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COMMUTING FUNCTIONS

Abstract

Alikhani-Koopaei has recently conjectured that two commuting con-
tinuous functions typically share no periodic points. After discussing the
history behind Alikhani-Koopaei’s conjecture, we use the Baire Category
Theorem to investigate the likelihood that two commuting continuous
functions have disjoint sets of periodic points, as well as the structure
of the set F = {g ∈ C(I, I) : gf = fg}. We then turn our attention
to the iterative properties possessed by commuting pairs of continuous
functions.

1 Introduction

Throughout the better part of this century, the subject of commuting functions
defined on an interval has received considerable attention. In the 1920’s, J. F.
Ritt published several papers in which he investigated the algebraic properties
of function composition as a binary operation on the set of rational complex
functions. In particular, he was able to show that commuting polynomials
always have a common fixed point. In 1954, Eldon Dyer asked whether two
commuting continuous functions must always share a fixed point; A. J. Shields
posed this question in 1955, as did Lester Dubins in 1956. As a partial answer,
A. J. Schwartz was able to show that if one of the two commuting continuous
functions is also continuously differentiable, then it would necessarily follow
that the functions share a periodic point. He published these results in 1965
[6]. It was not until 1967, however, that Dyer’s fixed point problem was finally
solved. In his doctoral dissertation at Tulane University, William M. Boyce
constructed a pair of continuous functions f and g defined on the unit interval
for which fg(x) = gf(x) for all x ∈ [0, 1], yet have no fixed point in common
[3]. Six months later, John Huneke submitted two methods of constructing
commuting functions that also solve the fixed point problem [5].
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More recently, Aliasghar Alikhani-Koopaei has turned his attention to com-
muting continuous functions and the question of whether two such functions
must always share a periodic point [2] [1]. Recently, Alikhani-Koopaei has con-
jectured that two commuting continuous functions will typically have disjoint
sets of periodic points. In this paper, we investigate some aspects of Alikhani-
Koopaei’s conjecture as well as develop generalizations of, and alternate proofs
for, some earlier results.

We proceed through four sections. In section 2 we present the notation and
definitions we will use throughout the text. We also recall a few important,
previously known results. In section 3 we use the Baire Category Theorem
in an effort to better understand Alikhani-Koopaei’s conjecture, as well as
discuss a possible solution. Our fourth section is dedicated to the iterative
properties of commuting pairs of continuous functions; it is here that we are
able to develop some new proofs to old results, and extend them a bit. We
conclude with a few observations in our final section.

2 Preliminaries

We will be concerned with the class C(I, I) of continuous functions mapping
the unit interval I = [0, 1] into itself, and the properties that commuting mem-
bers of this class possess. For f ∈ C(I, I), and any integer n ≥ 1, fn denotes
the nth iterate of f . Let Fn(f) = {x ∈ I : fn(x) = x}, F (f) = F1(x), Pn(f) =
{x ∈ I : fn(x) = x, fm(x) 6= x whenever m | n}, and P (f) = ∪∞n=1Pn(f).
Then Fn(f) is the set of points in I left fixed by fn, Pn(f) represents those
points which are periodic under f with period n, and P (f) is the set of f ’s pe-
riodic points. Suppose x ∈ Pn(f). If fn(x)−x is not unisigned in any deleted
neighborhood of x, we call x a stable periodic point of f , and write x ∈ S(f).
For all x ∈ I, let O(x, f) = {x, f(x), f2(x), ....} be the orbit of x under f ,
and take ω(x, f) — the ω-limit set of f generated by x — to be the set of all
subsequential limits of O(x, f). We let Ω(f) = {ω(x, f) : x ∈ I} represent the
set of a function’s ω-limit sets. A point x is said to be a recurrent point of f
if x ∈ ω(x, f). We let R(f) represent the set of recurrent points of f .

We now recall a couple results that will be of use to us in the sequel.
The first is Sarkovskii’s well known result concerning the ordering of periodic
orbits; the second is from [4].

