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CONVEXITY IN REAL ANALYSIS

Abstract

We treat the classical notion of convexity in the context of hard
real analysis. Definitions of the concept are given in terms of defining
functions and quadratic forms, and characterizations are provided of
different concrete notions of convexity. This analytic notion of convexity
is related to more classical geometric ideas. Applications are given both
to analysis and geometry.

1 Introduction.

Convexity is an old subject in mathematics. Archimedes used convexity in
his studies of area and arc length. The concept appeared intermittently in
the work of Fermat, Cauchy, Minkowski, and others. Even Johannes Kepler
treated convexity. But it can be said that the subject was not really formalized
until the seminal tract of Bonneson and Fenchel [2]. See also [3] for the history.
Modern treatments of convexity may be found in [8] and [11].

In what follows, we let the term “domain” denote a connected, open set.
We usually denote a domain by Ω. If Ω is a domain and P,Q ∈ Ω then the
closed segment determined by P and Q is the set

PQ ≡ {(1− t)P + tQ : 0 ≤ t ≤ 1} .

Most of the classical treatments of convexity rely on the following synthetic
definition of the concept:
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Definition 1. Let Ω ⊆ RN be a domain. We say that Ω is convex if, whenever
P,Q ∈ Ω, then the closed segment PQ from P to Q lies in Ω.

Works such as [8] and [11] treat theorems of Helly and Kirchberger—about
configurations of convex sets in the plane, and points in those convex sets.
However, studies in analysis and differential geometry (as opposed to synthetic
geometry) require results—and definitions—of a different type. We need hard
analytic facts about the shape of the boundary—formulated in differential-
geometric language. We need invariants that we can calculate and estimate.
That is the point of view that we wish to explore in the present paper.

2 The Concept of Defining Function.

Let Ω ⊆ RN be a domain with C1 boundary. A C1 function ρ : RN → R is
called a defining function for Ω if

1. Ω = {x ∈ RN : ρ(x) < 0};

2. cΩ = {x ∈ RN : ρ(x) > 0};

3. ∇ρ(x) 6= 0 ∀x ∈ ∂Ω.

In case k ≥ 2 and ρ is Ck then we say that the domain Ω has Ck boundary.
This last point merits some discussion. For the notion of a domain having

Ck boundary has many different formulations. One may say that Ω has Ck

boundary if ∂Ω is a regularly imbedded Ck manifold in RN . Or if ∂Ω is locally
the graph of a Ck function. In the very classical setting of R2, it is common
to say that the boundary of a domain or region (which of course is simply a
curve γ : S1 → R2) is Ck if (a) γ is a Ck function and (b) γ′ 6= 0.

We shall not take the time here to prove the equivalence of all the different
formulations of Ck boundary for a domain (but see the rather thorough dis-
cussion in Appendix I of [5]). But we do discuss the equivalence of the “local
graph” definition with the defining function definition.

First suppose that Ω is a domain with Ck defining function ρ as specified
above, and let P ∈ ∂Ω. Since ∇ρ(P ) 6= 0, the implicit function theorem (see
[7]) guarantees that there is a a neighborhood VP of P , a variable (which
we may take to be xN ) and a Ck function ϕP defined on a small open set
UP ⊆ RN−1 so that

∂Ω∩VP = {(x1, x2, . . . , xN ) : xN = ϕP (x1, . . . , xN−1) , (x1, . . . , xN−1) ∈ UP } .

Thus ∂Ω is locally the graph of the function ϕP near P .
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Conversely, assume that each point P ∈ ∂Ω has a neighborhood VP and
an associated UP ⊆ RN−1 and function ϕP such that

∂Ω∩VP = {(x1, x2, . . . , xN ) : xN = ϕP (x1, . . . , xN−1) , (x1, . . . , xN−1) ∈ UP } .

We may suppose that the positive xN -axis points out of the domain, and set
ρP (x) = xN − ϕP (x1, . . . , xN−1). Thus, on a small neighborhood of P , ρP
behaves like a defining function. It is equal to 0 on the boundary, certainly
has non-vanishing gradient, and is Ck.

Now ∂Ω is compact, so we may cover ∂Ω with finitely many VP1 , . . . , VPk
.

Let {ψj} be a partition of unity subordinate to this finite cover, and set

ρ̃(x) =
k∑
j=1

ψj(x) · ρPj
(x) .

Then, in a neighborhood of ∂Ω, ρ̃ is a defining function. We may extend ρ̃ to
all of space as follows. Let V be a neighborhood of ∂Ω on which ρ̃ is defined.
Let V ′ be an open, relatively compact subset of Ω and V ′′ an open subset of
cΩ so that V, V ′, V ′′ cover Cn. Let η, η′, η′′ be a partition of unity subordinate
to the cover V, V ′, V ′′. Now set

ρ(x) = η′(x) · [−(C + 10)2] + η(x) · ρ̃(x) + η′′(x) · (C + 10)2 .

Here C is a large positive constant that exceeds the diameter of Ω. Then ρ is
a globally defined, Ck function that is a defining function for Ω.

Definition 2. Let Ω ⊆ RN have C1 boundary and let ρ be a C1 defining
function. Let P ∈ ∂Ω. An N−tuple w = (w1, . . . , wN ) of real numbers is
called a tangent vector to ∂Ω at P if

N∑
j=1

(∂ρ/∂xj)(P ) · wj = 0.

We write w ∈ TP (∂Ω).

For Ω with C1 boundary, we think of νP = ν = 〈∂ρ/∂x1(P ), . . . , ∂ρ/∂xN (P )〉
as the outward-pointing normal vector to ∂Ω at P . Of course the union of all
the tangent vectors to ∂Ω at a point P ∈ ∂Ω is the tangent plane or tangent
hyperplane. The tangent hyperplane is defined by the condition

νP · w = 0 .
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This definition makes sense when νP is well defined, in particular when ∂Ω is
C1.

If Ω is convex and ∂Ω is not smooth—say that it is Lipschitz—then any
point P ∈ ∂Ω will still have one (or many) hyperplanes P such that P ∩ Ω =
{P}. We call such a hyperplane a support hyperplane for ∂Ω at P . As noted,
such a support hyperplane need not be unique. For example, if Ω = {(x1, x2) :
|x1| < 1, |x2| < 1} then the points of the form (±1,±1) in the boundary do
not have well-defined tangent planes, but they do have (uncountably) many
support hyperplanes.

