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TWO-NORM CONVERGENCE IN THE L,
SPACES

Abstract

In this paper we consider L,, 1 < p < 00, as a two-norm space and
prove a representation for two-norm continuous functionals defined on
Ly, 1 < p < oo. Hence we have provided a unified approach for the scale
of the L, space, including the case when p = oo

1 Introduction.

The Banach dual of C[0,1] is BV0,1], where C[0,1] and BV]0,1] denote
the space of all continuous functions on [0,1] and the space of all functions
of bounded variation on [0,1], respectively. However, the Banach dual of
BV[0,1] is not C]0,1] if we endorse BV[0,1] with its usual norm, namely,
|£(0)] +V(f;]0,1]) where V(f;]0,1]) denotes the total variation of f on [0, 1].
Since BV'[0, 1] is not separable, then the usual technique of proving such a rep-
resentation theorem no longer applies. More precisely, the proof often contains
the following two steps. First, we prove the representation for some elemen-
tary functions, for example, step functions. Second, we approximate a general
function by a sequence of elementary functions. Thus the representation for
general functions follows from a convergence theorem for the integral. If the
space is non-separable, the second step does not work. Hildebrandt [1] and
Khaing ([2], [3]) proved a representation theorem for BV[0,1] by regarding
BV[0,1] as a two-norm space [7].

For 1 < p < 00, L,[0,1] is a space of all measurable functions f such that
fol |f(z)|? de < oo and L]0, 1] is a space of all functions f with esssup|f] <
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00, where esssup |f| = inf{M : |f(z)] < M a.e.on [0,1]}. As we know, the
Riesz representation theorem is well-known. If p and ¢ are two real numbers,
1< p,qg < oo and 1% + % = 1, the Banach dual of L,[0,1] is L4[0, 1]. We also
have that the Banach dual of L;[0, 1] which is L [0, 1]. However, the Banach
dual of Ly is not L; if we endorse Lo[0, 1] with the usual norm, esssup|f]|.

In this paper, we consider L,, 1 < p < 00, as a two-norm space and prove
a representation theorem for two-norm continuous linear functionals on L,
1 < p < co. Furthermore, we give a unified approach to the dual of L,,
1<p< oo

2 Two-norm convergence in L.

Let Lo, denote the space of all essentially bounded functions on [0,1]. A func-
tion f is essentially bounded if it is bounded almost everywhere. The two
norms defined on L, as suggested by Orlicz [7], are the essential bound || f|s

and fol |f(x)|dx.

In what follows, when we say absolutely integrable we mean Lebesgue
integrable. A sequence {f,} of functions is said to be two-norm conver-
gent in L, if there is M > 0 such that || f,||cc < M for all n and

1
lim fn(x)g(x) dr exists,
0

n—oo

for every absolutely integrable function ¢ on [0, 1].

We shall prove the completeness in Theorem 2. However, we need the big
Sandwich Lemma and the concept of an absolutely continuous function. We
state without proof the Big Sandwich Lemma [5].

Lemma 1. If0 < a, < by, for all n,k and

lim lim bg, =0
k—o00 n—o00

then lim,,_, a,, = 0.

A function G defined on [0, 1] is said to be absolutely continuous if for
every € > 0 there is § > 0 such that

(D)) {G(v) = G(u)}| < e

whenever (D) > |v — u| < d, where D = {[u,v]} denotes a partial division of
[0,1] in which [u,v] stands for a typical interval in the partial division. We
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are using the notation of the Henstock integral [6, 4].

Theorem 2. If {f,} is two-norm convergent in Lo, then there exists a func-
tion f € Loy, such that

1 1
[t [0 wn
0 0

for every absolutely integrable function g on [0,1].

PRrROOF. Let z € [0,1] and define

(t) = 1 forl<t<z
9= 0 otherwise.

Let F(z) = lim,—o0 f fn, for z € 0,1]. Since,

[l < Wl = ) < Mo = ).
By taking n — oo, we have
|F(v) — F(u)| < M|v—u.

Therefore F is absolutely continuous. As a corollary, F” exists almost every-
where. Put f = F’ almost everywhere. Moreover,

|F(v)*F(U)

v—u
That means, |f(z)| < M almost everywhere in [0, 1].
For any step function g,

| < M.

1 1
lim/ fng = lim fg.
0 0

n—oo n—00

For g € Ly, there exists a sequence of step function {gx} such that fol lgr—g| —
0, as k — oco. Applying the Big Sandwich Lemma, we have

/Olfng—/olfgl < |/Olfng_/01fngk
+/Olfngk—/Olfgk|+|/01fgk—/01fg|
< 2M/019k9|+/01fngk/Olfgklﬁoasn%oo.
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That means, there is a function f € L., such that for every g € L,

lim fng*/ Ig- O

n— 00

It is clear from the definition, if ¢ is absolutely integrable on [0, 1] and { f,,}
is two-norm convergent to f in L., then

lim Ofn dx—/f

n— oo

We shall define two-norm continuous functional and shall prove Theorem
3, and finally the representation theorem in Theorem 5.
A functional F' defined on L., is said to be two-norm continuous in L.,
if
F(fn,) = F(f) asn — o0

whenever {f,} is two-norm convergent to f in Lo,

Theorem 3. If g is absolutely integrable on [0,1] and

/ f(@)g(x)dx for f € Lo,

then F defines a two-norm continuous linear functional on Lo

PROOF. The linearity of F' comes from the properties of the integral. The
continuity of F' comes from the definition of two-norm convergence in Lo,. O

In the following lemma, we define

(@) = 1 for0<az<t
NTEI=Y 0 fort<az<l1.

