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ON A PROBLEM OF FAURE AND
GUÉNARD

Abstract

In [3], Faure and Guénard put the following problem: Characterize
the Denjoy∗-integrable functions f : [a, b] → R that can be approximated
by two Baire 1 functions gε and hε, ε > 0, that are D∗-integrable. In
the present article we show that this class of functions coincides with
the class of all D∗-integrable functions f : [a, b] → R.

In [3], Faure and Guénard put the following problem, that can be written
as follows:

Problem 1. Characterize the Denjoy∗-integrable (short D∗-integrable) func-
tions f : [a, b]→ R that can be approximated by two Baire 1 functions gε and
hε that are D∗-integrable, i.e., ε > 0, gε ≤ f ≤ hε, gε <∞, hε > −∞ and

(D∗)
∫ b

a

(hε − gε)(t) dt = (L)
∫ b

a

(hε − gε)(t) dt < ε .

In what follows we show that the class of functions from Problem 1 coin-
cides with the class of all D∗-integrable functions f : [a, b]→ R.

We shall use the following well known classes of functions: C (the continu-
ous functions), B1 (the Baire 1 functions), AC∗G and AC∗G (see for example
[6] or [2]).

Definition 1. ([6, p. 241] or [2, p. 175]). A function f : [a, b]→ R is said to
be D∗-integrable on [a, b] if there exists F : [a, b]→ R such that F ∈ AC∗G∩C
on [a, b] and F ′(x) = f(x) a.e. on [a, b]. Then (D∗)

∫ b
a
f(t) dt = F (b)− F (a).
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Remark 1. There exist a lot of integrals of Perron type that are equivalent
to the D∗-integral. In [2] we gathered many of these definitions and classified
them: for example the Perron type integral defined in [4, p. 158] is called
P7,7 in [2] (note that this is the same integral as the one used in [3]), and
the P0 integral of [6] is called P3,3 in [2]. In what follows we shall need the
P1,1-integral and the P8,8-integral of [2].

Definition 2. [2, p. 31] Let P ⊆ [a, b], xo ∈ P and F : P → R. F is
said to be Ci at xo if lim supx↗xo,x∈P F (x) ≤ F (xo), whenever xo is a left
accumulation point for P , and F (xo) ≤ lim infx↘xo,x∈P F (x), whenever xo is
a right accumulation point for P . F is said to be Ci on P if it is so at each
point x ∈ P .

Definition 3. [2, pp. 174-175] Let f : [a, b] → R. We define the following
classes of majorants:

• M1(f) = {M : [a, b] → R : M(a) = 0, M ∈ AC∗G ∩ C; M ′(x) exists
(finite or infinite); f(x) ≤M ′(x) 6= −∞};

• M8(f) = {M : [a, b] → R : M(a) = 0, M ∈ AC∗G ∩ Ci on [a, b];
f(x) ≤M ′(x) a.e. on [a, b]};

We define the following classes of minorants:

• M1(f) = {m : [a, b]→ R : −m ∈M1(f)};

• M8(f) = {m : [a, b]→ R : −m ∈M8(f)};

IfM1(f) 6= ∅ (respectivelyM8(f) 6= ∅), then we denote by I1(b) (respectively
I8(b)) the lower bound of all M(b), M in M1(f) (respectively M8(f)).
IfM1(f) 6= ∅ (respectivelyM8(f) 6= ∅) then we denote by I1(b) (respectively
I8(b)) the upper bound of all m(b), m in M1(f) (respectively M8(f)).

• f is said to have a P1,1-integral on [a, b] if M1(f) × M1(f) 6= ∅ and
I1(b) = I1(b) = (P1,1)

∫ b
a
f(t) dt .

• f is said to have a P8,8-integral on [a, b] if M8(f) × M8(f) 6= ∅ and
I8(b) = I8(b) = (P8,8)

∫ b
a
f(t) dt .

Remark 2. Following Bruckner [1], let ∆ = {f : [a, b]→ R : f is a derivative
(finite or infinite), i.e., there exists F : [a, b] → R such that F ′ = f}. Then
∆ ⊂ B1 (see Theorem 2.2.4 of [2, p. 30], or see Corollary 2.4 and Remark 90
of [1, p. 90] and the classification of the Zahorski classes, or [7], or [5]).
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Definition 4. We denote by B1 the class of all functions f : [a, b] → R that
are lower semi Baire 1, i.e., the set {x ∈ [a, b] : f(x) > α} is of Fσ-type for
α ∈ [−∞,+∞). Similarly B1 is the class of all functions f : [a, b] → R that
are upper semi Baire 1, i.e., the set {x ∈ [a, b] : f(x) < α} is of Fσ-type for
α ∈ (−∞,+∞]. Clearly B1 = B1 ∩ B1.

Note that in [3], these two classes are denoted by C−+ respectively C+−.

Theorem 1. Let f : [a, b]→ R. The following assertions are equivalent:

(i) f is D∗-integrable on [a, b];

(ii) For any ε > 0 there exist two D∗-integrable functions gε : [a, b] →
[−∞,+∞) and hε : [a, b]→ (−∞,+∞] such that:

• gε, hε ∈ ∆ on [a, b];

• gε ≤ f ≤ hε and (D∗)
∫ b
a

(hε − gε)(t) dt < ε;

(iii) Replace in (ii) “gε, hε ∈ ∆” by “gε, hε ∈ B1”;

(iv) Replace in (ii) “gε, hε ∈ ∆” by “gε ∈ B1, hε ∈ B1”.

Proof. (i) ⇒ (ii) From [2, Corollary 5.9.1], it follows that f is D∗ integrable
on [a, b] if and only if f is P1,1 integrable on [a, b], and then

(D∗)
∫ b

a

f(t) dt = (P1,1)
∫ b

a

f(t) dt .

By [2, Lemma 5.7.5], we have that f is D∗-integrable on [a, b] if and only if for
ε > 0 there is a pair (Mε,mε) ∈M1(f)×M1(f) 6= ∅ such that Mε(b)−mε(b) <
ε. Putting gε = m′ε and hε = M ′ε we obtain (ii).

(ii) ⇒ (iii) See Remark 2.
(iii) ⇒ (iv) This is evident.
(iv) ⇒ (i) Let

Mε(x) = (D∗)
∫ x

a

hε(t) dt and mε(x) = (D∗)
∫ x

a

gε(t) dt .

Then (Mε,mε) ∈ M8(f) ×M8(f) 6= ∅. By [2, Lemma 5.7.5] it follows that
f is P8,8-integrable on [a, b], and by [2, Corollary 5.9.1], we obtain that f is
D∗-integrable on [a, b].

Remark 3. Theorem 1, (i), (iv) is in fact Theorem C, 1), 2) of Faure and
Guénard [3]. Theorem 1, (i), (iii) solves the Problem 1.
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