Of course the definition of the normal νP makes sense only if it is indepen-
dent of the choice of ρ. We shall address that issue in a moment. It should
be observed that the condition defining tangent vectors simply mandates that
w ⊥ νP at P. And, after all, we know from calculus that ∇ρ is the normal νP
and that the normal is uniquely determined and independent of the choice of
ρ. In principle, this settles the well-definedness issue.

However this point is so important, and the point of view that we are
considering so pervasive, that further discussion is warranted. The issue is
this: if ρ̂ is another defining function for Ω then it should give the same
tangent vectors as ρ at any point P ∈ ∂Ω. The key to seeing that this is so
is to write ρ̂(x) = h(x) · ρ(x), for h a function that is non-vanishing near ∂Ω.
Then, for P ∈ ∂Ω,

N∑
j=1

(∂ρ̂/∂xj)(P ) · wj = h(P ) ·

 N∑
j=1

(∂ρ/∂xj)(P ) · wj


+ ρ(P ) ·

 N∑
j=1

(∂h/∂xj)(P ) · wj


= h(P ) ·

 N∑
j=1

(∂ρ/∂xj)(P ) · wj


+ 0, (1.1)

because ρ(P ) = 0. Thus w is a tangent vector at P vis a vis ρ if and only if w
is a tangent vector vis a vis ρ̂. But why does h exist?

After a change of coordinates, it is enough to assume that we are dealing
with a piece of ∂Ω that is a piece of flat, (N−1)−dimensional real hypersurface
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(just use the implicit function theorem). Thus we may take ρ(x) = xN and
P = 0. Then any other defining function ρ̂ for ∂Ω near P must have the Taylor
expansion

ρ̂(x) = c · xN +R(x) (1.2)

about 0. Here R is a remainder term1 satisfying R(x) = o(|xN |). There is no
loss of generality to take c = 1, and we do so in what follows. Thus we wish
to define

h(x) =
ρ̂(x)

ρ(x)
= 1 + S(x).

Here S(x) ≡ R(x)/xN and S(x) = o(1) as xN → 0. Since this remainder term
involves a derivative of ρ̂, it is plain that h is not even differentiable. (An
explicit counterexample is given by ρ̂(x) = xN · (1 + |xN |).) Thus the program
that we attempted in equation (1.1) above is apparently flawed.

However an inspection of the explicit form of the remainder term R reveals
that, because ρ̂ is constant on ∂Ω, h as defined above is continuously differ-
entiable in tangential directions. That is, for tangent vectors w (vectors that
are orthogonal to νP ), the derivative∑

j

∂h

∂xj
(P )wj

is defined. Thus it does indeed turn out that our definition of tangent vector
is well-posed when it is applied to vectors that are already known to be tan-
gent vectors by the geometric definition w · νP = 0. For vectors that are not
geometric tangent vectors, an even simpler argument shows that∑

j

∂ρ̂

∂xj
(P )wj 6= 0

if and only if ∑
j

∂ρ

∂xj
(P )wj 6= 0.

Thus Definition 2 is well-posed. Questions similar to the one just discussed will
come up below when we define convexity using C2 defining functions. They
are resolved in just the same way and we shall leave details to the reader.

The reader should check that the discussion above proves the following:
if ρ, ρ̃ are Ck defining functions for a domain Ω, with k ≥ 2, then there is a
Ck−1, nonvanishing function h defined near ∂Ω such that ρ = h · ρ̃.

1We may think of (1.2) as proved by integration by parts in the xN variable only, and
that gives this favorable estimate on the error terms R(x).
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3 The Analytic Definition of Convexity.

For convenience, we restrict attention for this section to bounded domains.
Many of our definitions would need to be modified, and extra arguments given
in proofs, were we to consider unbounded domains as well.

Definition 3. Let Ω ⊂ ⊂ RN be a domain with C2 boundary and ρ a defining
function for Ω. Fix a point P ∈ ∂Ω. We say that ∂Ω is analytically (weakly)
convex at P if

N∑
j,k=1

∂2ρ

∂xj∂xk
(P )wjwk ≥ 0, ∀w ∈ TP (∂Ω).

We say that ∂Ω is analytically strongly (strictly) convex at P if the inequality
is strict whenever w 6= 0.

If ∂Ω is convex (resp. strongly convex) at each boundary point then we
say that Ω is convex (resp. strongly convex).

One interesting and useful feature of this new definition of convexity is
that it treats the concept point-by-point. The classical, synthetic definition
specifies convexity for the whole domain at once.

It is natural to ask whether the new definition of convexity is independent
of the choice of defining function. We have the following result:

Proposition 1. Let Ω ⊆ RN be a domain with C2 boundary. Let ρ and ρ′

be C2 defining functions for Ω, and assume that, at points x near ∂Ω,

ρ(x) = h(x) · ρ′(x)

for some non-vanishing, C2 function h. Let P ∈ ∂Ω. Then Ω is convex at P
when measured with the defining function ρ if and only if Ω is convex at P
when measured with the defining function ρ′.

Proof. We calculate that

∂2

∂xj∂xk
ρ(P ) = h(P ) · ∂2ρ′

∂xj∂xk
(P ) + ρ′(P ) · ∂2h

∂xj∂xk
(P )

+
∂ρ′

∂xj
(P )

∂h

∂xk
(P ) +

∂ρ′

∂xk
(P )

∂h

∂xj
(P )

= h(P ) · ∂2ρ′

∂xj∂xk
(P ) +

∂ρ′

∂xj
(P )

∂h

∂xk
(P ) +

∂ρ′

∂xk
(P )

∂h

∂xj
(P )
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because ρ′(P ) = 0. But then, if w is a tangent vector to ∂Ω at P , we see that

∑
j,k

∂2

∂xj∂xk
ρ(P )wjwk = h(P )

∑
j,k

∂2ρ′

∂xj∂xk
(P )wjwk

+

∑
j

∂ρ′

∂xj
(P )wj

[∑
k

∂h

∂xk
(P )wk

]

+

[∑
k

∂ρ′

∂xk
(P )wk

]∑
j

∂h

∂xj
(P )wj

 .
If we suppose that P is a point of convexity relative to the defining function
ρ′, then the first sum is nonnegative. Of course h is positive, so the first
expression is then ≥ 0. Since w is a tangent vector, the sum in j in the second
expression vanishes. Likewise the sum in k in the third expression vanishes.

