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UPPER POROSITY WITH RESPECT TO
MEASURES

Abstract

For subsets of a separable metric space X we introduce the notion
of upper porosity with respect to a Borel regular probabilistic measure
µ on X (called µ-upper porosity) that generalizes the concept of upper
porosity of the measure µ. We explore several natural definitions and
further provide a definition of even more general type of µ-upper poros-
ity given by suitable porosity functions. As the main consequence of
achieved results concerning general µ-upper porosities we get that every
σ-µ-upper porous set can be decomposed to a σ-strongly upper porous
set and a µ-null set.

1 Introduction.

Whereas the basic ideas concerning the notion of set porosity date back to
around 1920 to works of A. Denjoy, the porosity of measures is a relatively
new notion. The lower porosity of measures was introduced by J.-P. Eckmann,
E. Järvenpää and M. Järvenpää in [1], the upper porosity of measures by
M. E. Mera and M. Morán in [4].

Using the same idea as in [4], for suitable measures µ on a separable met-
ric space X we define the notion of µ-upper porosity for subsets of X. In
our concept, the upper porosity of the measure µ coincides with the µ-upper
porosity of the space X. Further, we explore other natural definitions similar
to µ-upper porosity and generalize this notion to µ-(g)-upper porosity where
g is a suitable porosity function.
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Using the ideas of [5], we prove that every σ-µ-(g)-upper porous set is
a union of σ-(g)-upper porous and µ-null set. Then, using a result of [5] about
approximation of σ-upper porous sets, we prove that a set is σ-µ-upper porous
if and only if it is a union of a σ-strongly upper porous set and a µ-null set.

2 Basic Definitions.

Let X be a metric space. We will say that µ is a Borel regular measure on X
if it is a complete measure for which all Borel sets are measurable and

µ(M) = sup{µ(F ) : F ⊂M,F is closed}

for every µ-measurable set M .
In the rest of this article, let (X, %) be a fixed nonempty separable metric

space and let µ be a Borel regular probabilistic measure on the space X.
We denote by B(x, r) the open ball with center x ∈ X and radius r > 0.
By µ∗ we denote the outer measure corresponding to the measure µ. Thus

µ∗(A) = inf{µ(M) : A ⊂M,M µ-measurable} for arbitrary A ⊂ X.
We denote by G the system of all real functions g with the following prop-

erties:

• g(0) = 0,

• g is increasing and continuous on [0, h1) for some h1 > 0,

• there exist A > 0 and h2 > 0 such that g(x) ≥ Ax for x ∈ [0, h2).

Especially,

g ∈ G ⇒ ∃K > 0 ∃h > 0 such that g−1(x) ≤ Kx for x ∈ [0, h). (1)

The most important examples of such functions are g(x) = xα, x ∈ [0,∞),
with 0 < α ≤ 1.

In the following definitions, we remind classical notions of different types
of upper porosities and σ-upper porosities of sets as well as introduce new
notions of µ-upper porosities and σ-µ-upper porosities for subsets of X. Since
they always follow the same definition scheme (porosity of the set at some
point, porosity of the set and σ-porosity of the set), some of them are only
briefly sketched.

Definition 2.1. (cf. [5, Definition 1.1]) Let A ⊂ X, x ∈ X and r > 0. Let
γ(A, x, r) denote the supremum of numbers s > 0 for which there exists a point
z ∈ X such that %(x, z) + s ≤ r and B(z, s) ∩A = ∅ (we put sup ∅ = 0).



Upper Porosity With Respect to Measures 93

(i) The set A is called upper porous at x if lim sup
r→0+

γ(A,x,r)
r > 0.

(ii) The set A is called upper porous if it is upper porous at each point in A.

(iii) The set A is called strongly upper porous if lim sup
r→0+

γ(A,x,r)
r = 1

2 for every

x ∈ A.

(iv) The set A is called σ-upper porous (resp. σ-strongly upper porous) if it
is a countable union of upper porous (resp. strongly upper porous) sets.

Definition 2.2. (cf. [6, Definition 2.33]) For g ∈ G, replacing γ(A,x,r)
r by

g(γ(A,x,r))
r and upper porous by (g)-upper porous in Definition 2.1, we get

notions of (g)-upper porous set at x, (g)-upper porous set and σ-(g)-upper
porous set.

