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TWO-NORM CONVERGENCE IN THE Lp
SPACES

Abstract

In this paper we consider Lp, 1 ≤ p ≤ ∞, as a two-norm space and
prove a representation for two-norm continuous functionals defined on
Lp, 1 ≤ p ≤ ∞. Hence we have provided a unified approach for the scale
of the Lp space, including the case when p =∞

1 Introduction.

The Banach dual of C[0, 1] is BV [0, 1], where C[0, 1] and BV [0, 1] denote
the space of all continuous functions on [0, 1] and the space of all functions
of bounded variation on [0, 1], respectively. However, the Banach dual of
BV [0, 1] is not C[0, 1] if we endorse BV [0, 1] with its usual norm, namely,
|f(0)|+V (f ; [0, 1]) where V (f ; [0, 1]) denotes the total variation of f on [0, 1].
Since BV [0, 1] is not separable, then the usual technique of proving such a rep-
resentation theorem no longer applies. More precisely, the proof often contains
the following two steps. First, we prove the representation for some elemen-
tary functions, for example, step functions. Second, we approximate a general
function by a sequence of elementary functions. Thus the representation for
general functions follows from a convergence theorem for the integral. If the
space is non-separable, the second step does not work. Hildebrandt [1] and
Khaing ([2], [3]) proved a representation theorem for BV [0, 1] by regarding
BV [0, 1] as a two-norm space [7].

For 1 ≤ p <∞, Lp[0, 1] is a space of all measurable functions f such that∫ 1

0
|f(x)|p dx <∞ and L∞[0, 1] is a space of all functions f with ess sup |f | <
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∞, where ess sup |f | = inf{M : |f(x)| ≤ M a.e. on [0, 1]}. As we know, the
Riesz representation theorem is well-known. If p and q are two real numbers,
1 < p, q < ∞ and 1

p + 1
q = 1, the Banach dual of Lp[0, 1] is Lq[0, 1]. We also

have that the Banach dual of L1[0, 1] which is L∞[0, 1]. However, the Banach
dual of L∞ is not L1 if we endorse L∞[0, 1] with the usual norm, ess sup |f |.

In this paper, we consider Lp, 1 ≤ p ≤ ∞, as a two-norm space and prove
a representation theorem for two-norm continuous linear functionals on Lp,
1 ≤ p ≤ ∞. Furthermore, we give a unified approach to the dual of Lp,
1 ≤ p ≤ ∞.

2 Two-norm convergence in L∞.

Let L∞ denote the space of all essentially bounded functions on [0, 1]. A func-
tion f is essentially bounded if it is bounded almost everywhere. The two
norms defined on L∞, as suggested by Orlicz [7], are the essential bound ‖f‖∞
and

∫ 1

0
|f(x)|dx.

In what follows, when we say absolutely integrable we mean Lebesgue
integrable. A sequence {fn} of functions is said to be two-norm conver-
gent in L∞, if there is M > 0 such that ‖fn‖∞ ≤M for all n and

lim
n→∞

∫ 1

0

fn(x)g(x) dx exists,

for every absolutely integrable function g on [0, 1].

We shall prove the completeness in Theorem 2. However, we need the big
Sandwich Lemma and the concept of an absolutely continuous function. We
state without proof the Big Sandwich Lemma [5].

Lemma 1. If 0 ≤ an ≤ bkn for all n, k and

lim
k→∞

lim
n→∞

bkn = 0

then limn→∞ an = 0.

A function G defined on [0, 1] is said to be absolutely continuous if for
every ε > 0 there is δ > 0 such that

|(D)
∑
{G(v)−G(u)}| < ε

whenever (D)
∑
|v − u| < δ, where D = {[u, v]} denotes a partial division of

[0, 1] in which [u, v] stands for a typical interval in the partial division. We
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are using the notation of the Henstock integral [6, 4].

Theorem 2. If {fn} is two-norm convergent in L∞, then there exists a func-
tion f ∈ L∞, such that ∫ 1

0

fng →
∫ 1

0

fg, as n→∞,

for every absolutely integrable function g on [0, 1].

Proof. Let x ∈ [0, 1] and define

g(t) =

{
1 for 1 ≤ t < x
0 otherwise.