Theorem 2.1. Let the positive integers be totally ordered in the following way:
1 < 2 < 22 < 23 < ... < 22◦5 < 22◦3 < ... < 2◦5 < 2◦3 < ... < 9 < 7 < 5 < 3.
If f ∈ C(I, I) has a periodic orbit of period n, and if n > m, then f also has
a periodic orbit of period m.

Theorem 2.2. If f : I −→ I is continuous, then P (f) = R(f).
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With our definitions for Fn(f), Pn(f) and P (f) in mind, we record the
following elementary results. These will be used extensively in the ensuing
sections.

Lemma 2.1. Let f : I −→ I be continuous.

• For any n, Fn(f) is closed.
• For any n, Fn(f) is either nowhere dense, or Fn(f) contains an interval.
• For any n, Fn(f) = ∪m|nPm(f).

Let us now turn our attention to the Baire Category Theorem. Let (X, ρ)
be a metric space. A set is of the first category in (X, ρ) if it can be written
as a countable union of nowhere dense sets; otherwise, the set is of the second
category. A set is residual if it is the complement of a first category set; an
element of a residual subset of (X, ρ) is called a typical element of X. With
these definitions in mind, we recall Baire’s theorem on category.

Theorem 2.3. Let (X, ρ) be a complete metric space, with S a first category
subset of X. Then X − S is dense in X.

Since much of our work will take place in the complete metric space
(C(I, I), ‖ ◦ ‖), where ‖f − g‖ = sup{| f(x) − g(x) |: x ∈ I}, we will have
the opportunity to make good use of Baire’s Theorem. When working in
(C(I, I), ‖ ◦ ‖), we let Bε(f) = {g ∈ C(I, I) : ‖f − g‖ < ε}.

3 Category Results

At the Twenty-first Summer Symposium in Real Analysis, Alikhani-Koopaei
conjectured that for the typical pair of commuting continuous functions f and
g, one will find that P (f) ∩ P (g) = ∅. With this conjecture in mind, we
develop a couple of results which give some indication of the likelihood that
two continuous functions commute, and that two continuous functions share
no periodic points. Given the difficulty of finding two commuting functions
that share no fixed points, constructing a pair of commuting functions that
have no periodic points in common may be quite challenging. To attempt to
prove the existence of such a pair with the Baire Category Theorem seems
reasonable.

We begin this section with a summary of the results addressing the likeli-
hood that two continuous functions have disjoint sets of periodic points.

Theorem 3.1. There exists a residual set S ⊂ C(I, I) for which P (f) is a
first category set, for every f ∈ S. Moreover, for each f in S there exists a
residual set L(f) ⊂ C(I, I) such that g ∈ L(f) implies
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• P (f) ∩ P (g) = ∅,
• P (g) is of the first category, and
• Fm(g) is nowhere dense for each m ∈ N.

Before we prove these results, we should note that this theorem comple-
ments a result found in [1] for a particular type of contraction mapping so that
for every function f in S, there is a dense set of functions L(f) in C(I, I) with
which f shares no periodic points. We begin our development of Theorem 3.1
with a characterization of those functions for which P (f) is a first category
set.

Lemma 3.1. Let f ∈ C(I, I). Then P (f) is of the first category if and only
if P (f) does not contain an interval.

Proof. The necessity of our theorem follows from the Baire Category Theo-
rem. Now, suppose P (f) is not a first category set. Since P (f) = ∪n∈NFn(f),
there exists an n so that Fn(f) is not nowhere dense. Since Fn(f) is closed
and somewhere dense, Fn(f) contains an interval, so that P (f) contains an
interval, too.

With Lemma 3.1 we are now able to prove the existence of the set S found
in Theorem 3.1. In order to show that there is a residual set S ⊂ C(I, I) for
which each member has a first category set of periodic points, it suffices to
show that only a first category collection of functions in C(I, I) have a set of
periodic points containing an interval.