In the end, we see that the Hessian of ρ is positive semi-definite on the
tangent space if the Hessian of ρ′ is. The reasoning also works if the roles of
ρ and ρ′ are reversed. The result is thus proved.

The quadratic form (
∂2ρ

∂xj∂xk
(P )

)N
j,k=1

is frequently called the “real Hessian” of the function ρ. This form carries
considerable geometric information about the boundary of Ω. It is of course
closely related to the second fundamental form of Riemannian geometry (see
B. O’Neill [10]).

There is a technical difference between “strong” and “strict” convexity that
we shall not discuss here (see L. Lempert [9] for details). It is common to use
either of the words “strong” or “strict” to mean that the inequality in the
last definition is strict when w 6= 0. The reader may wish to verify for himself
that, at a strongly convex boundary point, all curvatures are positive (in fact
one may, by the positive definiteness of the matrix

(
∂2ρ/∂xj∂xk

)
, impose a

change of coordinates at P so that the boundary of Ω agrees with a ball up to
second order at P ).

Now we explore our analytic notions of convexity. The first lemma is a
technical one:
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Lemma 2. Let Ω ⊆ RN be strongly convex. Then there is a constant C > 0
and a defining function ρ̃ for Ω such that

N∑
j,k=1

∂2ρ̃

∂xj∂xk
(P )wjwk ≥ C|w|2, ∀P ∈ ∂Ω, w ∈ RN . (2.1)

Proof. Let ρ be some fixed C2 defining function for Ω. For λ > 0 define

ρλ(x) =
exp(λρ(x))− 1

λ
.

We shall select λ large in a moment. Let P ∈ ∂Ω and set

X = XP =

w ∈ RN : |w| = 1 and
∑
j,k

∂2ρ

∂xj∂xk
(P )wjwk ≤ 0

 .

Then no element of X could be a tangent vector at P, hence X ⊆ {w : |w| =
1 and

∑
j ∂ρ/∂xj(P )wj 6= 0}. Since X is defined by a non-strict inequality, it

is closed; it is of course also bounded. Hence X is compact and

µ ≡ min


∣∣∣∣∣∣
∑
j

∂ρ/∂xj(P )wj

∣∣∣∣∣∣ : w ∈ X


is attained and is non-zero. Define

λ =
−minw∈X

∑
j,k

∂2ρ
∂xj∂xk

(P )wjwk

µ2
+ 1.

Set ρ̃ = ρλ. Then for any w ∈ RN with |w| = 1 we have (since exp(ρ(P )) = 1)
that∑

j,k

∂2ρ̃

∂xj∂xk
(P )wjwk =

∑
j,k

{
∂2ρ

∂xj∂xk
(P ) + λ

∂ρ

∂xj
(P )

∂ρ

∂xk
(P )

}
wjwk

=
∑
j,k

{
∂2ρ

∂xj∂xk

}
(P )wjwk + λ

∣∣∣∣∣∣
∑
j

∂ρ

∂xj
(P )wj

∣∣∣∣∣∣
2

If w 6∈ X then this expression is positive by definition. If w ∈ X then the
expression is positive by the choice of λ. Since {w ∈ RN : |w| = 1} is compact,
there is thus a C > 0 such that∑

j,k

{
∂2ρ̃

∂xj∂xk

}
(P )wjwk ≥ C, ∀w ∈ RN such that |w| = 1.
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This establishes our inequality (2.1) for P ∈ ∂Ω fixed and w in the unit
sphere of RN . For arbitrary w, we set w = |w|ŵ, with ŵ in the unit sphere.
Then (2.1) holds for ŵ. Multiplying both sides of the inequality for ŵ by |w|2
and performing some algebraic manipulations gives the result for fixed P and
all w ∈ RN .

Finally, notice that our estimates—in particular the existence of C, hold
uniformly over points in ∂Ω near P. Since ∂Ω is compact, we see that the
constant C may be chosen uniformly over all boundary points of Ω.

Notice that the statement of the lemma has two important features: (i)
that the constant C may be selected uniformly over the boundary and (ii)
that the inequality (2.1) holds for all w ∈ RN (not just tangent vectors). In
fact it is impossible to arrange for anything like (2.1) to be true at a weakly
convex point.

Our proof shows in fact that (2.1) is true not just for P ∈ ∂Ω but for P
in a neighborhood of ∂Ω. It is this sort of stability of the notion of strong
convexity that makes it a more useful device than ordinary (weak) convexity.

Proposition 3. If Ω is strongly convex then Ω is geometrically convex.

Proof. We use a connectedness argument.
Clearly Ω×Ω is connected. Set S = {(P1, P2) ∈ Ω×Ω : (1−λ)P1 +λP2 ∈

Ω, all 0 < λ < 1}. Then S is plainly open and non-empty.
To see that S is closed, fix a defining function ρ̃ for Ω as in the Lemma. If

S is not closed in Ω× Ω then there exist P1, P2 ∈ Ω such that the function

t 7→ ρ̃((1− t)P1 + tP2)

assumes an interior maximum value of 0 on [0, 1]. But the positive definiteness
of the real Hessian of ρ̃ contradicts that assertion. The proof is complete.

We gave a special proof that strong convexity implies geometric convexity
simply to illustrate the utility of the strong convexity concept. It is possible
to prove that an arbitrary (weakly) convex domain is geometrically convex by
showing that such a domain can be written as the increasing union of strongly
convex domains. However the proof is difficult and technical. We thus give
another proof of this fact:

Proposition 4. If Ω is (weakly) convex then Ω is geometrically convex.

Proof. To simplify the proof we shall assume that Ω has at least C3 bound-
ary.

Assume without loss of generality that N ≥ 2 and 0 ∈ Ω. For ε > 0, let
ρε(x) = ρ(x) + ε|x|2M/M and Ωε = {x : ρε(x) < 0}. Then Ωε ⊆ Ωε′ if ε′ < ε
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and ∪ε>0Ωε = Ω. If M ∈ N is large and ε is small, then Ωε is strongly convex.
By Proposition 4, each Ωε is geometrically convex, so Ω is convex.

We mention in passing that a nice treatment of convexity, from roughly
the point of view presented here, appears in V. Vladimirov [12].

Proposition 5. Let Ω ⊂ ⊂ RN have C2 boundary and be geometrically con-
vex. Then Ω is (weakly) convex.

