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ITERATIVE STABILITY IN THE CLASS OF
CONTINUOUS FUNCTIONS

Abstract

Let K be the class of compact subsets of I = [0, 1], and K∗ consist of
the nonempty closed subsets of K. We study the maps Λ : C(I, I) → K
and Ω : C(I, I) → K∗ defined so that Λ(f) is the set of ω-limit points
of f , and Ω

`
f

´
is the collection of ω-limit sets of f . We find that, in

general, neither map is continuous. We do get more positive results,
however, if we restrict ourselves to certain types of ω-limit sets and
better behaved classes of functions. We find that when f has only a finite
number of ω-limit sets, each demonstrating a certain type of stability,
the function Ω is continuous at f . The map Ω | E is also studied, where E
is composed of those continuous functions with zero topological entropy,
and a significant degree of stability of Ω | E is established.

1 Introduction

The iterative behavior of continuous self-maps of a compact interval has re-
ceived considerable attention in recent years. We will concern ourselves with
some related questions concerning stability within the family of continuous
self-maps of the interval I = [0, 1]. We begin with a rather general query. If
f and g, both continuous self-maps of I, are close to one another, are their
iterative characteristics in some way similar?

If by similar we mean that the functions are topologically conjugate to one
another, then we can never achieve a positive result in the space {C(I, I), ‖.‖},
where we endow the set of continuous functions mapping I to I with the
supremum metric. Since any f in C(I, I) must have a fixed point, for any
ε > 0 we can find g in C(I, I) so that ‖f − g‖ < ε, yet g has considerably
different dynamics than f on a neighborhood of the fixed point of f . In fact,
we can take g to equal f outside of our neighborhood of the fixed point, and
define g however we choose on that neighborhood so long as g is continuous.
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Near any fixed point of f , then, arbitrarily small perturbations can change the
local dynamics considerably. It is still possible, however, that if f is perturbed
only slightly to obtain g, then g will have ω-limit sets that are at least close
to those of f . For example, if we let f ≡ 0 and take g so that ‖g − f‖ < ε,
then all the ω-limit sets of g are contained in [0, ε], and hence in some sense
close to f ’s unique ω-limit set {0}. We will pursue this idea at some length by
making use of the Hausdorff metric H on the class of closed sets K contained
in [0,1]. In our above example, the ω-limit sets of g and f would be ε-close to
one another since every point in one is within ε of a point in the other.

We proceed through several sections.
In section 2 we present the notation and definitions we will use throughout

the balance of the paper. We also recall some important, previously known
results.

In section 3 we develop examples which show that the best possible result
is not valid; in general, the ω-limit points of f and g need not be close to one
another regardless of how close f and g are to each other. Nevertheless, these
examples help us narrow our focus to the more positive results found in the
ensuing sections.

In section 4 we focus our attention on convergent sequences {fn} in C(I, I)
that possess convergent ω-limit sets ωn, and find that for functions of zero
topological entropy, we are able to assert quite a bit about the relationship
between f = limn→∞ fn and ω = limn→∞ ωn. In this setting, the maximal
perfect subset of ω is always an ω-limit set of f .

In section 5 we show that if f has only a finite number of ω-limit sets, and
g is sufficiently close to f , then the ω-limit sets of g are close to those of f ,
provided that f ’s ω-limit sets themselves meet a certain stability criterion.

In section 6 we conclude with some open problems and a few observations.

2 Preliminaries

We shall be concerned with the class C(I, I) of continuous functions mapping
the unit interval I = [0,1] to itself, and the iterative properties this class
of functions possesses. For f in C(I, I) and any integer n ≥ 1, fn denotes
the nth iterate of f . For x in I, we call the set of all subsequential limits
of the sequence {fn(x)}∞n=0 the ω-limit set of f generated by x, and write
ω(x, f). We let Λ(f) = ∪x∈Iω(x, f) represent the ω-limit points of f , while
Ω(f) = {ω(x, f) : x ∈ I} denotes the set composed of the ω-limit sets of f .
To a very large extent, our study is one of the stability of Λ(f) and Ω(f) as f
undergoes perturbations.