Lemma 3.2. There exists a residual set S ⊂ C(I, I) such that P (f) is of the
first category for every f in S.

Proof. We wish to show that the set {f ∈ C(I, I) : P (f) contains an interval}
is of the first category. Since P (f) = ∪n∈NFn(f), it suffices to show that
{f ∈ C(I, I) : Fm(f) contains an interval} is a first category set. To this end,
let Qn be an enumeration of the rational intervals (a, b), where a, b ∈ Q∩[0, 1].
We show that {f ∈ C(I, I) : Qn ⊂ Fm(f)} is nowhere dense in C(I, I). Let
f ∈ C(I, I) for which Qn ⊂ Fm(f), and let ε > 0. Now, take g ∈ Bε(f)
such that Qn is not contained in Fm(g). Then there exists x ∈ Qn such that
| x− gm(x) |= σ > 0. Choose δ > 0 so that h ∈ Bδ(g) implies ‖hp − gp‖ < σ
for p = 1, 2, ...m. Then | x − hm(x) |> 0, and Qn is not contained in Fm(h).
We conclude that {f ∈ C(I, I) : Qn ⊂ Fm(f)} is nowhere dense in C(I, I).

We now prove the first part of our theorem with the following lemma.

Lemma 3.3. Let f : I −→ I be continuous. If P (f) is of the first category,
then there exists a residual set F ⊂ C(I, I) so that P (f) ∩ P (g) = ∅ for all
g ∈ F .
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Proof. Let P (f) = ∪∞n=1Sn, where Sn is nowhere dense for each n. It suffices
to show that Σn = {g ∈ C(I, I) : P (g) ∩ Sn 6= ∅} is of the first category, so
that, in turn, one need only show that Σnm = {g ∈ C(I, I) : Fm(g) ∩ Sn 6= ∅}
is nowhere dense in C(I, I). Let g ∈ C(I, I) for which Fm(g) ∩ Sn 6= ∅, and
let ε > 0. Since Sn is nowhere dense, there exists h ∈ C(I, I) such that
‖h− g‖ < ε, and Fm(h) ∩ Sn = ∅. Let σ = min{| hm(x)− x |: x ∈ Sn}. Now,
choose δ > 0 so that ‖l−h‖ < δ implies ‖lp−hp‖ < σ for p = 1, 2, ...,m. Since
Fm(l) ∩ Sn = ∅ whenever l ∈ Bδ(h), our conclusion follows.

The proof of the other two parts of Theorem 3.1 now follow easily.
Proof of Theorem 3.1. Let S be the residual set in C(I, I) found in Lemma
3.2, and fix f ∈ S. Now, let F be that residual set in C(I, I) found in Lemma
3.3. Set L(f) = S ∩ F . Then our first two parts follow immediately, with our
last assertion a consequence of Lemma 3.1.

Without the assurance that P (f) is of the first category, Alikhani-Koopaei’s
conjecture may fail. Suppose we have a commuting pair of continuous func-
tions f and g, and P (f) contains an interval (a, b). If (a, b) contains a stable
periodic point of g, then every function sufficiently close to g will also contain
a periodic point in (a, b), so that a closed and somewhere dense subset of those
functions commuting with f will share at least one periodic point with f .

We now turn our attention to the structure of the set F = {g ∈ C(I, I) :
gf = fg} for a particular continuous function f . We summarize our results in
the following theorem.

Theorem 3.2. If f : I −→ I is continuous, then the set F = {g ∈ C(I, I) :
gf = fg} is closed in (C(I, I), ‖ ◦ ‖), nonempty, and closed under composi-
tion. Moreover, if f is not the identity function, then F is nowhere dense in
(C(I, I), ‖ ◦ ‖).

We begin our development of Theorem 3.2 by showing that F is indeed
closed in C(I, I), and nonempty.