Remark 2.3. [7, Proposition 4.2] Let 0 < q < p < 1, M ⊂ X and denote
g1(x) = xq, g2(x) = xp for x ∈ [0,∞). Then M is σ-(g1)-upper porous if and
only if M is σ-(g2)-upper porous.

Definition 2.4. Let A ⊂ X, x ∈ X, r > 0 and ε > 0. Let γ(µ,A, x, r, ε)
denote the supremum of numbers s > 0 for which there exists a point z ∈ X
such that %(x, z)+s ≤ r and µ∗(A∩B(z, s)) ≤ εµ(B(x, r)) (we put sup ∅ = 0).

(i) The set A is called µ-upper porous at x if lim
ε→0+

lim sup
r→0+

γ(µ,A,x,r,ε)
r > 0.

(ii) The set A is called µ-upper porous if it is µ-upper porous at each point
in A.

(iii) The set A is called σ-µ-upper porous if it is a countable union of µ-upper
porous sets.

Definition 2.5. For g ∈ G, replacing γ(µ,A,x,r,ε)
r by g(γ(µ,A,x,r,ε))

r and µ-upper
porous by µ-(g)-upper porous in Definition 2.4, we get notions of µ-(g)-upper
porous set at x, µ-(g)-upper porous set and σ-µ-(g)-upper porous set.

Remark 2.6. (i) The limits over ε → 0+ in Definitions 2.4 (resp. 2.5) exist
since the functions

ε 7→ lim sup
r→0+

γ(µ,A,x,r,ε)
r (resp. ε 7→ lim sup

r→0+

g(γ(µ,A,x,r,ε))
r for every g ∈ G)
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are nonnegative and nondecreasing on (0,∞). Both these limits are non-
negative, the first one of them is bounded from above by 1, the second one
can take on the value +∞ for some g ∈ G.

(ii) Denote

pµ(A, x) = lim
ε→0+

lim sup
r→0+

γ(µ,A, x, r, ε)

r

and

pµ,(g)(A, x) = lim
ε→0+

lim sup
r→0+

g(γ(µ,A, x, r, ε))

r

for A ⊂ X, x ∈ X and g ∈ G. Then

pµ(A, x) = lim
k→∞

lim
l→∞

sup

{
γ(µ,A, x, r, εk)

r
: 0 < r < rl

}
and

pµ,(g)(A, x) = lim
k→∞

lim
l→∞

sup

{
g(γ(µ,A, x, r, εk))

r
: 0 < r < rl

}
for arbitrary decreasing sequences of positive numbers {εk}∞k=1, {rl}∞l=1 such
that lim

k→∞
εk = lim

l→∞
rl = 0, since the functions

ε 7→ lim sup
r→0+

γ(µ,A,x,r,ε)
r and ε 7→ lim sup

r→0+

g(γ(µ,A,x,r,ε))
r for every g ∈ G

are nondecreasing on (0,∞).

(iii) Every µ-null set is µ-upper porous (resp. µ-(g)-upper porous for every
g ∈ G).

(iv) Every upper porous (resp. (g)-upper porous) set is µ-upper porous
(resp. µ-(g)-upper porous for every g ∈ G). Hence every σ-upper porous (resp.
σ-(g)-upper porous) set is σ-µ-upper porous (resp. σ-µ-(g)-upper porous for
every g ∈ G).

(v) The systems of all σ-µ-upper porous sets (resp. σ-µ-(g)-upper porous
sets for every g ∈ G) are σ-ideals of sets.

We will introduce two natural definitions closely related to µ-upper poros-
ity. Both of them give stronger notions than µ-upper porosity (see Proposi-
tion 2.9). The first one is called (s)-µ-upper porosity (where ’(s)’ stands for
’strong’), the other one µ-approximate upper porosity.
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Recall that a point x ∈ X is called a dispersion point of D ⊂ X if

lim
r→0+

µ∗(D ∩B(x, r))

µ(B(x, r))
= 0.

Definition 2.7. Let A ⊂ X, x ∈ X, r > 0 and ε > 0. Let γ̂(µ,A, x, r, ε)
denote the supremum of numbers s > 0 for which there exists a point z ∈ X
such that %(x, z)+s ≤ r and µ∗(A∩B(z, s)) ≤ εµ(B(z, s)) (we put sup ∅ = 0).

(i) The set A is called (s)-µ-upper porous at x if lim
ε→0+

lim sup
r→0+

γ̂(µ,A,x,r,ε)
r > 0.