Let F (x) = limn→∞
∫ x

0
fn, for x ∈ [0, 1]. Since,

|
∫ v

u

fn| ≤ ‖fn‖∞|v − u| ≤M(v − u).

By taking n→∞, we have

|F (v)− F (u)| ≤M |v − u|.

Therefore F is absolutely continuous. As a corollary, F ′ exists almost every-
where. Put f = F ′ almost everywhere. Moreover,

|F (v)− F (u)

v − u
| ≤M.

That means, |f(x)| ≤M almost everywhere in [0, 1].
For any step function g,

lim
n→∞

∫ 1

0

fng = lim
n→∞

∫ 1

0

fg.

For g ∈ L1, there exists a sequence of step function {gk} such that
∫ 1

0
|gk−g| →

0, as k →∞. Applying the Big Sandwich Lemma, we have

|
∫ 1

0

fng −
∫ 1

0

fg| ≤ |
∫ 1

0

fng −
∫ 1

0

fngk|

+ |
∫ 1

0

fngk −
∫ 1

0

fgk|+ |
∫ 1

0

fgk −
∫ 1

0

fg|

≤ 2M

∫ 1

0

|gk − g|+ |
∫ 1

0

fngk −
∫ 1

0

fgk| → 0 as n→∞.
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That means, there is a function f ∈ L∞ such that for every g ∈ L1,

lim
n→∞

∫ 1

0

fng =

∫ 1

0

fg.

It is clear from the definition, if g is absolutely integrable on [0, 1] and {fn}
is two-norm convergent to f in L∞ then

lim
n→∞

∫ 1

0

fn(x)g(x)dx =

∫ 1

0

f(x)g(x)dx.

We shall define two-norm continuous functional and shall prove Theorem
3, and finally the representation theorem in Theorem 5.

A functional F defined on L∞ is said to be two-norm continuous in L∞,
if

F (fn)→ F (f) as n→∞
whenever {fn} is two-norm convergent to f in L∞.

Theorem 3. If g is absolutely integrable on [0, 1] and

F (f) =

∫ 1

0

f(x)g(x)dx for f ∈ L∞,

then F defines a two-norm continuous linear functional on L∞.

Proof. The linearity of F comes from the properties of the integral. The
continuity of F comes from the definition of two-norm convergence in L∞.

In the following lemma, we define

γt(x) =

{
1 for 0 ≤ x < t
0 for t ≤ x ≤ 1.

Lemma 4. Let F be a two-norm continuous linear functional on L∞. If
G(t) = F (γt) for t ∈ [0, 1] then G is absolutely continuous.

Proof. Suppose G is not absolutely continuous on [0, 1]. Then there is ε > 0
such that for every δ there exists a partial division D = {[u, v]} satisfying

(D)
∑
|v − u| < δ and |(D)

∑
{G(v)−G(u)}| ≥ ε.

For each n, take δ = 1
n and D = Dn. For every x ∈ [0, 1], put

fn(x) = (Dn)
∑
|γv − γu|.
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Then ‖fn‖∞ ≤ 1 for all n and for every integrable function g on [0, 1]∫ 1

0

|fn(x)g(x)|dx = (Dn)
∑

M |v − u| ↓ 0 as n→∞,

where M is the essentially bound of g on [0, 1]. That is, {fn} is two-norm
convergent to zero function in L∞. Yet we have

F (fn) = |(Dn)
∑
{G(v)−G(u)}| ≥ ε for all n.

It contradicts the fact that F is two-norm continuous. Hence G is absolutely
continuous on [0, 1].

Theorem 5. If F is a two-norm continuous linear functional on L∞ then
there is an absolutely integrable function g such that

F (f) =

∫ 1

0

f(x)g(x)dx for f ∈ L∞.

Proof. In view of Lemma 4 and using the notation introduced there, we
obtain

F (γt) = G(t) =

∫ t

0

g =

∫ 1

0

γtg,

where g = G′ almost everywhere on [0, 1]. Since F is linear,

F (f) =

∫ 1

0

fg

for any step function f . Take f ∈ L∞, there is a sequence {fn} of step func-
tions two-norm convergent to f ∈ L∞. Hence the general case of the theorem
follows from the definition of two-norm continuity of F and the Dominated
Convergence Theorem.