We will be working primarily in four metric spaces. We will use the regular,
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Euclidean metric d on I =[0,1], and make occasional use of neighborhoods of
closed sets F of the form Bε(F ) = {x ∈ I : d(x, y) < ε, y ∈ F}. Within C(I, I)
we will use the supremum metric given by ‖f−g‖ = sup{| f(x)−g(x) |: x ∈ I}.
Our third metric space {K,H} is composed of the class of nonempty closed
sets K in I endowed with the Hausdorff metric H given by H(E,F ) = inf{δ >
0 : E ⊂ Bδ(F ), F ⊂ Bδ(E)}. This space is compact [4]. Our final metric space
{K∗,H∗} consists of nonempty closed subsets of K. Thus, K ∈ K∗ if K is a
nonempty family of nonempty closed sets in I such that K is closed in K with
respect to H. We endow K∗ with the metric H∗, so that K1 and K2 are close
with respect to H∗ if each member of K1 is close to some member of K2 with
respect to H, and vice versa.

Our interest in, and the utility of, the metric spaces {K,H} and {K∗,H∗}
stems from the following two theorems from [1] and [2], respectively.

Theorem 2.1. For any f in C(I, I), the set Λ(f) is closed in I.

Theorem 2.2. For any f in C(I, I), the set Ω(f) is closed in {K,H}.

To a large extent, then, our stability queries can be formulated via the
maps Λ : {C(I, I), ‖.‖} → {K,H} given by f → Λ(f) and Ω : {C(I, I), ‖.‖} →
{K∗,H∗} given by f → Ω(f).

In much of section 4 we will restrict our attention to a closed subset of
C(I, I) composed of those functions f having zero topological entropy, denoted
by h(f) = 0. The reader is referred to Theorem A of [9] for an extensive listing
of equivalent formulations of topological entropy zero. For our purposes, it
suffices to note that every periodic orbit of a continuous function with zero
topological entropy has cardinality a power of two. The following theorem,
due to Smital[10], sheds considerable light on the structure of infinite ω-limit
sets for functions with zero topological entropy.

Theorem 2.3. If ω is an infinite ω-limit set for f in C(I, I) possessing zero
topological entropy, then there exists a sequence of closed intervals {Jk}∞k=1 in
[0,1] such that

• for each k, {f i(Jk)}2
k

i=1 are pairwise disjoint and Jk = f2k

(Jk).

• for each k, Jk+1 ∪ f2k

(Jk+1) ⊆ Jk.

• for each k, ω ⊆ ∪2k

i=1f
i(Jk).

• for each k and i, ω ∩ f i(Jk) 6= ∅.
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We make the following definitions with Smital’s Theorem in mind. Let
ω be an infinite compact subset of I, and let f map ω into itself. We call
f a simple map on ω if ω has a decomposition S ∪ T into compact portions
that f exchanges, and f2 is simple on each of these portions. From Smital’s
Theorem one sees that every map f with zero topological entropy is simple on
each of its infinite ω-limit sets ω = ω(x, f). Let {Jk}∞k=1 be a nested sequence
of compact periodic intervals of ω and f as described in Smital’s Theorem.
Every set of the form ω ∩ f i(Jn) is periodic of period 2n, and we call each
such set a periodic portion of rank n. This system of periodic portions of ω, or
of the corresponding periodic intervals, is called the simple system of ω with
respect to f .

We will need the following notation in section 5 when we study the function
Ω : {C(I, I), ‖.‖} → {K∗,H∗} at all points f for which Ω(f) is finite. Suppose
ω ∈ Ω(f), and ω = ω(x, f) contains only finitely many points, say | ω |= n.
We say that ω is a stable ω-limit set of f if fn(x)− x is not unisigned in any
deleted neighborhood of x.

