Vasile Ene,* Ovidius University Constanţa, Romania Current address[†]: Quellenstraße 18, 63571 Gelnhausen, Germany; e-mail: gabrielaene@hotmail.com

ON A PROBLEM OF FAURE AND GUÉNARD

Abstract

In [3], Faure and Guénard put the following problem: Characterize the Denjoy*-integrable functions $f:[a,b]\to\overline{\mathbb{R}}$ that can be approximated by two Baire 1 functions g_{ϵ} and h_{ϵ} , $\epsilon>0$, that are \mathcal{D}^* -integrable. In the present article we show that this class of functions coincides with the class of all \mathcal{D}^* -integrable functions $f:[a,b]\to\overline{\mathbb{R}}$.

In [3], Faure and Guénard put the following problem, that can be written as follows:

Problem 1. Characterize the Denjoy*-integrable (short \mathcal{D}^* -integrable) functions $f:[a,b]\to \overline{\mathbb{R}}$ that can be approximated by two Baire 1 functions g_{ϵ} and h_{ϵ} that are \mathcal{D}^* -integrable, i.e., $\epsilon>0$, $g_{\epsilon}\leq f\leq h_{\epsilon}$, $g_{\epsilon}<\infty$, $h_{\epsilon}>-\infty$ and

$$(\mathcal{D}^*) \int_a^b (h_{\epsilon} - g_{\epsilon})(t) dt = (\mathcal{L}) \int_a^b (h_{\epsilon} - g_{\epsilon})(t) dt < \epsilon.$$

In what follows we show that the class of functions from Problem 1 coincides with the class of all \mathcal{D}^* -integrable functions $f:[a,b]\to \overline{\mathbb{R}}$.

We shall use the following well known classes of functions: C (the continuous functions), \mathcal{B}_1 (the Baire 1 functions), AC^*G and \underline{AC}^*G (see for example [6] or [2]).

Definition 1. ([6, p. 241] or [2, p. 175]). A function $f : [a, b] \to \mathbb{R}$ is said to be \mathcal{D}^* -integrable on [a, b] if there exists $F : [a, b] \to \mathbb{R}$ such that $F \in AC^*G \cap \mathcal{C}$ on [a, b] and F'(x) = f(x) a.e. on [a, b]. Then $(\mathcal{D}^*) \int_a^b f(t) dt = F(b) - F(a)$.

Key Words: Denjoy*-integral, Perron type integrals, Baire class 1.

Mathematical Reviews subject classification: 26A39

Received by the editors December 10, 1998

^{*}The author died on November 11, 1998 at the age of 41 years.

[†]At this address you can contact the author's wife Gabriela Ene.

VASILE ENE

Remark 1. There exist a lot of integrals of Perron type that are equivalent to the \mathcal{D}^* -integral. In [2] we gathered many of these definitions and classified them: for example the Perron type integral defined in [4, p. 158] is called $\mathcal{P}_{7,7}$ in [2] (note that this is the same integral as the one used in [3]), and the \mathcal{P}_0 integral of [6] is called $\mathcal{P}_{3,3}$ in [2]. In what follows we shall need the $\mathcal{P}_{1,1}$ -integral and the $\mathcal{P}_{8,8}$ -integral of [2].

Definition 2. [2, p. 31] Let $P \subseteq [a,b]$, $x_o \in P$ and $F: P \to \mathbb{R}$. F is said to be C_i at x_o if $\limsup_{x \nearrow x_o, x \in P} F(x) \le F(x_o)$, whenever x_o is a left accumulation point for P, and $F(x_o) \le \liminf_{x \searrow x_o, x \in P} F(x)$, whenever x_o is a right accumulation point for P. F is said to be C_i on P if it is so at each point $x \in P$.