Lemma 3.4. Let f ∈ C(I, I). The set F = {g ∈ C(I, I) : gf = fg} is closed
in (C(I, I), ‖ ◦ ‖), and nonempty.

Proof. That F is nonempty for every f ∈ C(I, I) follows from the fact that
the identity function commutes with every function. Now, suppose {gn} ⊂ F
such that gn −→ g. We show that g ∈ F . Let x ∈ I, and ε > 0. Since
f is uniformly continuous, there exists δ > 0 so that | a − b |< δ implies
| f(a)− f(b) |< ε for every a, b in I. Since gn −→ g, there exists N ∈ N such
that n > N implies ‖gn − g‖ < δ. Thus, if n > N, then | fgn(x)− fg(x) |< ε,
so that fgn = gnf −→ fg. Similarly, gnf = fgn −→ gf , and fg = gf .

To see that F is closed under composition, suppose that g and h are in
F . Then f(gh) = (fg)h = (gf)h = g(fh) = g(hf) = (gh)f , so that gh is
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an element of F . Similarly, hg is also in F . We now show that F is nowhere
dense for any function f other than the identity function.

Lemma 3.5. Suppose f ∈ C(I, I) is not the identity function, and set F =
{g ∈ C(I, I) : gf = fg}. Then F is nowhere dense in (C(I, I), ‖ ◦ ‖).

Proof. Let ε > 0, g ∈ F and choose x ∈ I so that f(x) 6= x. Let h ∈ Bε(g)
for which h(x) = g(x), but h(f(x)) 6= g(f(x)). Then hf(x) 6= gf(x) =
fg(x) = fh(x), so that h /∈ F . Set σ =| hf(x)− fh(x) |. Since f is uniformly
continuous, there exists δ > 0 so that | a − b |< δ implies | f(a) − f(b) |<
σ
2 . Let 0 < α < min{σ2 , δ}. If l ∈ Bα(h), then | fh(x) − fl(x) |< σ

2 and
| hf(x) − lf(x) |< σ

2 , so that | lf(x) − fl(x) |6= 0, and l /∈ F . We conclude
that F is nowhere dense.

Let us now turn our attention to what, atleast at first glance, looks like a
promising method for proving Alikhani-Koopaei’s conjecture.

Conjecture 3.1. Let f : I −→ I be a continuous function for which P (f) is
of the first category. Say P (f) = ∪∞n=1Sn, where Sn is nowhere dense in [0, 1]
for each natural number n, and let F = {g ∈ C(I, I) : gf = fg}. Then the
typical element g ∈ F has the property that P (f) ∩ P (g) = ∅.

Proof outline. Since our set F is a closed subset of the complete metric
space (C(I, I), ‖◦‖), we can use the Baire Category Theorem. Let Σnm = {g ∈
F : Sn ∩ Fm(g) = ∅}. Since {g ∈ F : P (f) ∩ P (g) 6= ∅} ⊂ ∪∞n=1 ∪∞m=1 Σnm, it
suffices to show that Σnm ⊂ F is nowhere dense. Let ε > 0, with g ∈ F∩Σnm.
This set is nonempty since F ∩ Σnm contains the identity function for all
f ∈ C(I, I), and n,m in N. Now, choose h ∈ F so that ‖g − h‖ < ε, and
Sn∩Fm(h) = ∅. Since Sn∩Fm(h) = ∅, there exists δ > 0 for which ‖l−h‖ < δ
implies Sn ∩ Fm(l) = ∅, too. It follows, then, that Σnm is nowhere dense.

The difficulty in this approach comes in finding an h ∈ F for which
‖g − h‖ < ε, and Sn ∩ Fm(h) = ∅. Since F = {g ∈ C(I, I) : gf = fg} is
a nowhere dense set in C(I, I), it is entirely possible that F has a null inter-
section with the residual set {g ∈ C(I, I) : P (g) ∩ P (f) = ∅}. Also, given
the complicated structure of the constructions in [5] and [6], attempting to
construct an appropriate function h is not particularly attractive, either.