3 Examples

This section will be dedicated primarily to the development of examples. These
examples will provide us with some insight into the behavior of our functions
Λ and Ω as well as focus our efforts in the ensuing sections.
Example 1. Consider fn(x) = x

n−1
n . As n goes to infinity, we see that fn

goes to the identity function f . Thus, Λ(f) = [0, 1]. Since Λ(fn) = {0, 1}
for all n, we see that Λ is not continuous at f , so that Ω must necessarily
be discontinuous there, too. While this does rule out the best possible result
- that Ω, and therefore Λ, are continuous - our example does not rule out a
natural generalization of the theorem found in [2].

Recall that our four authors in [2] show that if {ωn} ⊆ Ω(f), and ωn → ω
in K , then ω ∈ Ω(f). In example 1, {0} ∈ Ω(fn) for every n, and {0} ∈ Ω(f).
Perhaps, then, the following is true: If ωn ∈ Ω(fn) for each n, fn → f and
ωn → ω, then ω ∈ Ω(f). This conjecture simplifies to the result of [2] if we let
fn = f for all n.

For our next example, we need the following definition. LetM be a nowhere
dense compact set in I, with A = {a0, a1, ..., ak−1} 6= ∅ a set of limit points of
M. Suppose there is a system {M i

n}∞n=0, i = 0, 1, ..., k−1 of nonempty pairwise
disjoint compact subsets of M such that M\∪i,nM i

n = A and limn→∞M i
n = ai

for each i. Let f : M → M be a continuous map with A a k-cycle of f such
that f(ai) = ai−1 for i > 0 and f(a0) = ak−1. If f(M i

n) = M i−1
n for i > 0

and any n, f(M0
n) = Mk−1

n−1 for n > 0, and f(M0
0 ) = ak−1, then M is called a
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homoclinic set of order k with respect to f.
Example 2. We will construct a sequence of homoclinic ω-limit sets ωn for
functions fn in C(I, I) so that ωn → ω, fn → f , yet ω is not contained in
Λ(f). This negates our conjectured generalization of the result from [2].

We begin by constructing our ω-limit sets ωn. For each portion M i
n, we

take a scaled copy of the middle thirds Cantor set with the indicated convex
closure.

For ω1, let a0 = 1
2 and convM0

n = [ 12 + 1
22+n ,

1
2 + 1

22+n + 1
23+n ]. Set A0 =

a0 ∪ {∪∞n=0M
0
n}. Now, let a1 = 0 and convM1

n = [ 1
22+n ,

1
22+n + 1

23+n ].
For ω2, we begin with the set A0 described above, and take a1 = 1

4 and
convM1

n = [ 14 + 1
23+n ,

1
4 + 1

23+n + 1
24+n ]; let A1 = a1 ∪ {∪∞n=0M

1
n}. Now, let

a2 = 0 and convM2
n = [ 1

23+n ,
1

23+n + 1
24+n ].

In general, for ωm, we begin with the sets A0, A1, ..., Am−2 and take am−1 =
1

2m and convMm−1
n = [ 1

2m+1 + 1
2m+2+n ,

1
2m+1 + 1

2m+2+n + 1
2m+3+n ]; let Am−1 =

am−1 ∪ {∪∞n=0M
m−1
n }. Now, let am = 0 and convMm

n = [ 1
2m+2+n ,

1
2m+2+n +

1
2m+3+n ].

We see that each of our sets ωn will be homoclinic of order n + 1, and
the sequence {ωn} converges in K to the set ω = {0} ∪ {∪∞n=0An}. How our
functions fn : ωn → ωn are defined is clear from our definition of a homoclinic
trajectory as well as the construction of the sets ωn. Moreover, since each
resulting fn is continuous, we can use [6] to extend fn : ωn → ωn to a function
we will also call fn that is in C(I, I) and has the property that ωn = ω(x, fn)
for some x ∈ I. Since we can take fn | A1 ∪ ... ∪ Am = fk | A1 ∪ ... ∪ Am for
all n and k greater than m+ 2, and An → 0 as n→∞, we can take our fn so
that f = limn→∞ fn exists, and f(x) = 0 for x ∈ [ 12 , 1]. Thus, Λ(f)∩ [ 12 , 1] = ∅
as f(0) = limn→∞ fn(0) = limn→∞

1
2n .