Proof. Seeking a contradiction, we suppose that for some P ∈ ∂Ω and some
w ∈ TP (∂Ω) we have

∑
j,k

∂2ρ

∂xj∂xk
(P )wjwk = −2K < 0. (2.2)

Suppose without loss of generality that coordinates have been selected in RN
so that P = 0 and (0, 0, . . . , 0, 1) is the unit outward normal vector to ∂Ω at
P. We may further normalize the defining function ρ so that ∂ρ/∂xN (0) = 1.
Let Q = Qt = tw+ ε · (0, 0, . . . , 0, 1), where ε > 0 and t ∈ R. Then, by Taylor’s
expansion,

ρ(Q) = ρ(0) +

N∑
j=1

∂ρ

∂xj
(0)Qj +

1

2

N∑
j,k=1

∂2ρ

∂xj∂xk
(0)QjQk + o(|Q|2)

= ε
∂ρ

∂xN
(0) +

t2

2

N∑
j,k=1

∂2ρ

∂xj∂xk
(0)wjwk +O(ε2) + o(t2)

= ε−Kt2 +O(ε2) + o(t2).

Thus, if t = 0 and ε > 0 is small enough, then ρ(Q) > 0. However, for that
same value of ε, if |t| >

√
2ε/K then ρ(Q) < 0. This contradicts the definition

of geometric convexity.

Remark: The reader can already see in the proof of the proposition how
useful the quantitative version of convexity can be.

The assumption that ∂Ω be C2 is not very restrictive, for convex functions
of one variable are twice differentiable almost everywhere (see A. Zygmund
[13]). On the other hand, C2 smoothness of the boundary is essential for our
approach to the subject.
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Exercises for the Reader: If Ω ⊆ RN is a domain then the closed convex
hull of Ω is defined to be the closure of the set

{∑m
j=1 λjsj : sj ∈ Ω,m ∈

N, λj ≥ 0,
∑
λj = 1

}
. Equivalently, the closed convex hull of Ω is the inter-

section of all closed, convex sets that contain Ω.

Assume in the following problems that Ω ⊆ RN is closed, bounded, and
convex. Assume that Ω has C2 boundary.

(a) We shall say more about extreme points in the penultimate section. For
now, a point P ∈ ∂Ω is extreme (for Ω convex) if, whenever P = (1−λ)x+λy
and 0 ≤ λ ≤ 1, x, y ∈ Ω, then x = y = P . Prove that Ω is the closed convex
hull of its extreme points (this result is usually referred to as the Krein-Milman
theorem and is true in much greater generality).

(b) Let P ∈ ∂Ω be extreme. Let p = P + TP (∂Ω) be the geometric tangent
affine hyperplane to the boundary of Ω that passes through P. Show by an
example that it is not necessarily the case that p ∩ Ω = {P}.
(c) Prove that if Ω0 is any bounded domain with C2 boundary then there is
a relatively open subset U of ∂Ω0 such that U is strongly convex. (Hint: Fix
x0 ∈ Ω0 and choose P ∈ ∂Ω0 that is as far as possible from x0).

(d) If Ω is a convex domain then the Minkowski functional2 (see [8]) less 1
gives a convex defining function for Ω.

4 Convex Functions and Exhaustion Functions.

Let F : RN → R be a function. We say that F is convex if, for any P,Q ∈ RN
and any 0 ≤ t ≤ 1, it hold that

F ((1− t)P + tQ) ≤ (1− t)f(P ) + tf(Q) .

In the case that F is C2, we may restrict F to the line passing through P and
Q and differentiate the function

ϕP,Q : t 7−→ F ((1− t)P + tQ)

twice to see (from calculus—reference [BLK]) that

d2

dt2
ϕP,Q ≥ 0 .

2A simple instance of the Minkowski functional is this. Let K ⊆ RN be convex. For
x ∈ RN , define

p(x) = inf{r > 0 : x ∈ rK} .
Then p is a Minkowski functional for K.
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If we set α = Q − P = (α1, α2, . . . , αN ), then this last result may be written
as

∂2

∂α2
F ≥ 0 .

This in turn may be rewritten as

∑
j,k

∂2

∂xj∂xk
αjαk ≥ 0 .

In other words, the Hessian of F is positive semi-definite.
In the case that a C2 function F has positive definite Hessian at each point

then we say that F is strictly convex or strongly convex.
The reasoning in the penultimate paragraph can easily be reversed to see

that the following is true:

Proposition 6. A C2 function on R is convex if and only if it has positive
semi-definite Hessian at each point of its domain.

Of course it is also useful to consider convex functions on a domain. Cer-
tainly we may say that F : Ω→ R is convex (with Ω a convex domain) if

∑
j,k

∂2

∂xj∂xk
(x)αjαk ≥ 0

for all (α1, . . . , αN ) and all points x ∈ Ω. Equivalently, F is convex on a
convex domain Ω if, whenever P,Q ∈ Ω and 0 ≤ λ ≤ 1 we have

F ((1− t)P + tQ) ≤ (1− t)F (P ) + tF (Q) .

It is straightforward to prove that any convex function is continuous. See
[13] or [12, p. 85]. Other properties of convex functions are worth noting. For
example, if f : Rn → R is convex and ϕ : R→ R is convex and increasing then
ϕ ◦ f is convex. Certainly the sum of any two convex functions is convex. If
{fα}α∈A is any family of convex functions then

f(x) ≡ sup
α∈A

fα(x)

is convex. The proof of this latter assertion is straightforward: If P,Q lie in
the common domain of the fα and 0 ≤ λ ≤ 1 and α ∈ A then

fα((1− λ)P + λQ) ≤ (1− λ)fα(P ) + λfα(Q) .
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Then certainly

fα((1− λ)P + λQ) ≤ (1− λ)f(P ) + λf(Q) .

Now take the supremum over α on the lefthand side to obtain the result.
It is always useful to be able to characterize geometric properties of do-

mains in terms of functions. For functions are more flexible objects than
domains: one can do more with functions. With this thought in mind we
make the following definition:

Definition 4. Let Ω ⊆ RN be a bounded domain. We call a function

λ : Ω→ R

an exhaustion function if, for each c ∈ R, the set

λ−1((−∞, c]) = {x ∈ Ω : λ(x) ≤ c}

is a compact subset of Ω.

The key idea here is that the function λ is real-valued and blows up at ∂Ω.