4 Iterative properties of commuting functions

We now turn our attention to the iterative properties possessed by commuting
pairs of continuous functions. In so doing we are able to find alternate proofs
for the main results of [2] and [6], as well as generalize them a bit. We begin
with a quick look at some of the interesting relationships that exist between
periodic points and ω-limit sets of commuting pairs of continuous functions.
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Lemma 4.1. Suppose f and g in C(I, I) commute. If x ∈ Pn(f), then
gmn(x) ∈ Fn(f) for all natural numbers m. In particular, if x ∈ F (f), them
gm(x) ∈ F (f) for all m ∈ N.

Proof. It suffices to show that gn(x) ∈ Fn(f) whenever x ∈ Pn(f). This
follows from the fact that gn(x) = gn(fn(x)) = (gf)n(x) = (fg)n(x) =
fn(gn(x)).

Corollary 4.1. Suppose f and g in C(I, I) commute. If x ∈ Pn(f), then
ω(x, gn) ⊂ Fn(f). In particular, if x ∈ F (f), then ω(x, g) ⊂ F (f).

As our next lemma shows, for each x ∈ I, the ω-limit set ω(gn(x), f) is
a continuous image of ω(x, f) under gn, for each natural number n. Thus,
we can take ω(x, f) as a generating set for all the ω-limit sets of the form
ω(gn(x), f).

Lemma 4.2. Suppose f and g in C(I, I) commute. Then gn(ω(x, f)) =
ω(gn(x), f) for all x ∈ I, for all n ∈ N.

Proof. Since fg = gf, we have that g(O(x, f)) = O(g(x), f) − {x}, so that
g(ω(x, f)) = ω(g(x), f).

Our next result highlights an interesting relationship between ω(x, gn),
ω(x, g) and ω(x, fg) = ω(x, gf) whenever f and g commute, and x ∈ Pn(f).

Lemma 4.3. Suppose f and g in C(I, I) commute. If x ∈ Pn(f), then
ω(x, gn) ⊂ ω(x, g) ∩ ω(x, fg). Moreover, ω(x, g) = ∪n−1

k=0g
k(ω(x, gn)) and

ω(x, fg) = ∪n−1
k=0(fg)k(ω(x, gn)), so that ω(x, gn) is periodic with respect to g

and fg.

Proof. Since

O(x, fg) = ∪n−1
k=0O((gf)k(x), gn) and O(x, g) = ∪n−1

k=0O(gk(x), gn),

it follows that

ω(x, fg) = ∪n−1
k=0ω((gf)k(x), gn) = ∪n−1

k=0(fg)k(ω(x, gn)) and

ω(x, g) = ∪n−1
k=0ω(gk(x), gn) = ∪n−1

k=0g
k(ω(x, gn)).

This completes the proof.
If we presume that our commuting pair f and g have the additional prop-

erty that P (f) ∩ P (g) = ∅, then we can say quite a bit more about their
particular properties as well as the relationships between their iterative struc-
tures. We begin with a rather simple result involving periodic points and
ω-limit sets that has some surprising consequences.
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Lemma 4.4. Suppose f and g in C(I, I) commute, and P (f) ∩ P (g) = ∅. If
x ∈ P (f), then ω(x, g) is uncountable.

Proof. Suppose, to the contrary, that x ∈ Pn(f) and ω(x, g) is countable.
Then ω(x, gn) ⊂ ω(x, g) is countable, so that there exists a finite α ∈ Ω(gn)
that is contained in ω(x, gn) ⊂ Fn(f). Thus, P (f) ∩ P (g) 6= ∅, which leads us
to a contradiction.

As a corollary, we get an extension of a result found in [2], which was
predicated on the existence of a g-invariant subset A in F (f). As our Corollary
4.1 shows, we can take A to be ω(x, g) for any x ∈ F (f), and thus remove this
apparent restriction. This gives us the following.