It is worth pointing out that not only is ω not an ω-limit set of f , but
we lose a considerable portion of our ω-limit points as well. For each n,A0 ⊆
ωn ⊆ Λ(fn) with A0 ⊆ [ 12 , 1], yet Λ(f) ∩ [ 12 , 1] = ∅.
Example 3[3]. Let f(x) = x on I, and for ε > 0, choose 1

n < ε. An
appropriate polygonal function fn that possesses the orbit 0 → 1

n →
2
n →

... → n−1
n → 1 → n− 1

2
n → n− 3

2
n → ... →

1
2
n → 0 has a periodic orbit that

spans I, and the property that ‖f − fn‖ ≤ 1
n . Since Ω(f) = {{x} : x ∈ I},

it follows that H∗(Ω(fn),Ω(f)) = 1
2 for all n. By choosing a subsequence

if necessary, one may assume that limn→∞ Ω(fn) exists, since {K∗,H∗} is
compact. Then limn→∞ fn = f, and H∗(limn→∞ Ω(fn),Ω(f)) = 1

2 . Thus,
Ω is discontinuous at the identity function, a function with zero topological
entropy. Unlike Example 2, however, in this example we did not lose any ω-
limit points in going from Λ(fn) to Λ(f), as Λ(f) = [0, 1], but we did lose all
of our non-trivial ω-limit sets in the limit.
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We should note that both in Example 2 and Example 3, we can take the
sequence {fn} to be equicontinuous as well as bounded, so that {fn} has a
compact closure in C(I, I). We conclude, then, that fn → f, ωn ∈ Ω(fn) and
ωn → ω do not imply that ω is in Ω(f) even for compact sequences {fn}.

We begin our next section with a closer examination of the relationship
between the limit set ω and the limit function f. We will then revisit the
continuity structure of Ω with our attention restricted to functions of zero
topological entropy.

4 Finite ω-limit sets and zero topological entropy

Suppose fn → f in C(I, I), ωn → ω in K and ωn is an ω-limit set of fn for
each n. From our previous section’s examples we know that ω need not be
an ω-limit set of f , although in some cases it might be. The main result of
this section shows us that if we have the additional hypothesis that ω is finite,
then ω will always be an ω-limit set of f . Also, if we restrict ourselves to the
closed class of functions E = {f ∈ C(I, I) : h(f) = 0}, and ω is infinite, then
the necessarily unique maximal perfect subset of ω is an ω-limit set of f . We
begin with a couple of lemmas. These show that, regardless of the cardinality
of ω or the topological entropy of the members of {fn}, ω always possesses
certain properties reminiscent of an ω-limit set.

Lemma 4.1. Suppose fn → f, ωn → ω and ωn ∈ Ω(fn) for each n. Then
f(ω) = ω.

Proof. f(ω) ⊆ ω : Let y ∈ ω, and take {yn} so that yn ∈ ωn for each n, and
yn → y. Then fn(yn)→ f(y), and since fn(yn) ∈ ωn, it follows that f(y) ∈ ω.

ω ⊆ f(ω): Let y ∈ ω, and take {yn} so that yn ∈ ωn for each n, and yn → y.
Suppose xn ∈ f−1

n (yn) ∩ ωn, with {xnk
} ⊆ {xn} a convergent subsequence;

say xnk
→ x. Then x ∈ ω, and f(x) = y, as | f(x) − y |≤| f(x) − f(xnk

) | +
| f(xnk

)− fnk
(xnk

) | + | fnk
(xnk

)− y | .
Our next lemma shows that not only is ω strongly invariant with respect

to f , but also that f transports portions of ω outside of themselves in a way
similar to what ω-limit sets experience.