Theorem 7. A domain Ω ⊆ RN is convex if and only if it has a continuous,
convex exhaustion function.

Proof. If Ω possesses such an exhaustion function λ, then the domains

Ωk ≡ {x ∈ Ω : λ < k}

are convex. And Ω itself is the increasing union of the Ωk. It follows immedi-
ately, from the synthetic definition of convexity, that Ω is convex.

For the converse, observe that if Ω is convex and P ∈ ∂Ω, then the tangent
hyperplane at P has the form a · (x − P ) = 0. Here a is a Euclidean unit
vector. It then follows that the quantity a · (x−P ) is the distance from x ∈ Ω
to this hyperplane. Now the function

µa,P (x) ≡ − ln a · (x− P )

is convex since one may calculate the Hessian H directly. Its value at a point
x equals

H(b, b) =
(a · b)2

[a · (x− P )]2
≥ 0 .

If δΩ(x) is the Euclidean distance of x to ∂Ω, then

τΩ(x) ≡ − log δΩ(x) = sup
P∈∂Ω

[− log a · (x− P )] .
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Thus − log δΩ is a convex function that blows up at ∂Ω. Now set

λ(x) = max

{
τΩ(x), |x|2

}
.

This is a continuous, convex function that blows up at the boundary. So it is
the convex exhaustion function that we seek.

Lemma 8. Let F be a convex function on RN . Then there is a sequences
f1 ≥ f2 ≥ · · · of C∞, strongly convex functions such that fj → F pointwise.

Proof. Let ϕ be a C∞c function which is nonnegative and has integral 1. We
may also take ϕ to be supported in the unit ball, and be radial. For ε > 0 we
set

ϕε(X) = ε−Nϕ(x/ε) .

We define

Fε(x) = F ∗ ϕε(x) =

∫
F (x− t)ϕε(t) dt .

We assert that each Fε is convex. For let P,Q ∈ RN and 0 ≤ λ ≤ 1. Then

Fε((1− λ)P + λQ) =

∫
F ((1− λ)P + λQ− t)ϕε(t) dt

=

∫
F ((1− λ)(P − t) + λ(Q− t))ϕε(t) dt

≤
∫ [

(1− λ)F (P − t) + λF (Q− t)
]
ϕε(t) dt

= (1− λ)Fε(P ) + λFε(Q) .

So Fε is convex.
Now set

fj(x) = Fεj + δj |x|2 .
Certainly fj is strongly convex because Fε is convex and |x|2 strongly convex.
If εj > 0, δj > 0 are chosen appropriately, then we will have

f1 ≥ f2 ≥ . . .

and fj → F pointwise. That is the desired conclusion.

Proposition 9. Let F : RN → R be a continuous function. Then F is
convex if and only if, for any ϕ ∈ C∞c (RN ) with ϕ ≥ 0,

∫
ϕdx = 1, and any

w = (w1, w2, . . . , wN ) ∈ RN it holds that∫
RN

F (x)

∑
j,k

∂2ϕ

∂xj∂xk
(x)wjwk

 dx ≥ 0 .
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Proof. Assume that F is convex. In the special case that F ∈ C∞, we
certainly know that ∑

j,k

∂2F

∂xj∂xk
(x)wjwk ≥ 0 .

Hence it follows that∫
RN

∑
j,k

∂2F

∂xj∂xk
(x)wjwk · ϕ(x) dx ≥ 0 .

Now the result follows from integrating by parts twice (the boundary terms
vanish since ϕ is compactly supported).

Now the general case follows by approximating F as in the preceding
lemma.

For the converse direction, we again first treat the case when F ∈ C∞.
Assume that ∫

RN

∑
j,k

∂2ϕ

∂xj∂xk
(x)wjwk · F (x) dx ≥ 0

for all suitable ϕ. Then integration by parts twice gives us the inequality we
want.

For general F , let ψ be a nonnegative C∞c function, supported in the unit
ball, with integral 1. Set ψε(x) = ε−Nψ(x/ε). Let K = supp ϕ and let U be
the closure of an open set U that contains K. Define Fε(x) = F ∗ ψε(x) + cε,
where the constant cε is chosen so that Fε ≥ F on U . Then Fε → F pointwise
and ∫

RN

∑
j,k

∂2ϕ

∂xj∂xk
(x)wjwk · F (x) dx ≥ 0

certainly implies that∫
RN

∑
j,k

∂2ϕ

∂xj∂xk
(x)wjwk · Fε(x) dx ≥ 0 .

We may integrate by parts twice in this last expression to obtain∫
RN

ϕ(x)
∑
j,k

∂2Fε
∂xj∂xk

(x)wjwk dx ≥ 0 .

It follows that each Fε is convex. Thus

Fε((1− λ)P + λQ) ≤ (1− λ)Fε(P ) + λFε(Q)
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for every P,Q, λ. Letting ε→ 0+ yields that

F ((1− λ)P + λQ) ≤ (1− λ)F (P ) + λF (Q)

hence F is convex. That completes the proof.

For applications in the next theorem, it is useful to note the following:

Proposition 10. Any convex function f is subharmonic.

Proof. To see this, let P and P ′ be distinct points in the domain of f and
let X be their midpoint. Then certainly

2f(X) ≤ f(P ) + f(P ′) .

Let η be any special orthogonal rotation centered at X. We may write

2f(X) ≤ f(η(P )) + f(η(P ′)) .

Now integrate out over the special orthogonal group to derive the usual sub-
mean-value property for subharmonic functions.

The last topic is also treated quite elegantly in Chapter 3 of [4]. One may
note that the condition that the Hessian be positive semi-definite is stronger
than the condition that the Laplacen be nonnegative. That gives another
proof of our result.

Theorem 11. A domain Ω ⊆ RN is convex if and only if it has a C∞, strictly
convex exhaustion function.

Proof. Only the forward direction need be proved (as the converse direction
is contained in the last theorem).

We build the function up iteratively. We know by the preceding theorem
that there is a continuous exhaustion function λ. Let

Ωc = {x ∈ Ω : λ(x) + |x|2 < c}

for c ∈ R. Then each Ωc ⊂ ⊂ Ω and c′ > c implies that Ωc ⊂ ⊂ Ω′c. Now let
0 ≤ ϕ ∈ C∞c (RN ) with

∫
ϕdx = 1, ϕ radial. We may take ϕ to be supported

in B(0, 1). Let 0 < εj < dist(Ωj+1, ∂Ω). If x ∈ Ωj+1, set

λj(x) =

∫
Ω

[λ(t) + |t|2]ε−Nj ϕ((x− t)/εj) dV (t) + |x|2 + 1 .