(ii) The set A is called µ-approximately upper porous at x if there exists
D ⊂ X such that A \D is upper porous at x and x is a dispersion point
of D.

(iii) The set A is called (s)-µ-upper porous (resp. µ-approximately upper
porous) if it is (s)-µ-upper porous (resp. µ-approximately upper porous)
at each point in A.

(iv) The set A is called σ-(s)-µ-upper porous (resp. σ-µ-approximately up-
per porous) if it is a countable union of (s)-µ-upper porous (resp. µ-
approximately upper porous) sets.

Remark 2.8. Both (s)-µ-upper porous and µ-approximately upper porous
sets have similar properties as µ-upper porous sets (cf. Remark 2.6). In
particular, every µ-null or upper porous set is (s)-µ-upper porous and µ-
approximately upper porous and the systems of σ-(s)-µ-upper porous and
σ-µ-approximately upper porous sets are σ-ideals of sets.

Proposition 2.9. Let A ⊂ X and x ∈ X.

(i) If A is (s)-µ-upper porous at x, then A is µ-upper porous at x.

(ii) If A is µ-approximately upper porous at x, then A is µ-upper porous at x.

Proof. (i) Obvious, since γ(µ,A, x, r, ε) ≥ γ̂(µ,A, x, r, ε) for every r > 0 and
ε > 0.

(ii) Since A is µ-approximately upper porous at x, there exists D ⊂ X such
that A \D is upper porous at x and x is a dispersion point of D. There exist
C > 0 and a sequence of positive numbers {rn}∞n=1 such that lim

n→∞
rn = 0 and

γ(A \D,x, rn) > Crn for every n ∈ N. Choose ε > 0. Since A ∩D ⊂ D and
x is a dispersion point of D, there exists n0 ∈ N such that

µ∗((A ∩D) ∩B(x, rn)) ≤ εµ(B(x, rn))
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for every n ∈ N, n ≥ n0. It easily follows that γ(µ,A, x, rn, ε) > Crn for every
n ∈ N, n ≥ n0. Since ε > 0 was arbitrary, A is µ-upper porous at x.

The following example shows that a set that is µ-upper porous at some
point must be neither (s)-µ-upper porous nor µ-approximately upper porous
at this point.

Example 2.10. Put X = A = {0} ∪
{

1
n

}∞
n=1

and define a probabilistic
measure µ on X by

µ ({0}) = 0 and µ

({
1

n

})
=

1

2n
for n ∈ N.

Then

(a) A is µ-upper porous at 0,

(b) A is not (s)-µ-upper porous at 0,

(c) A is not µ-approximately upper porous at 0.

Proof. (a) Choose a decreasing sequence of positive numbers {εk}∞k=1 such
that lim

k→∞
εk = 0. By Remark 2.6 (ii),

pµ(A, 0) = lim
k→∞

lim
l→∞

sup

{
γ(µ,A, 0, r, εk)

r
: 0 < r ≤ 1

l

}
.

Fix k ∈ N and choose lk ∈ N such that 1
2lk

< εk. Put

rl =
1

l
, zl =

1

4l
and sl =

1

4l

for every l ≥ lk. Then %(0, zl) + sl < rl and

µ(A ∩B(zl, sl)) =
1

22l
< εk

1

2l
= εkµ(B(0, rl)).

Thus γ(µ,A, 0, rl, εk) ≥ sl and therefore

lim
l→∞

sup

{
γ(µ,A, 0, r, εk)

r
: 0 < r ≤ 1

l

}
≥ 1

4
.

Since k ∈ N was arbitrary, we get pµ(A, 0) ≥ 1
4 > 0.

(b) Since A = X, every point in X \ {0} has positive µ-measure and 0 is
not an isolated point of X, it follows that 0 < µ(B(z, s)) = µ∗(A∩B(z, s)) for
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every z ∈ X and s > 0. Therefore µ∗(A ∩B(z, s)) � εµ(B(z, s)) for arbitrary
0 < ε < 1, z ∈ X and s > 0. Hence γ̂(µ,A, 0, r, ε) = 0 for arbitrary r > 0 and
0 < ε < 1 and thus A is not (s)-µ-upper porous at 0.