Lemma 4.2. Suppose fn → f, ωn → ω and ωn ∈ Ω(fn) for each n. If F is
any nonempty proper closed subset of ω, then F ∩ f(ω \ F ) 6= ∅.

Proof. Suppose, to the contrary, that F and f(ω \ F ) are disjoint. Then
there exist open sets G1,G2 such that ω \ F ⊆ G1, F ⊆ G2 and G2 is disjoint
from f(G1). Say σ = min{| x− y |: x ∈ G2, y ∈ f(G1)}. Since ωn → ω, there
existsM a natural number such that ωn ⊆ G1∪G2 and ωn∩G1 6= ∅, ωn∩G2 6= ∅
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for all n ≥ M . Also, since fn → f , there is a natural number N so that
| fm(x) − f(x) |< σ

2 for all m ≥ N and x ∈ I. Let us take n, then, so that
n > max{M,N}, and set Fn = ωn ∩ G2. Then Fn is a closed, nonempty,
proper subset of ωn, and G2 is disjoint from fn(G1). Let xn ∈ I so that
ωn = ω(xn, fn). For all large k, fkn(xn) belongs to either G1 or G2, and it
belongs to each of them infinitely often. Thus there is an infinite sequence
k1 < k2 < k3 < ... so that fki

n (xn) ∈ G1, and fki+1
n (xn) ∈ G2. If y is a

limit point of the sequence fki
n (xn), then y ∈ G1, and f(y) ∈ G2, which is a

contradiction.
We are now in a position to show that ω is an ω-limit set of f whenever ω

is finite.

Theorem 4.1. Suppose fn → f, ωn → ω and ωn ∈ Ω(fn) for each n. If ω is
a finite set, then ω ∈ Ω(f).

Proof. Say ω = {z1, z2, ..., zk}. Since f(ω) = ω, it suffices to show that
f j(zi) 6= zi whenever 1 ≤ j < k for all i = 1, 2, ..., k. Suppose, to the contrary,
that there exists i ∈ {1, 2, ..., k} and 1 ≤ j < k for which f j(zi) = zi. Let
us assume that f l(zi) 6= zi for all l < j. Set σ = min{| zm − zp |: m 6= p}.
Since fn → f, there exists N1 ∈ N so that n ≥ N1 implies ‖fn − f‖ < σ

8 . Let
N2 ∈ N so that N2 > N1, and n ≥ N2 implies H(ω, ωn) < δ < σ

8 , where δ is
chosen so that | a− b |< δ insures that | f(a)− f(b) |< σ

8 . If n > N2, and we
take x ∈ ωn so that | x − zl |< δ, then | fn(x) − f(zl) |≤| fn(x) − f(x) | +
| f(x)− f(zl) |≤ σ

8 + σ
8 = σ

4 . It now follows that if ω∗n = ωn ∩Bδ(∪jl=0f
l(zi)),

then fn(ω∗n) ⊆ ω∗n. If we let F = ωn \ ω∗n, then F ∩ fn(ωn \ F ) = ∅. But this
contradicts our hypothesis that ωn is an ω-limit set for fn.

In our previous result we were able to show that ω is an ω-limit set of f
provided we place a restriction on the structure of ω. We are able to get a
similar result by placing a restriction on the sequence {fn} rather than on the
limit set ω. We restrict our attention to E = {f ∈ C(I, I) : h(f) = 0}, and
after showing that E is closed in {C(I, I), ‖.‖}, we go on to prove the following
theorem.

Theorem 4.2. Suppose {fn} ⊆ E , fn → f, ωn → ω and ωn ∈ Ω(fn) for each
n. If ω is infinite and C is the set of isolated points of ω, then ω \ C ∈ Ω(f).

We begin our proof of this theorem with a verification that our set E is
indeed closed.

Lemma 4.3. The set E = {f ∈ C(I, I) : h(f) = 0} is closed in {C(I, I), ‖.‖}.