Definition 3. [2, pp. 174-175] Let $f:[a,b]\to \overline{\mathbb{R}}$. We define the following classes of majorants:

- $\overline{\mathcal{M}}_1(f) = \{M : [a,b] \to \mathbb{R} : M(a) = 0, M \in AC^*G \cap \mathcal{C}; M'(x) \text{ exists (finite or infinite)}; f(x) \leq M'(x) \neq -\infty\};$
- $\overline{\mathcal{M}}_8(f) = \{M : [a,b] \to \mathbb{R} : M(a) = 0, M \in \underline{AC}^*G \cap \mathcal{C}_i \text{ on } [a,b]; f(x) \leq M'(x) \text{ a.e. on } [a,b]\};$

We define the following classes of minorants:

- $\underline{\mathcal{M}}_1(f) = \{m : [a, b] \to \mathbb{R} : -m \in \overline{\mathcal{M}}_1(f)\};$
- $\bullet \ \underline{\mathcal{M}}_8(f) = \{m: [a,b] \to \mathbb{R} \, : \, -m \in \overline{M}_8(f)\};$

If $\overline{\mathcal{M}}_1(f) \neq \emptyset$ (respectively $\overline{\mathcal{M}}_8(f) \neq \emptyset$), then we denote by $\overline{I}_1(b)$ (respectively $\overline{I}_8(b)$) the lower bound of all M(b), M in $\overline{\mathcal{M}}_1(f)$ (respectively $\overline{\mathcal{M}}_8(f)$). If $\underline{\mathcal{M}}_1(f) \neq \emptyset$ (respectively $\underline{\mathcal{M}}_8(f) \neq \emptyset$) then we denote by $\underline{I}_1(b)$ (respectively $\underline{I}_8(b)$) the upper bound of all m(b), m in $\underline{\mathcal{M}}_1(f)$ (respectively $\underline{\mathcal{M}}_8(f)$).

- f is said to have a $\mathcal{P}_{1,1}$ -integral on [a,b] if $\overline{M}_1(f) \times \underline{M}_1(f) \neq \emptyset$ and $\overline{I}_1(b) = \underline{I}_1(b) = (\mathcal{P}_{1,1}) \int_a^b f(t) \, dt$.
- f is said to have a $\mathcal{P}_{8,8}$ -integral on [a,b] if $\overline{M}_8(f) \times \underline{M}_8(f) \neq \emptyset$ and $\overline{I}_8(b) = \underline{I}_8(b) = (\mathcal{P}_{8,8}) \int_a^b f(t) \, dt$.

Remark 2. Following Bruckner [1], let $\Delta = \{f : [a,b] \to \overline{\mathbb{R}} : f \text{ is a derivative (finite or infinite), i.e., there exists <math>F : [a,b] \to \mathbb{R}$ such that $F' = f\}$. Then $\Delta \subset \mathcal{B}_1$ (see Theorem 2.2.4 of [2, p. 30], or see Corollary 2.4 and Remark 90 of [1, p. 90] and the classification of the Zahorski classes, or [7], or [5]).

Definition 4. We denote by $\underline{\mathcal{B}}_1$ the class of all functions $f:[a,b]\to \overline{\mathbb{R}}$ that are lower semi Baire 1, i.e., the set $\{x\in [a,b]: f(x)>\alpha\}$ is of F_{σ} -type for $\alpha\in [-\infty,+\infty)$. Similarly $\overline{\mathcal{B}}_1$ is the class of all functions $f:[a,b]\to \overline{\mathbb{R}}$ that are upper semi Baire 1, i.e., the set $\{x\in [a,b]: f(x)<\alpha\}$ is of F_{σ} -type for $\alpha\in (-\infty,+\infty]$. Clearly $\mathcal{B}_1=\underline{\mathcal{B}}_1\cap \overline{\mathcal{B}}_1$.

Note that in [3], these two classes are denoted by C^{-+} respectively C^{+-} .