(c) On the contrary, suppose that A is µ-approximately upper porous at 0.
Then there exists D ⊂ X such that A \ D is upper porous at 0 and 0 is
a dispersion point of D. Since A = X and A \D is upper porous at 0, there
exists an increasing sequence {nk}∞k=1 of natural numbers such that n1 > 1
and 1

nk
∈ D for every k ∈ N. Put rk = 1

nk−1 for every k ∈ N. Then lim
k→∞

rk = 0

and
µ∗(D ∩B(0, rk))

µ(B(0, rk))
≥

µ({ 1
nk
})

µ(B(0, rk))
=

1

4
> 0.

Hence 0 is not a dispersion point of D, which is a contradiction.

3 Decomposition Theorems.

Recall the notation

pµ,(g)(A, x) = lim
ε→0+

lim sup
r→0+

g(γ(µ,A, x, r, ε))

r
(2)

for A ⊂ X, x ∈ X and g ∈ G introduced in Remark 2.6.

Lemma 3.1. For every A ⊂ X and g ∈ G the function x 7→ pµ,(g)(A, x) is
Borel measurable on X.

Proof. Let A ⊂ X and g ∈ G. By Remark 2.6 (ii),

pµ,(g)(A, x) = lim
k→∞

lim
l→∞

sup

{
g(γ(µ,A, x, r, 1k ))

r
: 0 < r <

1

l

}
.

It suffices to prove that functions

uk,l : x 7→ sup

{
g(γ(µ,A, x, r, 1k ))

r
: 0 < r <

1

l

}
are Borel measurable on X for arbitrary sufficiently big numbers k, l ∈ N,
since then the function x 7→ pµ,(g)(A, x) is expressed as a countable limit of
Borel measurable functions and therefore is Borel measurable.

Since g ∈ G, there exists a number h1 > 0 such that the function g is
increasing and continuous on [0, h1). Choose arbitrary k ∈ N and l ∈ N
so that 1

l < h1. We show that the function uk,l is lower semicontinuous
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(and thus Borel measurable) on X. Consider an arbitrary c ∈ R and put
Gc = {x ∈ X : uk,l(x) > c}. We prove that Gc is open.

Choose an arbitrary point x ∈ Gc. By the definition of uk,l we find a num-

ber rx > 0 such that c <
g(γ(µ,A,x,rx,

1
k ))

rx
and 0 < rx <

1
l . By the definition

of γ(µ,A, x, rx,
1
k ) a by continuity of g on

[
0, 1l
)

we can find a number sx > 0
and a point zx ∈ X such that the following three inequalities hold:

g(sx)

rx
> c, %(x, zx) + sx ≤ rx and µ∗(A ∩B(zx, sx)) ≤ 1

k
µ(B(x, rx)).

Choose η > 0 such that η + rx <
1
l and g(sx)

η+rx
> c. We show that y ∈ Gc for

an arbitrary point y ∈ B(x, η). Indeed, if we put ry = η + rx, sy = sx and
zy = zx, we get

0 < ry <
1

l
,

%(y, zy) + sy ≤ η + rx = ry

and

µ∗(A ∩B(zy, sy)) ≤ 1

k
µ(B(x, rx)) ≤ 1

k
µ(B(y, ry))

where the last inequality follows by the monotonicity of the measure µ. There-

fore γ(µ,A, y, ry,
1
k ) ≥ sy = sx and thus

g(γ(µ,A,y,ry,
1
k ))

ry
> c because g is in-

creasing on [0, 1l ). Hence uk,l(y) = sup
{
g(γ(µ,A,y,r, 1k ))

r : 0 < r < 1
l

}
> c and

y ∈ Gc. Thus we have proven that Gc is open for arbitrary c ∈ R and so the
function uk,l is lower semicontinuous on X.

Remark 3.2. By the previous lemma, the function ϕ : x 7→ pµ,(g)(A, x) is
Borel measurable on X for arbitrary A ⊂ X and g ∈ G. If B ⊂ X is Borel
measurable (resp. µ-measurable) and α ≥ 0 is arbitrary, then both sets

{x ∈ B : pµ,(g)(A, x) ≤ α} and {x ∈ B : pµ,(g)(A, x) > α}

are Borel measurable (resp. µ-measurable). In particular, for every Borel mea-
surable (resp. µ-measurable) setB ⊂ X, the subset ofB consisting of all points
at which B is µ-(g)-upper porous is Borel measurable (resp. µ-measurable).