Lemma 4. Let F be a two-norm continuous linear functional on L. If
G(t) = F(y) fort €[0,1] then G is absolutely continuous.

PROOF. Suppose G is not absolutely continuous on [0, 1]. Then there is ¢ > 0
such that for every § there exists a partial division D = {[u, v]} satisfying

(D) lv—u| <d and |(D)> {G(v) w)} > e

For each n, take § = 1 and D = D,,. For every z € [0,1], put

= (Dn) Z |’Yv - ’Yu|-



Two-NOrRM CONVERGENCE IN THE L, SPACES 59

Then ||fn]lco < 1 for all n and for every integrable function g on [0, 1]

/ |fn(z)g(x)|dz = ( n)ZM\?}—MiOasn—)oo,

where M is the essentially bound of ¢ on [0,1]. That is, {f,} is two-norm
convergent to zero function in L.,. Yet we have

F(f.) = (D Z{G u)}| > e for all n.

It contradicts the fact that F' is two-norm continuous. Hence G is absolutely
continuous on [0, 1]. O

Theorem 5. If F is a two-norm continuous linear functional on L., then
there is an absolutely integrable function g such that

/f z)dz for f € Lo

PROOF. In view of Lemma 4 and using the notation introduced there, we

obtain
F(v / g= / V9,

where g = G’ almost everywhere on [0, 1]. Since F is linear,

=/Ofg

for any step function f. Take f € Lo, there is a sequence {f,} of step func-
tions two-norm convergent to f € L,. Hence the general case of the theorem
follows from the definition of two-norm continuity of F' and the Dominated
Convergence Theorem. O

We remark that the representation theorem (Theorem 5) remains valid if
the two-norm convergence in L., as defined above, is replaced by boundedness
in ||f|lec and convergence in fol |f| as given by Orlicz [7]. The proof follows
the same argument as above.

3 A unified approach for L,, 1 <p < oc.

For 1 < p < o0, L, denotes the space of all measurable functions such that

f01|f|”<ooand 1
e
151 [/0 A1)
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We restate the norm convergence in L, and the norm continuous functional
on L,, 1 <p<oo. Asequence {f,} of functions in L,, 1 < p < oo, is said to
be norm convergent to f € L, if || f, — f|l, = 0 as n — oc.

In this section we regard L,, 1 < p < oo, as a two-norm space based on
the result of Section 2.

A sequence {f,} of functions is said to be two-norm convergent to f in
L,, 1 <p < oo if there is M > 0 such that || f,||, < M for all n and

1
lim [ f.(z)g(z) dz exists,

n—oo 0

for every g € Ly, = + = = 1.

1
q

D =

The completeness will be proved in Theorem 7 using Lemma 6.

Lemma 6. A function f € L,, 1 <p < oo, if and only if if

Sup (D)Zw < oo,

where the supremum is taken over all of divisions D = {[u,v]} of [0,1], in
which [u,v] stands for a typical interval in the division.

For a proof, see Riesz [8]. O

Theorem 7. If {f,} is two-norm convergent in L,, 1 < p < oo, then there
exists a function f € Ly, such that

1 1
/ fng%/ fg, asmn — oo,
0 0

1,1
for every g € Lg, p+q*1'

PROOF. The case when p = oo follows from Theorem 2.
For 1 < p < co. Take F(z) = lim, o0 [y fn for o € [0,1]. Since

[ ai= [ nb e -t

|Fn(v) — Fp(u)[P < /v | ful?.

v —ulp—1

then
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Therefore, for every partition D of [0, 1], we have

Z ‘F |’u7u\1’ 1 = Z/ |fn|p _/ |fn|p < MP.

By taking n — oo,

e

Hence f € L, by Lemma 6.

1 1 1 1
‘/ fng_/ fg| < |/ fng_/ fngk‘
0 0 0 0
1 1 1 1
[ o [ a4l [ sa- [ 1o
0 0 0 0
1 1
< 2M||gk*g||q+|/ fngk*/ forl = 0 asn, k — oo.
0 0

That means, there is a function f € L,, 1 < p < oo, such that

lim fng— / fo

n—roo

As a result, there is a function f € Lp, 1 < p < o0, such that

lim fng— / fg. O
n—oo

From the definition of two-norm convergence in Ly, if g € Ly, 1 < g < o0
and {f,} is two-norm convergent to f in L, then

n— oo

tim_ | fn da;—/ f(z

The connection between the two-norm convergence and norm convergence
is given in Theorem 8 below.