Then each λj is C∞ and strictly convex on Ωj+1. Moreover, by the previously
noted subharmonicity of λ, we may be sure that λj(x) > λ(x) + |x|2 on Ωj .
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Now let χ ∈ C∞(R) be a convex function with χ(t) = 0 for t ≤ 0 and
χ′(t), χ′′(t) > 0 when t > 0. Note that, Ψj(x) ≡ χ(λj(x) − (j − 1)) is
positive and convex on Ωj \ Ωj−1 and is, of course, C∞. Notice now that
λ0 > λ on Ω0. If a1 is large and positive, then λ′1 ≡ λ0 + a1Ψ1 > λ on
Ω1. Inductively, if a1, a2, . . . a`−1 have been chosen, select a` > 0 such that

λ′` ≡ λ0 +
∑`
j=1 ajΨj > λ on Ω`.

Since Ψ`+k = 0 on Ω`, k > 0, we see that λ′`+k = λ′`+k′ on Ω` for any
k, k′ > 0. So the sequence λ′` stabilizes on compacta and λ′ ≡ lim`→∞ λ′` is a
C∞ strictly convex function that majorizes λ. Hence λ′ is the smooth, strictly
convex exhaustion function that we seek.

Corollary 12. Let Ω ⊆ RN be any convex domain. Then we may write

Ω =

∞⋃
j=1

Ωj ,

where this is an increasing union and each Ωj is strongly convex with C∞

boundary.

Proof. Let λ be a smooth, strictly convex exhaustion function for Ω. By
Sard’s theorem (see [6]), there is a strictly increasing sequence of values
cj → +∞ so that

Ωcj = {x ∈ Ω : λ(x) < cj}

has smooth boundary. Then of course each Ωcj is strongly convex. And the
Ωcj form an increasing sequence of domains whose union is Ω.

5 Other Characterizations of Convexity.

Let Ω ⊆ RN be a domain and let F be a family of real-valued functions on Ω
(we do not assume in advance that F is closed under any algebraic operations,
although often in practice it will be). Let K be a compact subset of Ω. Then
the convex hull of K in Ω with respect to F is defined to be

K̂F ≡
{
x ∈ Ω : f(x) ≤ sup

t∈K
f(t) for all f ∈ F

}
.

We sometimes denote this hull by K̂ when the family F is understood or
when no confusion is possible. We say that Ω is convex with respect to F
provided K̂F is compact in Ω whenever K is. When the functions in F are
complex-valued then |f | replaces f in the definition of K̂F .
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Proposition 13. Let Ω ⊂ ⊂ RN and let F be the family of real linear func-
tions. Then Ω is convex with respect to F if and only if Ω is geometrically
convex.

Proof. Exercise. Use the classical definition of convexity at the beginning of
the paper.

Proposition 14. Let Ω ⊂ ⊂ RN be any domain. Let F be the family of
continuous functions on Ω. Then Ω is convex with respect to F .

Proof. If K ⊂ ⊂ Ω and x 6∈ K then the function F (t) = 1/(1 + |x − t|) is
continuous on Ω. Notice that f(x) = 1 and |f(k)| < 1 for all k ∈ K. Thus

x 6∈ K̂F . Therefore K̂F = K and Ω is convex with respect to F .

We close this discussion of convexity with a geometric characterization of
the property. We shall, later in the paper, refer to this as the “segment char-
acterization”. First, if Ω ⊆ RN is a domain and I is a closed one-dimensional
segment lying in Ω then the boundary ∂I is the set consisting of the two end-
points of I. Now the domain Ω is convex if and only if, whenever {Ij}∞j=1 is a
collection of closed segments in Ω and {∂Ij} is relatively compact in Ω, then
so is {Ij}. This is little more than a restatement of the classical definition of
geometric convexity. We invite the reader to supply the details.

In fact the formulation in the last paragraph admits of many variants. One
of these is the following: If {Ij} is a collection of closed segments in Ω then

dist (∂Ij , ∂Ω)

is bounded from 0 if and only if

dist (Ij , ∂Ω)

is bounded from 0. The following example puts these ideas in perspective.

Example 5. Let Ω ⊆ R2 be

Ω = B((0, 0), 2) \B((1, 0), 1) .

Let
Ij = {(−1/j, t) : −1/2 ≤ t ≤ 1/2} .

Then it is clear that
{∂Ij}

is relatively compact in Ω while
{Ij}

is not. And of course Ω is not convex.
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6 Convexity of Finite Order.

There is a fundamental difference between the domains

B = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 < 1}

and

E = {x = (x1, x2) ∈ R2 : x2
1 + x4

2 < 1} .

Both of these domains are convex. The first of these is strongly convex and
the second is not. More generally, each of the domains

Em = {x = (x1, x2) ∈ R2 : x2
1 + x2m

2 < 1}

is, for m = 2, 3, . . . , weakly (not strongly) convex. Somehow the intuition
is that, as m increases, the domain Em becomes more weakly convex. Put
differently, the boundary points (±1, 0) are becoming flatter and flatter as m
increases.

We would like to have a way of quantifying, indeed of measuring, the
indicated flatness. These considerations lead to a new definition. We first
need a bit of terminology.

Let f be a function on an open set U ⊆ RN and let P ∈ U . We say that
f vanishes to order k at P if any derivative of f , up to and including order k,
vanishes at P . Thus, if f(P ) = 0 but ∇f(P ) 6= 0, then we say that f vanishes
to order 0. If f(P ) = 0, ∇f(P ) = 0, ∇2f(P ) = 0, and ∇3f(P ) 6= 0, then we
say that f vanishes to order 2.

Let Ω be a domain and P ∈ ∂Ω. Suppose that ∂Ω is smooth near P . We
say that the tangent plane TP (∂Ω) has order of contact k with ∂Ω at P if the
defining function ρ for Ω satisfies

|ρ(x)| ≤ C|x− P |k for all x ∈ TP (∂Ω) ,

and this same inequality does not hold with k replaced by k + 1.