We remark that the representation theorem (Theorem 5) remains valid if
the two-norm convergence in L∞, as defined above, is replaced by boundedness

in ‖f‖∞ and convergence in
∫ 1

0
|f | as given by Orlicz [7]. The proof follows

the same argument as above.

3 A unified approach for Lp, 1 ≤ p ≤ ∞.

For 1 ≤ p < ∞, Lp denotes the space of all measurable functions such that∫ 1

0
|f |p <∞ and

‖f‖p = [

∫ 1

0

|f |p]
1
p .
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We restate the norm convergence in Lp and the norm continuous functional
on Lp, 1 ≤ p ≤ ∞. A sequence {fn} of functions in Lp, 1 ≤ p ≤ ∞, is said to
be norm convergent to f ∈ Lp if ‖fn − f‖p → 0 as n→∞.

In this section we regard Lp, 1 ≤ p ≤ ∞, as a two-norm space based on
the result of Section 2.

A sequence {fn} of functions is said to be two-norm convergent to f in
Lp, 1 ≤ p ≤ ∞ if there is M > 0 such that ‖fn‖p ≤M for all n and

lim
n→∞

∫ 1

0

fn(x)g(x) dx exists,

for every g ∈ Lq, 1
p + 1

q = 1.

The completeness will be proved in Theorem 7 using Lemma 6.

Lemma 6. A function f ∈ Lp, 1 < p <∞, if and only if if

sup
D

(D)
∑ |F (v)− F (u)|p

|v − u|p−1
<∞,

where the supremum is taken over all of divisions D = {[u, v]} of [0, 1], in
which [u, v] stands for a typical interval in the division.

For a proof, see Riesz [8]. �

Theorem 7. If {fn} is two-norm convergent in Lp, 1 ≤ p ≤ ∞, then there
exists a function f ∈ Lp, such that∫ 1

0

fng →
∫ 1

0

fg, as n→∞,

for every g ∈ Lq, 1
p + 1

q = 1.

Proof. The case when p =∞ follows from Theorem 2.
For 1 ≤ p <∞. Take F (x) = limn→∞

∫ x

0
fn for x ∈ [0, 1]. Since

|
∫ v

u

fn| ≤ (

∫ v

u

|fn|p)
1
p (v − u)

1
q ,

then
|Fn(v)− Fn(u)|p

|v − u|p−1
≤
∫ v

u

|fn|p.
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Therefore, for every partition D of [0, 1], we have

(D)
∑ |Fn(v)− Fn(u)|p

|v − u|p−1
≤ (D)

∑∫ v

u

|fn|p =

∫ 1

0

|fn|p ≤Mp.

By taking n→∞,

(D)
∑ |F (v)− F (u)|p

|v − u|p−1
≤Mp.

Hence f ∈ Lp by Lemma 6.

|
∫ 1

0

fng −
∫ 1

0

fg| ≤ |
∫ 1

0

fng −
∫ 1

0

fngk|

+ |
∫ 1

0

fngk −
∫ 1

0

fgk|+ |
∫ 1

0

fgk −
∫ 1

0

fg|

≤ 2M‖gk − g‖q + |
∫ 1

0

fngk −
∫ 1

0

fgk| → 0 as n, k →∞.

That means, there is a function f ∈ Lp, 1 ≤ p <∞, such that

lim
n→∞

∫ 1

0

fng =

∫ 1

0

fg.

As a result, there is a function f ∈ Lp, 1 ≤ p ≤ ∞, such that

lim
n→∞

∫ 1

0

fng =

∫ 1

0

fg.

From the definition of two-norm convergence in Lp, if g ∈ Lq, 1 ≤ q ≤ ∞
and {fn} is two-norm convergent to f in Lp then

lim
n→∞

∫ 1

0

fn(x)g(x)dx =

∫ 1

0

f(x)g(x)dx.

The connection between the two-norm convergence and norm convergence
is given in Theorem 8 below.

Theorem 8. Let 1 ≤ p ≤ ∞. If {fn} is norm convergent to f in Lp, then
{fn} is two-norm convergent to f in Lp.

