4.2]. Hence our Theorem 3.11 yields that all countable spaces
have the I-convergence property for every P-ideal I. The same result was
obtained in [18, Corollary 1].

It was shown in [19] that R does not have I-convergence property for any
nontrivial analytic P-ideal on N. (By trivial ideals we mean the ideals of the
form IC = {A ⊆ N;A ⊆∗ C} for some C ⊆ N.) Hence, Cp(R) provides the
desired counterexample, which works for a large class of ideals on N. The def-
inition of analytic ideals, more related results and many examples of analytic
P-ideals can be found, for example, in [13, 14].
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To find a counterexample showing that Theorem 3.12 is in general not true
without the assumption that the space X is first countable we can use any
space in which all I-convergent sequences are, in some sense, trivial.

Example 3.15. Let us recall that ω1 denotes the first uncountable ordinal
with the usual ordering. Let X be the topological space on the set ω1 ∪ {ω1}
with the topology such that all points different from ω1 are isolated and the
base at the point ω1 consists of all sets Uα = {β ∈ X;β > α} for α < ω1.
Notice that if C ⊆ ω1 is a set such that ω1 ∈ C, then |C| = ℵ1.

Now let I be an admissible ideal on N and let a function f : N → X be
I-convergent to ω1. We will show that then there exists M ∈ F(I) such that
f(x) = ω1 for each x ∈M , that is, f |M is constant. Clearly, this implies that
f is I∗-convergent.

For the sake of contradiction, suppose that each set M ∈ F(I) contains
some point m such that f(m) 6= ω1. Since f−1(U) ∈ F(I), for any neighbor-
hood U of ω1 in X there exists m ∈ N with f(m) ∈ U \ {ω1}. Therefore for
the set C = {m ∈ N; f(m) 6= ω1} we have ω1 ∈ f [C]. Since f [C] ⊆ ω1 and it
is a countable set contained in ω1, this is a contradiction.

Now, by choosing an ideal I which does not have the additive property
AP(I,Fin) we obtain the desired counterexample.

4 Examples and applications.

We have already mentioned that our motivation for definition and study of
IK-convergence was an effort to provide a common generalization to the notion
of I∗-convergence which was defined first for the usual sequences in [22] and
later generalized for sequences of functions, double sequences and nets in [16],
[25] and [29], respectively.

In this section we show that the notion of the IK-convergence is a correct
generalization of these notions, that is, all these notions are special cases of
the IK-convergence. We begin with the notion of I∗-convergence of double
sequences.

4.1 Double sequences.

In the study of double sequences several types of convergence are used. For
our purposes, the following one is the most important.

Definition 4.1 ([2, 33]). A double sequence (xm,n)∞m,n=1 of points of a topo-
logical space X is said to converge to x in Pringsheim’s sense if for each
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Figure 1: Ideals from [2] illustrated by depicting typical sets from the filterbase.
Vertical lines represent the partition of N×N into countably many infinite sets
{i} × N.

neighborhood U of the point x

(∃k ∈ N)(∀m ≥ k)(∀n ≥ k)xm,n ∈ U.

It is easy to see that the convergence in Pringsheim’s sense is equal to
the I-convergence along the Pringsheim’s ideal I2 on N×N whose dual filter
F(I2) is given by the filterbase

B2 = {[m,∞)× [m,∞);m ∈ N}.

We will give a different description of this ideal in Example 4.2.
Altogether four types of convergence of double sequences were studied in

[2]. All of them can be described as I-convergences using appropriate ideals
on N × N (see Figure 1). In fact, we denote the Pringsheim’s ideal by I2 in
order to be consistent with the notation of [2].

The I∗-convergence of double sequences studied in [25] and [8] is the same
as II2-convergence in N × N. Therefore, as a special case of our Theorems
3.11 and 3.12 for S = N×N and K = I2 we obtain Proposition 4.2 of [25], and
Theorems 3 and 4 of [8]. Note that in [25] and [8] only the ideals containing
I2 are considered, see Proposition 3.7.

4.2 Further examples.

In order to avoid technical details we will define neither the notions of pointwise
and uniform I∗-convergence of a sequence of functions defined in [16], nor the
notions of the I- and I∗-convergence of nets defined in [29].