Definition 6. Let Ω ⊆ RN be a domain and P ∈ ∂Ω a point at which the
boundary is at least Ck for k a positive integer. We say that P is convex of
order k if

• The point P is convex;

• The tangent plane to ∂Ω at P has order of contact k with the boundary
at P .
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Example 7. Notice that a point of strong convexity will be convex of order
2. The boundary point (1, 0) of the domain

E2k = {(x1, x2) ∈ R2 : x2
1 + x2k

2 < 1}

is convex of order 2k.

Proposition 15. Let Ω ⊆ RN be a bounded domain, and let P ∈ ∂Ω be
convex of finite order. Then that order is an even number.

Proof. Let m be the order of the point P .
We may assume that P is the origin and that the outward normal direction

at P is the x1 direction. If ρ is a defining function for Ω near P then we may
use the Taylor expansion about P to write

ρ(x) = 2x1 + ϕ(x) ,

and ϕ will vanish to order m. If m is odd, then the domain will not lie on one
side of the tangent hyperplane

TP (∂Ω) = {x : x1 = 0} .

So Ω cannot be convex.

A very important feature of convexity of finite order is its stability. We
formulate that property as follows:

Proposition 16. Let Ω ⊆ RN be a smoothly bounded domain and let P ∈ ∂Ω
be a point that is convex of finite order m. Then points in ∂Ω that are
sufficiently near P are also convex of finite order at most m.

Proof. Let Ω = {x ∈ RN : ρ(x) < 0}, where ρ is a defining function for Ω.
Then the “finite order” condition is given by the nonvanishing of a derivative
of ρ at P . Of course that same derivative will be nonvanishing at nearby
points, and that proves the result.

Proposition 17. Let Ω ⊆ RN be a smoothly bounded domain. Then there
will be a point P ∈ ∂Ω and a neighborhood U of P so that each point of
U ∩ ∂Ω will be convex of order 2 (i.e., strongly convex).

Proof. Let D be the diameter of Ω. We may assume that Ω is distance at
least 10D + 10 from the origin 0. Let P be the point of ∂Ω which is furthest
(in the Euclidean metric) from 0. Then P is the point that we seek.

Let L be the distance of 0 to P . Then we see that the sphere with center
0 and radius L externally osculates ∂Ω at P . Of course the sphere is strongly
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convex at the point of contact. Hence so is ∂Ω. By the continuity of second
derivatives of the defining function for Ω, the same property holds for nearby
points in the boundary. That completes the proof.

Example 8. Consider the domain

Ω = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x4
3 < 1} .

The boundary points of the form (a, b, 0) are convex of order 4. All others are
convex of order 2 (i.e., strongly convex).

It is straightforward to check that Euclidean isometries preserve convexity,
preserve strong convexity, and preserve convexity of finite order. Diffeomor-
phisms do not. In fact we have:

Proposition 18. Let Ω1, Ω2 be smoothly bounded domains in RN , let P1 ∈
∂Ω1 and P2 ∈ ∂Ω2. Let Φ be a diffeomorphism from Ω1 to Ω2 and assume
that Φ(P1) = P2. Further suppose that the Jacobian matrix of Φ at P1 is an
orthogonal linear mapping. Then we have:

• If P1 is a convex boundary point then P2 is a convex boundary point;

• If P1 is a strongly convex boundary point then P2 is a strongly convex
boundary point;

• If P1 is a boundary point that is convex of order 2k then P2 is a boundary
point that is convex of order 2k.

Proof. We consider the first assertion. Let ρ be a defining function for Ω1.
Then ρ ◦ Φ−1 will be a defining function for Ω2. Of course we know that the
Hessian of ρ at P1 is positive semi-definite. It is straightforward to calculate
the Hessian of ρ′ ≡ ρ ◦ Φ−1 and see that it is just the Hessian of ρ composed
with Φ applied to the vectors transformed under Φ−1. So of course ρ′ will
have positive semi-definite Hessian.

The other two results are verified using the same calculation.

Proposition 19. Let Ω be a smoothly bounded domain in RN . Let L be an
invertible linear map on RN . Define Ω′ = L(Ω). Then

• Each convex boundary point of Ω is mapped to a convex boundary point
of Ω′.

• Each strongly convex boundary point of Ω is mapped to a strongly con-
vex boundary point of Ω′.
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• Each boundary point of Ω that is convex of order 2k is mapped to a
boundary point of Ω′ that is convex of order 2k.

Proof. Obvious.

Maps which are not invertible tend to decrease the order of a convex point.
An example will illustrate this idea:

Example 9. Let Ω = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1} be the unit ball and
Ω′ = {(x1, x2) ∈ R2 : x4

1 + x4
2 < 1}. We see that

Φ(x1, x2) = (x2
1, x

2
2)

maps Ω′ onto Ω. And we see that Ω is strongly convex (i.e., convex of order
2 at each boundary point) while Ω′ has boundary points that are convex of
order 4. The points of order 4 are mapped by Φ to points of order 2.

7 Extreme Points.

A point P ∈ ∂Ω is called an extreme point if, whenever a, b ∈ ∂Ω and P =
(1− λ)a+ λb for some 0 ≤ λ ≤ 1 then a = b = P .

It is easy to see that, on a convex domain, a point of strong convexity
must be extreme, and a point that is convex of order 2k must be extreme.
But convex points in general are not extreme.

Example 10. Let

(Ω = {(x1, x2) ∈ R2 : |x1| < 1, |x2| < 1} .

Then Ω is clearly convex. But any boundary point with x1, x2 not both 1 is
not extreme.

For example, consider the boundary point (1/2, 1). Then

(1/2, 1) =
1

2
(1/4, 1) +

1

2
(3/4, 1) .

Example 11. Let Ω ⊆ R2 be the domain with boundary consisting of

• The segments from (−3/4, 1) to (3/4, 1), from (1, 3/4) to (1,−3/4), from
(3/4,−1) to (−3/4,−1), and from (−1, 3/4) to (−1,−3/4).

• The four circular arcs

(x+ 3/4)2 + (y − 3/4)2 =
1

16
, y ≥ 0 , x ≤ 0 ;
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(x− 3/4)2 + (y − 3/4)2 =
1

16
, y ≥ 0 , x ≥ 0 ;

(x− 3/4)2 + (y + 3/4)2 =
1

16
, y ≤ 0 , x ≥ 0 ;

(x+ 3/4)2 + (y + 3/4)2 =
1

16
, y ≤ 0 , x ≤ 0 ;

Then any point on any of the circular arcs is extreme. But no other boundary
point is extreme. Note, however, that the extreme points (−3/4, 1), (3/4, 1),
(1,−3/4), (1, 3/4), (−3/4,−1), (3/4,−1), (−1,−3, 4), and (−1, 3/4) are not
convex of finite order.