Theorem 8. Let 1 < p < co. If {f,} is norm convergent to f in L,, then
{fn} is two-norm convergent to f in L.

ProoF. For every g € Ly, we have f,g, fg € L1. There exists a positive
integer n, such that for every positive integer n > n,, || fn,—f|l, < 1. Therefore,
for n > n,,

[ fnllp < A1fn = Fllp +11fllp < T+ 11115
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Take M = sup{[| f1llp: [[f2llp: -+ [[fro—1llps 1+ [ fllp} then
sup || frll, < M, for every n.

Moreover,

1 1
|/0 fng—/o F9l < W = Flollglla — 0, asn = oo. 0

Due to the two-norm convergence we define above, we need to define the
concept of two-norm continuity.
A functional F' defined on L, is said to be two-norm continuous in L,,
1<p<oo,if
F(fn,) = F(f) asn — o0

whenever {f,} is two-norm convergent to f in L,, 1 < p < oo.

Theorem 9. Ifge€ Ly, 1 < g < o0, and

F(f) = / f(@)g(x)dz for f € L,

then F' defines a two-norm continuous linear functional on L.

The proof is similar to that of Theorem 3.

As a result of Theorem 8, we can derive a connection between norm con-
tinuous and two norm continuous a functional on L,, 1 < p < co. We restate
the definition of norm continuous functionals as follows.

A functional F' defined on Ly, 1 < p < 00, is said to be a norm continuous

functional on L,, if for every sequence {f,,} that is norm convergent to f in
L, then {F(f,)} converges to F(f).

Theorem 10. Let 1 < p < oo. If F is two-norm continuous functional on
L,, then F is norm continuous functional on L,.

PRrROOF. Let {f,} be norm convergent to f in L,. By Theorem 8, {f,} is
two-norm convergent to f in L,. Since F' is two-norm continuous on L,, we
have

F(f) = lim F(f,).

n—oo

That is, F' is norm continuous on Ly, O
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In L, space, 1 < p < oo, the Riesz Representation Theorem says that
every norm continuous linear functional on L, determines a function g € L,
% + % =1, such that

1
:/ fg, forevery f e L,.
0

Finally, we derive the representation theorem of two-norm functional on
L,, 1 <p < ooin Theorem 11.

Theorem 11. Let 1 < p < oco. If F is two-norm continuous linear functional
on L,, then there exists a function g € Lg, % + % =1, such that

1
EF(f) :/ fg, for every f e L.
0

PRrROOF. The proof follows from Theorem 5, Theorem 10, and the Riesz Rep-
resentation Theorem. O

Corollary 12. Let 1 < p < oo. A linear functional on L, is two-norm
continuous if and only if it is norm continuous.

The corollary does not hold for p = co. Indeed, the two-norm convergence
in Lo, does not imply the norm convergence as shown in the following example.

Example 13. Let {I} be a collection of pairwise disjoint open intervals in
[0,1] with the union is not of measure 1, in other words, the set X = [0,1] \
U2, I, is not measure zero. Furthermore, |I,41 UL 1oUIp3U. .| =0 as
n — oo. Let

0, ze€ UZ:1II<:

1, otherwise,

r@={ o "

otherwise.

and

Since || fr. — flloo =1 and will not tend to 0, then f, is not norm-convergent.
On the other hand, || fnllco <1 for alln, and

Jim fng—/ fg,

for every g € Ly. Thus, {fn} is two-norm convergent to f.

In conclusion, we have proved completeness theorem and the representation
theorem for two-norm continuous linear functionals in L,, 1 < p < oco.

Acknowledgment. The author would like to express her deep gratitude to
Prof. Lee Peng Yee for his valuable suggestions for this paper.



64 CH. RINI INDRATI

References

[1] T.H. Hildebrandt, Linear Continuous Functionals on the Space (BV ) with
weak topologies, Proc. Amer. Math. Soc. 17 (1966), 658 - 664.

[2] K.Y. Khaing, The Duals of Some Banach Spaces, Ph.D Thesis, Nanyang
Technological University, Singapore, 2002.

[3] K.Y. Khaing and P.Y. Lee, Orthogonally Additive Functionals on BV,
Math. Bohemica 129 (2004), 411 - 419.

[4] P.Y. Lee P.Y., Lanzhou Lectures on Henstock Integration, World Scientific,
Singapore, (1989).

[5] P.Y. Lee, Teaching Calculus without €§, Matimyas Matematika 21(3)
(1998), 34 - 39.

[6] P.Y. Lee and R. Vyborny, Integral: An Easy Approach after Kurzweil and
Henstock, Cambridge University Press, (2000).

[7] W. Orlicz, W. Linear Functional Analysis, World Scientific, Singapore,
(1992).

[8] F. Riesz, and B. Sz-Nagy, Lecons D' Analyse Fonctionelle, Gauthier-Villars,
Paris (1968).