We just mention that, given an ideal L on N, the uniform L∗-convergence
of a sequence of functions defined on X is precisely the IK-convergence for the
ideal I on X ×N given by the filterbase {X × (N \A);A ∈ L} and the ideal K
given by the filterbase {X × (N \A);A ∈ Fin}. The pointwise L∗-convergence
can be obtained if I is the ideal of all sets A ⊆ X×N such that for each x ∈ X
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the x-cut Ax := {n ∈ N; (x, n) ∈ A} belongs to L, and K consists of all sets
such that each Ax is finite.

In both cases it can be shown that the condition AP(I,K) is equivalent to
the condition AP(L,Fin). Hence our Theorems 3.11 and 3.12 imply that these
two types of I-convergence are equivalent to corresponding I∗-convergence if
and only if AP(L,Fin) holds. This observation has been made already in [16].

Similarly, the concept of I∗-convergence of nets is a special case of IK-
convergence and Theorem 12 of [29] can be obtained from our Theorems 3.11
and 3.12 by choosing the section filter of the considered directed set for K (the
definition of the section filter can be found, for example, in [5, p.60]).

4.3 I-convergence of double sequences.

We close this paper with an observation concerning the I-convergence of dou-
ble sequences.

Notice that any bijection between sets S and T naturally gives rise to
a bijection between XS and XT , an isomorphism between Boolean algebras
P(S) and P(T ) and also to an isometric isomorphism between linear normed
spaces `∞(S) and `∞(T ). It is easy to see that this correspondence preserves
also the properties related to the notion of I-convergence. Hence results about
I-convergence for a given set S do not depend on the natural (partial) ordering
on the set S in any way. Thus these results can be transferred to any set of
the same cardinality.

We can use any bijection between N and N × N to relate results about
sequences and double sequences. It is interesting to note that several authors
working in this area did not realize this possibility.

The basic results on I-convergence (such as additivity, multiplicativity,
uniqueness of limit in Hausdorff spaces) need not be shown again for double
sequences, since they follow from the analogous result for sequences; although
the proofs are rather trivial in both cases. But there are also some more
interesting concepts that were defined for double sequences in a such way that
they are preserved by this correspondence. Namely, this is true for the notions
of I-Cauchy double sequences, extremal I-limit points (I-limit superior and
I-limit inferior) and I-cluster points.

In this way, some results from the papers [9, 17, 26, 36] on the above men-
tioned concepts can be obtained from the results of [10, 11, 23, 27]. Actually,
the fact that a double sequence is I-convergent if and only if it is I-Cauchy is
shown in Proposition 5 of [11] using a bijection between N and N× N.

The above observation can also be used to get an alternative description
the ideal I2.
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Figure 2: Partitions of N× N defining the ideals I1 and I2.

Example 4.2. A basic example of an ideal which does not have the property
AP(I,Fin) is the ideal Im given in Example 1.1.(g) of [24] and Example (XI) of
[22]. It is defined as follows: Suppose we are given any partition N =

⋃n
i=1Di

of N into countably many infinite sets. A set A ⊆ N belongs to Im if and only
if it intersects only finitely many Di’s. Of course, choosing different partitions
of N can lead to ideals which are different, but equivalent from the point of
view of I-convergence.

We can also use any countable set instead of N. In particular, as observed
in the proof of Corollary 4 in [2], by choosing the partition of N × N into
sets Di = {(n, i);n ≥ i} ∪ {(i, k); k ≥ i} we obtain the ideal I2 in this way.
Similarly, by using Di = {i}×N we get the ideal I1 of [2] (see Figure 2). Thus
the ideals I1, I2 and Im are essentially the same. In particular, this gives an
alternative proof that AP(I2,Fin) and AP(I1,Fin) fail, see [8].

Acknowledgment. We would like to thank the referees for suggesting sev-
eral improvements and corrections. In particular, one of the referees pointed
our attention to results of [19], which were used to make Example 3.14 more
general.
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[31] F. Móricz, Statistical convergence of multiple sequences, Arch. Math., 81
(2003), 82–89.

[32] F. Nuray and W. H. Ruckle, Generalized statistical convergence and con-
vergence free spaces, J. Math. Anal. Appl., 245(2) (2000), 513–527.

[33] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen,
Math. Ann., 53(3) (1900), 289–321.



IK-convergence 193

[34] A. Robinson, On generalized limits and linear functionals, Pacif. J. Math.,
14(1) (1964), 269–283.
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