Theorem 4.1. Suppose f and g in C(I, I) commute, and P (f) ∩ P (g) = ∅.
Then both f and g have periodic points of period 2n for all n ∈ N.

We can begin to see why constructing a pair of commuting continuous func-
tions that share no periodic point appears to be so difficult, as each function
must have periodic points with arbitrarily long periods. Our next corollary
to Lemma 4.4 also generalizes a result found in [2], again by removing the
hypothesis that there exists a g-invariant set A in F (f), as discussed above.

Theorem 4.2. Suppose f and g in C(I, I) commute, and P (f) ∩ P (g) = ∅.
Then both F (f) ∩R(g) and F (g) ∩R(f) are uncountable.

Proof. Let x ∈ F (f), with α ∈ Ω(g) minimal so that α ⊂ ω(x, g) ⊂ F (f).
Then α is uncountable, and since α is a minimal ω-limit set, α ⊂ R(g). Since
α ⊂ F (f) ∩ R(g), our conclusion follows. One shows that F (g) ∩ R(f) is
uncountable in an analogous fashion.

As a corollary to both Lemma 4.3 and Lemma 4.4, we get the following.

Corollary 4.2. Suppose f and g in C(I, I) commute, and P (f) ∩ P (g) = ∅.
If x ∈ Pn(f), then ω(x, gn), ω(x, g) and ω(x, fg) are all uncountable.

Our last pair of results go back to a 1965 paper of A. J. Schwartz [6].
Our first theorem generalizes his main result, and allows us to develop a nice
alternate proof of his theorem as a corollary.

Theorem 4.3. Suppose f and g in C(I, I) commute, x ∈ P (g) and a ∈ F (f).
• If f(x) ≥ x, a > x and f is nondecreasing on (x, a), then P (f)∩P (g) 6= ∅.
• If f(x) ≤ x, a < x and f is nondecreasing on (a, x), then P (f)∩P (g) 6= ∅.

Proof. We prove the first part, since the proof of the second is similar. Since
f is nondecreasing on (x, a), and f(x) ≥ x, we have that limn−→∞ fn(x) =
min{y ∈ F (f) : y ≥ x}. Thus, ω(x, f) is finite for x ∈ P (g), and P (f)∩P (g) 6=
∅ by Lemma 4.4.



A Note on Periodic Points and Commuting Functions 789

Corollary 4.3. Suppose f and g in C(I, I) commute. If either f or g is
continuously differentiable, then P (f) ∩ P (g) 6= ∅.

Proof. Suppose, to the contrary, that f is continuously differentiable, and
P (f)∩P (g) = ∅. Choose δ > 0 so that | f ′(p)−f ′(q) |< 1 whenever | p−q |< δ.
Since F (f)∩R(g) is uncountable, there is a Cantor set Q ⊂ F (f)∩R(g). Let
a, b ∈ Q so that b− a < δ, and there exists x ∈ (a, b) ∩ P (g). This is possible
since P (g) = R(g). Since f ′ | Q = 1, and b − a < δ, it follows that f ′(y) > 0
for all y ∈ (a, b), and f is increasing there. From our previous result, then,
P (f) ∩ P (g) 6= ∅, a contradiction.

5 Conclusions

Suppose we were to attempt the construction of a pair of commuting functions
f and g for which P (f)∩P (g) was the empty set. From what we have discerned
in the last few pages, both f and g would have to possess 2n cycles for every
n ∈ N, and neither function could be continuously differentiable. Moreover,
both F (f) ∩ R(g) and F (g) ∩ R(f) would have to be uncountable. Since
R(f) ⊂ P (f) for every continuous function f , the periodic points of f and
g, while disjoint, would have to be somewhat intertwined. All this makes
Alikhani-Koopaei’s tact of using a category argument to prove the residual
nature of such a pair that much more attractive. The conjecture in section
3 provides one such approach; nevertheless, how one would go about proving
the existence of the function h necessary to the outline is not obvious.
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