Proof. For every g ∈ Lq, we have fng, fg ∈ L1. There exists a positive
integer no such that for every positive integer n ≥ no, ‖fn−f‖p < 1. Therefore,
for n ≥ no,

‖fn‖p ≤ ‖fn − f‖p + ‖f‖p < 1 + ‖f‖p.
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Take M = sup{‖f1‖p, ‖f2‖p, . . . , ‖fno−1‖p, 1 + ‖f‖p}, then

sup ‖fn‖p ≤M, for every n.

Moreover,

|
∫ 1

0

fng −
∫ 1

0

fg| ≤ ‖fn − f‖p‖g‖q → 0, as n→∞.

Due to the two-norm convergence we define above, we need to define the
concept of two-norm continuity.

A functional F defined on Lp is said to be two-norm continuous in Lp,
1 ≤ p <∞, if

F (fn)→ F (f) as n→∞

whenever {fn} is two-norm convergent to f in Lp, 1 ≤ p <∞.

Theorem 9. If g ∈ Lq, 1 ≤ q ≤ ∞, and

F (f) =

∫ 1

0

f(x)g(x)dx for f ∈ Lp,

then F defines a two-norm continuous linear functional on Lp.

The proof is similar to that of Theorem 3.

As a result of Theorem 8, we can derive a connection between norm con-
tinuous and two norm continuous a functional on Lp, 1 ≤ p ≤ ∞. We restate
the definition of norm continuous functionals as follows.

A functional F defined on Lp, 1 ≤ p ≤ ∞, is said to be a norm continuous
functional on Lp, if for every sequence {fn} that is norm convergent to f in
Lp then {F (fn)} converges to F (f).

Theorem 10. Let 1 ≤ p ≤ ∞. If F is two-norm continuous functional on
Lp, then F is norm continuous functional on Lp.

Proof. Let {fn} be norm convergent to f in Lp. By Theorem 8, {fn} is
two-norm convergent to f in Lp. Since F is two-norm continuous on Lp, we
have

F (f) = lim
n→∞

F (fn).

That is, F is norm continuous on Lp.
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In Lp space, 1 ≤ p < ∞, the Riesz Representation Theorem says that
every norm continuous linear functional on Lp determines a function g ∈ Lq,
1
p + 1

q = 1, such that

F (f) =

∫ 1

0

fg, for every f ∈ Lp.

Finally, we derive the representation theorem of two-norm functional on
Lp, 1 ≤ p ≤ ∞ in Theorem 11.

Theorem 11. Let 1 ≤ p ≤ ∞. If F is two-norm continuous linear functional
on Lp, then there exists a function g ∈ Lq, 1

p + 1
q = 1, such that

F (f) =

∫ 1

0

fg, for every f ∈ Lp.

Proof. The proof follows from Theorem 5, Theorem 10, and the Riesz Rep-
resentation Theorem.

Corollary 12. Let 1 ≤ p < ∞. A linear functional on Lp is two-norm
continuous if and only if it is norm continuous.

The corollary does not hold for p =∞. Indeed, the two-norm convergence
in L∞ does not imply the norm convergence as shown in the following example.

Example 13. Let {Ik} be a collection of pairwise disjoint open intervals in
[0, 1] with the union is not of measure 1, in other words, the set X = [0, 1] \
∪∞n=1In is not measure zero. Furthermore, |In+1 ∪ In+2 ∪ In+3 ∪ . . . | → 0 as
n→∞. Let

fn(x) =

{
0, x ∈ ∪nk=1Ik
1, otherwise,

and

f(x) =

{
1, x ∈ X
0, otherwise.

Since ‖fn − f‖∞ = 1 and will not tend to 0, then fn is not norm-convergent.
On the other hand, ‖fn‖∞ ≤ 1 for all n, and

lim
n→∞

∫ 1

0

fng =

∫ 1

0

fg,

for every g ∈ L1. Thus, {fn} is two-norm convergent to f .

In conclusion, we have proved completeness theorem and the representation
theorem for two-norm continuous linear functionals in Lp, 1 ≤ p ≤ ∞.
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