Remark 3.3. (see [3, Section 6.B]) For any set A ⊂ X there exists a µ-
measurable set H(A) ⊂ X satisfying A ⊂ H(A) and

µ∗(A ∩M) = µ(H(A) ∩M) (3)
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for any µ-measurable set M ⊂ X. The set H(A) is called a measurable
cover (or measurable hull) of A. This set is not uniquely determined. A µ-
measurable set Q ⊂ X is a measurable cover of A, if and only if A ⊂ Q and
µ∗(Q \ A) = 0 (where µ∗ denotes the inner measure corresponding to the
measure µ).

Lemma 3.4. For every A ⊂ X, g ∈ G and ε > 0 there exists a (g)-upper
porous set S ⊂ P = {x ∈ A : pµ,(g)(A, x) > 0} such that µ∗(P \ S) < ε.

Proof. Fix A ⊂ X, g ∈ G and ε > 0 arbitrarily. Denote

P̂ = {x ∈ H(A) : pµ,(g)(A, x) > 0} and P̂q = {x ∈ P̂ : pµ,(g)(A, x) ≤ q}

for q > 0. Since H(A) is µ-measurable, by Remark 3.2, P̂ and P̂q (for every
q > 0) are also µ-measurable.

Since
⋂
q>0

P̂q = ∅ and µ is probabilistic (and thus finite), we can find p > 0

such that
µ(P̂2p) <

ε

2
.

Since P̂2p ⊂ H(A) and P̂2p ∩A = {x ∈ P : pµ,(g)(A, x) ≤ 2p}, by (3) it follows
that

µ∗({x ∈ P : pµ,(g)(A, x) ≤ 2p}) = µ(P̂2p) <
ε

2
.

Put
Q = {x ∈ P : pµ,(g)(A, x) > 2p}.

Then
µ∗(P \Q) <

ε

2
.

Take x ∈ Q and a sequence of positive numbers {ηj}∞j=1 such that

∞∑
j=1

ηj <
ε

2
.

Since pµ,(g)(A, x) > 2p, for arbitrary η > 0 and δ > 0 there exists 0 < r < δ
2

such that
%(x, z) + g−1(2pr) ≤ r

and
µ∗(A ∩B(z, g−1(2pr))) ≤ ηµ(B(x, r))

for some point z ∈ X. It follows by the triangle inequality for the metric % that
B(x, r) ⊂ B(z, 2r) and thus x ∈ B(z, 2r). By the monotonicity of measure µ
we get µ(B(x, r)) ≤ µ(B(z, 2r)). To simplify the notation we put s = 2r.
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It follows from the previous estimates that the set Q is covered by a system
of nonempty open balls

{B(z, s) : s < δ, µ∗(A ∩B(z, g−1(ps))) ≤ ηµ(B(z, s))}.

For j ∈ N we gradually choose η = ηj and δ = 1
j and using the covering

theorem ([2, Theorem 1.2]) we get (for every j ∈ N) a disjoint system of
nonempty open balls {B(zi, si) : i ∈ Ij} such that

Q ⊂
⋃
i∈Ij

B(zi, 5si),

si <
1

j

and

µ∗(A ∩B(zi, g
−1(psi))) ≤ ηjµ(B(zi, si))

for every i ∈ Ij .
Fix j ∈ N and put

Gj =
⋃
i∈Ij

(A ∩B(zi, g
−1(psi))).

Since {B(zi, si) : i ∈ Ij} is a disjoint system of nonempty open balls and the
space X is separable, the set of indices Ij is countable. By the σ-subadditivity
of the outer measure µ∗, disjointness of the system {B(zi, si) : i ∈ Ij} and the
fact that µ is probabilistic, we directly estimate

µ∗(Gj) ≤
∑
i∈Ij

µ∗(A ∩B(zi, g
−1(psi))) ≤ ηj

∑
i∈Ij

µ(B(zi, si)) ≤ ηj .