Theorem 1. Let $f:[a,b] \to \overline{\mathbb{R}}$. The following assertions are equivalent:

- (i) f is \mathcal{D}^* -integrable on [a,b];
- (ii) For any $\epsilon > 0$ there exist two \mathcal{D}^* -integrable functions $g_{\epsilon} : [a,b] \to [-\infty, +\infty)$ and $h_{\epsilon} : [a,b] \to (-\infty, +\infty]$ such that:
 - $g_{\epsilon}, h_{\epsilon} \in \Delta \ on [a, b];$
 - $g_{\epsilon} \leq f \leq h_{\epsilon} \text{ and } (\mathcal{D}^*) \int_a^b (h_{\epsilon} g_{\epsilon})(t) dt < \epsilon;$
- (iii) Replace in (ii) " $g_{\epsilon}, h_{\epsilon} \in \Delta$ " by " $g_{\epsilon}, h_{\epsilon} \in \mathcal{B}_1$ ";
- (iv) Replace in (ii) " $g_{\epsilon}, h_{\epsilon} \in \Delta$ " by " $g_{\epsilon} \in \overline{\mathcal{B}}_1, h_{\epsilon} \in \underline{\mathcal{B}}_1$ ".

PROOF. (i) \Rightarrow (ii) From [2, Corollary 5.9.1], it follows that f is \mathcal{D}^* integrable on [a, b] if and only if f is $\mathcal{P}_{1,1}$ integrable on [a, b], and then

$$(\mathcal{D}^*) \int_a^b f(t) dt = (\mathcal{P}_{1,1}) \int_a^b f(t) dt.$$

By [2, Lemma 5.7.5], we have that f is \mathcal{D}^* -integrable on [a,b] if and only if for $\epsilon > 0$ there is a pair $(M_{\epsilon}, m_{\epsilon}) \in \overline{\mathcal{M}}_1(f) \times \underline{\mathcal{M}}_1(f) \neq \emptyset$ such that $M_{\epsilon}(b) - m_{\epsilon}(b) < \epsilon$. Putting $g_{\epsilon} = m'_{\epsilon}$ and $h_{\epsilon} = M'_{\epsilon}$ we obtain (ii).

- $(ii) \Rightarrow (iii)$ See Remark 2.
- $(iii) \Rightarrow (iv)$ This is evident.
- $(iv) \Rightarrow (i)$ Let

$$M_{\epsilon}(x) = (\mathcal{D}^*) \int_a^x h_{\epsilon}(t) dt$$
 and $m_{\epsilon}(x) = (\mathcal{D}^*) \int_a^x g_{\epsilon}(t) dt$.

Then $(M_{\epsilon}, m_{\epsilon}) \in \overline{\mathcal{M}}_{8}(f) \times \underline{\mathcal{M}}_{8}(f) \neq \emptyset$. By [2, Lemma 5.7.5] it follows that f is $\mathcal{P}_{8,8}$ -integrable on [a,b], and by [2, Corollary 5.9.1], we obtain that f is \mathcal{D}^* -integrable on [a,b].

Remark 3. Theorem 1, (i), (iv) is in fact Theorem C, 1), 2) of Faure and Guénard [3]. Theorem 1, (i), (iii) solves the Problem 1.

888 Vasile Ene

References

[1] A. M. Bruckner, *Differentiation of real functions*, Lect. Notes in Math., vol. 659, Springer-Verlag, 1978.

- [2] V. Ene, Real functions current topics, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
- [3] C. A. Faure and F. Guénard, Upper and lower approximation of Perron integrable functions, Real Analysis Exchange 22 (1996/7), no. 2, 626–637.
- [4] I. P. Natanson, *Theory of functions of a real variable*, 2nd. rev. ed., Ungar, New York, 1961.
- [5] D. Preiss, Approximate derivatives and Baire classes, Czech. Math. J. 21 (1971), no. 96, 373–382.
- [6] S. Saks, *Theory of the integral*, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.
- [7] Z. Zahorski, Über die Menge der Puncte in welchen die Ableitung unendlich ist, Tôhoku Math. J. **48** (1941), 321–330.