8 Support Functions.

Let Ω ⊆ RN be a bounded, convex domain with C2 boundary. If P ∈ ∂Ω then
let TP (∂Ω) be the tangent hyperplane to ∂Ω at P . We may take the outward
unit normal at P to be the positive x1 direction. Then the function

L(x) = x1

is a linear function that is negative on Ω and positive on the other side of
TP (Ω). The function L is called a support function for Ω at P . Note that if
we take the supremum of all support functions for all P ∈ ∂Ω then we obtain
a defining function for Ω.

The support function of course takes the value 0 at P . It may take the
value 0 at other boundary points—for instance in the case of the domain
{(x1, x2) : |x1| < 1, |x2| < 1}. But if Ω is convex and P ∈ ∂Ω is a point of
convexity of finite order 2k then the support function will vanish on ∂Ω only
at the point P . The same assertion holds when P is an extreme point of the
boundary.

9 Bumping.

One of the features that distinguishes a convex point of finite order from a
convex point of infinite order is stability. The next example illustrates the
point.

Example 12. Let

Ω = {(x, y) ∈ R2 : |x| < 1, |y| < 1} .

Let P be the boundary point (1/2, 1). Let U be a small open disc about P .

Then there is no open domain Ω̂ such that
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(a) Ω̂ ⊇ Ω and Ω̂ 3 P ;

(b) Ω̂ \ Ω ⊆ U ;

(b) Ω̂ is convex.

To see this assertion, assume not. Let x be a point of Ω̂ \ Ω. Let y be the

point (0.9, 0.9) ∈ Ω. Then the segment connecting x with y will not lie in Ω̂.

The example shows that a flat point in the boundary of a convex domain
cannot be perturbed while preserving convexity. But a point of finite order
can be perturbed:

Proposition 20. Let Ω ⊆ RN be a bounded, convex domain with Ck bound-
ary. Let P ∈ ∂Ω be a convex point of finite order m. Write Ω = {x ∈ RN :

ρ(x) < 0}. Let ε > 0. Then there is a perturbed domain Ω̂ = {x ∈ RN :
ρ̂(x) < 0} with Ck boundary such that

(a) Ω̂ ⊇ Ω;

(b) Ω̂ 3 P ;

(c) ∂Ω̂ \ Ω consists of points of finite order m;

(d) The Hausdorff distance of ∂Ω̂ and ∂Ω is less than ε.

Before we begin the proof, we provide a useful technical lemma:

Lemma 21. Let a be a fixed, positive number. Let α0, α1, . . . , αk and β0, β1, . . . , βk
and γ0 be real numbers. Then there is a concave-down polynomial polynomial
function y = p(x) so that

• p(0) = γ0;

• p(−a) = α0, p(a) = β0;

• p(j)(−a) = αj for j = 1, . . . , k;

• p(j)(a) = βj for j = 1, . . . , k.

Here the exponents in parentheses are derivatives.
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Proof of the Lemma. Define

gj(x) = x2j

and let h
θj
j be the function obtained from gj by rotating the coordinates (x, y)

through an angle of θj . Define

p(x) = c0 − (c1)2hθ11 (x)− (c2)2hθ22 (x)− · · · − (cp)
2hθpp (x) ,

some positive integer p. If p is large enough (at least k + 1), then there will
be more free parameters in the definition of p than there are constants αj , βj ,
and γ0. So we may solve for the cj and θj and thereby define p.

Proof of the Proposition. First let us consider the case N = 2. Fix
P ∈ ∂Ω as given in the statement of the proposition. We may assume without
loss of generality that P is the origin and the tangent line to ∂Ω at P is the
x-axis. We may further assume that Ω is so oriented that the boundary ∂Ω of
Ω near P is the graph of a concave-down function ϕ.

Let δ > 0 be small and let x and y be the two boundary points that are
horizontally distant δ from P (situated, respectively, to the left and to the
right of P ). If δ is sufficiently small, then the angle between the tangent lines
at x and at y will be less than π/6.

Now we think of P = (0, 0), γ0 = ε > 0, of x = (−a, α0), and of y = (a, β0).
Further, we set

αj = ϕ(j)(−a) , j = 1, . . . , k

and
βj = ϕ(j)(a) , j = 1, . . . , k .

Then we may apply the lemma to obtain a concave-down polynomial p which
agrees with ϕ to order k at the points of contact x and y.

Thus the domain Ω̂ which has boundary given by y = p(x) for x ∈ [−a, a]
and boundary coinciding with ∂Ω elsewhere (we are simply replacing the por-
tion of ∂Ω which lies between x and y by the graph of p) will be a convex
domain that bumps Ω provided that the degree of p does not exceed the finite
order of convexity m of ∂Ω near P . When the degree of p exceeds m, then the
graph y = p(x) may intersect ∂Ω between x and y, and therefore not provide
a geometrically valid bump.

For higher dimensions, we proceed by slicing. Let P ∈ ∂Ω be of finite order
m. Let TP (∂Ω) be the tangent hyperplane to ∂Ω at P as usual. If v is a unit
vector in TP (∂Ω) and νP the unit outward normal vector to ∂Ω at P , then
consider the 2-dimensional plane Pv spanned by v and νP . Then Ωv ≡ Pv∩Ω
is a 2-dimensional convex domain which is convex of order m at P ∈ ∂Ωv. We
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may apply the two-dimensional perturbation result to this domain. We do so
for each unit tangent vector v ∈ TP (∂Ω), noting that the construction varies
smoothly with the data vector v. The result is a smooth, perturbed domain
Ω̂ as desired.

It is worth noting that the proof shows that, when we bump a piece of
boundary that is convex of order m, then we may take the bump to be convex
of order 2 or 4 or any degree up to and including m (which of course is even).

It is fortunate that the matter of bumping may be treated more or less
heuristically in the present context. In several complex variables, bumping is
a more profound and considerably more complicated matter (see, for instance
[1]).

10 Concluding Remarks.

We have attempted here to provide the analytic tools so that convexity can
be used in works of geometric analysis. There are many other byways to be
explored in this vein, and we hope to treat them at another time.
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