If we put G =
∞⋃
j=1

Gj , we get

µ∗(G) ≤
∞∑
j=1

µ∗(Gj) ≤
∞∑
j=1

ηj <
ε

2
.
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We show that Q \G is (g)-upper porous. Clearly,

Q \G = Q \
∞⋃
j=1

Gj

=

∞⋂
j=1

(Q \Gj)

=

∞⋂
j=1

(Q \
⋃
i∈Ij

(A ∩B(zi, g
−1(psi))))

=

∞⋂
j=1

⋂
i∈Ij

(Q \ (A ∩B(zi, g
−1(psi))))

=

∞⋂
j=1

⋂
i∈Ij

(Q \B(zi, g
−1(psi)))

where the last equality holds since Q ⊂ A.
Fix x ∈ Q \G and j ∈ N. Since Q is covered by the system of open balls

{B(zi, 5si) : i ∈ Ij}, there exists an index ij ∈ Ij such that x ∈ B(zij , 5sij ).
The open ball B(zij , g

−1(psij )) is disjoint with the set Q \G, thus we get

γ(Q \G, x, 5sij + g−1(psij )) ≥ g−1(psij )

where 0 < sij <
1
j . Repeating this procedure for every j ∈ N we get

lim sup
r→0+

g(γ(Q \G, x, r))
r

≥ lim sup
j→∞

g(γ(Q \G, x, 5sij + g−1(psij )))

5sij + g−1(psij )

≥ lim
j→∞

psij
5sij + g−1(psij )

= p lim
j→∞

1

5 + p
g−1(psij )

psij

≥ p

5 + pK
> 0,

because lim
j→∞

sij = 0 and g ∈ G (by (1) there exist K > 0 and h > 0 such that

g−1(x) ≤ Kx for every x ∈ [0, h)).
Finally, put S = Q \G. Then S is (g)-upper porous and

µ∗(P \ S) ≤ µ∗(P \Q) + µ∗(G) <
ε

2
+
ε

2
= ε.
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Theorem 3.5. Let A ⊂ X and g ∈ G. The set A is σ-µ-(g)-upper porous if
and only if A = S ∪ N where S is σ-(g)-upper porous and N is µ-null.

Proof. First suppose that A can be written as a union of a σ-(g)-upper
porous set S and a µ-null set N . By Remark 2.6, S is σ-µ-(g)-upper porous,
N is µ-(g)-upper porous and σ-µ-(g)-upper porous sets form a σ-ideal, thus
A = S ∪N is also σ-µ-(g)-upper porous.

Conversely, suppose that A is σ-µ-(g)-upper porous. Then there exist µ-

(g)-upper porous sets An, n ∈ N, such that A =
∞⋃
n=1

An. Fix n ∈ N. By

Lemma 3.4 there exist (g)-upper porous sets Smn such that

Smn ⊂ An = {x ∈ An : pµ,(g)(An, x) > 0}

and

µ∗(An \ Smn ) <
1

m

for every m ∈ N. Put Sn =
∞⋃
m=1

Smn . The set Sn is a σ-(g)-upper porous subset

of An and µ∗(An \ Sn) = 0. Define S =
∞⋃
n=1

Sn. Then the set S is clearly

a σ-(g)-upper porous subset of A and µ∗(A \ S) = 0. Since A = S ∪ (A \ S),
we have found a decomposition of A to the σ-(g)-upper porous set S and the
µ-null set A \ S.

Corollary 3.6. A set A ⊂ X is σ-µ-upper porous if and only if it can be
expressed as A = S ∪N where S is σ-upper porous and N is µ-null.

Proof. This is a direct consequence of the previous theorem with g(x) = x
for x ∈ [0,∞).

In the following example, we show that a µ-upper porous set needs not be
a union of an upper porous and a µ-null set.

Example 3.7. Put X = [0, 1], A = {0} ∪
{

1
n

}∞
n=1

and define a probabilistic

measure µ̃ on X by µ̃ = µ+δ0
2 where µ is a probabilistic measure from Example

2.10 and δ0 denotes the Dirac measure at 0. Then

(a) A is µ̃-upper porous,

(b) A 6= P ∪N whenever P is upper porous and N µ̃-null.
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Proof. (a) Since every z ∈ A, z 6= 0, is isolated in A and not isolated in X,
A is µ̃-upper porous at z and thus it suffices to show that A is µ̃-upper porous
at 0. In Example 2.10, we proved that A is µ-upper porous at 0. Using exactly
the same sequences {εk}∞k=1, {lk}∞k=1 and {rl}∞l=lk , {zl}∞l=lk , {sl}∞l=lk for every

k ∈ N as in the mentioned Example 2.10 and considering balls {B(zl, sl)}∞l=lk
for every k ∈ N, a direct computation yields the estimate pµ̃(A, 0) ≥ 1

4 > 0.

(b) Suppose that A = P ∪N where P is upper porous and N µ̃-null. Since
every point in A has positive µ̃-measure, necessarily N = ∅ and P = A. Since
{ 1n}

∞
n=1 ⊂ P is not upper porous at 0 and 0 ∈ P , P is not upper porous which

is a contradiction.

In the case of σ-µ-upper porosity, we can further strengthen the result in
Theorem 3.5 using a theorem about approximation of σ-upper porous sets.

Theorem 3.8. Let A ⊂ X. The set A is σ-µ-upper porous if and only if
A = S ∪N where S is σ-strongly upper porous and N is µ-null.

Proof. First suppose that A can be written as a union of a σ-strongly upper
porous set S and a µ-null set N . Since every σ-strongly upper porous set
is also σ-upper porous, using Remark 2.6 we easily get that A = S ∪ N is
σ-µ-upper porous.

Conversely, suppose that A is σ-µ-upper porous. By Corollary 3.6 there
exist a σ-upper porous set S1 and a µ-null set N1 so that A = S1 ∪N1. By [5,
Theorem 2.2 (iii)] there exists a σ-strongly upper porous set S ⊂ S1 such that
µ(S1\S) = 0. Put N = N1∪(S1\S). Then A = S∪N and this decomposition
has all desired properties.

Remark 3.9. Let n ∈ N, n ≥ 1, X = [0, 1]n ⊂ Rn and denote by λn the
normalized n-dimensional Lebesgue measure on X. Since, in this particular
setting, every σ-upper porous set is λn-null, results presented in Corollary 3.6
and Theorem 3.8 can be shortened to the following proposition:

An arbitrary set A ⊂ X is σ-λn-upper porous if and only if it is λn-null.

This statement is almost trivial and can be proved directly. Indeed, suppose
that A is λn-upper porous and choose x ∈ A arbitrarily. Then there exists
0 < c < 1 such that for every ε > 0 there exists a sequence of positive
numbers {rk}∞k=1 such that lim

k→∞
rk = 0 and γ(λn, A, x, rk, ε) > crk for every

k ∈ N. Fix 0 < ε < cn and consider the corresponding sequence {rk}∞k=1. Put
δ = ε + 1 − cn. Then 0 < δ < 1. Fix k ∈ N. We can find sk > crk and
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zk ∈ X such that %(x, zk) + sk ≤ rk and λ∗n(A ∩ B(zk, sk)) ≤ ελn(B(x, rk)).
We estimate:

λ∗n(A ∩B(x, rk)) ≤ λ∗n(A ∩B(zk, sk)) + λn(B(x, rk) \B(zk, sk))

≤ ελn(B(x, rk)) + (1− cn)λn(B(x, rk))

= δλn(B(x, rk)).

Since previous estimates can be done for every k ∈ N and lim
k→∞

rk = 0, x is

not the point of outer density for A. Since x ∈ A was arbitrary and almost
every point of any subset of Rn is the point of outer density for this set, we
conclude that λn(A) = 0.

However, results presented in Corollary 3.6 and Theorem 3.8 are interesting
for other Borel regular measures and the general result of Theorem 3.5 is much
deeper even in the case of normalized Lebesgue measure on the unit cube in
Rn, since for some g ∈ G there exist σ-(g)-upper porous sets with positive
λn-measure (e.g., if 0 < q < 1 and g(x) = xq for x ∈ [0,∞) then there
exists a perfect (g)-upper porous set E ⊂ R of positive Lebesgue measure ([6,
Proposition 2.41])).

The following proposition, which states that σ-ideals of σ-µ-upper porous,
σ-(s)-µ-upper porous and σ-µ-approximately upper porous sets coincide, is
a simple consequence of the decomposition theorem.

Proposition 3.10. Let A ⊂ X. The following statements are equivalent:

(i) A is σ-µ-upper porous.

(ii) A is σ-(s)-µ-upper porous.

(iii) A is σ-µ-approximately upper porous.

Proof. Clearly, (ii)⇒(i) and (iii)⇒(i) by Proposition 2.9.
Let A ⊂ X be σ-µ-upper porous. By Corollary 3.6, A can be expressed

in the form A = S ∪ N where S is σ-upper porous and N is µ-null. By
Remark 2.8, S and N are both σ-(s)-µ-upper porous and σ-µ-approximately
upper porous and systems of all such sets form σ-ideals. Hence A is both σ-
(s)-µ-upper porous and σ-µ-approximately upper porous. Thus (i)⇒(ii) and
(i)⇒(iii).
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