Proof. From [1], we know that the function h : C(I, I)→ R+∪{+∞}, given
by f → h(f), where h(f) is the topological entropy of f , is lower semicontin-
uous. Thus, if h(f) > α > 0, then h(g) > α for all g sufficiently close to f .
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In particular, then, the set G = {f ∈ C(I, I) : h(f) > 0} is open, and our
conclusion follows.

Our next lemma, though rather technical, plays an important part in the
proof of Theorem 4.2.

Lemma 4.4. Suppose {fn} ⊆ E , fn → f, ωn → ω and ωn ∈ Ω(fn) for every
n. If ω is infinite and x ∈ ω, then x is not a periodic point of f .

Proof. Since h(f) = 0, if x is periodic, the period of x is 2 m for some m in
N∪{0}. Thus, x is a fixed point of the function g = f2m

, and since fn → f, it
follows that gn = f2m

n → g. Suppose xn → x and xn is periodic of period 2n.
Let n ≥ m. Then xn is periodic of period 2n−m for gn, and x ∈ ω̃, the limit of
any convergent subsequence {ω(xnk

, gnk
)} ⊆ {ω(xn, gn)}. It suffices, then, to

show that x is not a fixed point of f , for if x has a period of 2m,m > 0, we
replace the sequence {fn} with {gn} = {f2m

n }, and the sequence {ωn} with a
convergent subsequence of {ω(xn, gn)}. We proceed in two cases.

Case 1: Suppose ωn is finite for each n. By renumbering and taking a
subsequence if necessary, we may assume that | ωn |= 2n for each n. We prove
our first case by again considering two possibilities.

First, let us suppose that x = minω or x = maxω is a fixed point. We will
prove our assertion in the case that x = minω. Let xn = minωn, and since
ωn → ω, it follows that xn → x. Since {fn} ∪ f is a closed and bounded set
in C(I, I), we know that it is equicontinuous. Let ε > 0, and take ε > δ > 0
so that | a− b |< δ implies | g(a)− g(b) |< ε for any g ∈ {fn} ∪ f. Let N ∈ N
so that n > N implies | xn − x |< δ, and | fn(xn) − xn |< δ, too. Since
xn = minωn, fn(xn) ≥ xn, and since f−1(maxωn) ≤ fn(xn), it follows that
convωn ⊂ B2ε(x). Thus, | convωn |→ 0 as n → ∞. This implies x = ω, a
contradiction.

Now, let us suppose that x ∈ (minω,maxω), and again we will take ε >
δ > 0 so that | a − b |< δ implies | g(a) − g(b) |< ε for each g ∈ {fn} ∪
f. Suppose that xn ∈ ωn and xn → x. Choose N ∈ N so that n > N
implies | x − xn |< δ

2 , and | f in(xn) − xn |< δ
2 for i = 0, 1, 2, 3. Set a =

min{f in(xn)}3i=0 and b = max{f in(xn)}3i=0. Then [a, b] contains at least one of
f−1
n (maxωn), f−1

n (minωn) so that either | maxωn−x |< 2ε or | minωn−x |<
2ε. Thus we have either that | maxωn − x |→ 0 or | minωn − x |→ 0
as n → ∞. In either case we have a contradiction to our supposition that
x ∈ (minωn,maxωn).

Case 2: Suppose ωn is uncountable for all n > N , for some N ∈ N.
Let Jki , i = 1, 2, be the rank 1 periodic portions of ωk with respect to fk.

Since ωk → ω and fk → f , it follows that {Jk1 } and {Jk2 } each converges to
a portion J1 and J2, respectively, of ω that f exchanges. Since ω = J1 ∪ J2,
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if x ∈ J1, then f(x) ∈ J2, so f(x) = x implies J1 ∩ J2 6= ∅. By considering
the four rank 2 periodic portions of ω, however, one sees that J1 ∩ J2 6= ∅ is
impossible.

Using the notation of Theorem 4.2, Theorem 5.1[7] tells us that it suffices
to show that ω \C is a subset of the limit points of f , and ω \C is both simple
and strongly invariant with respect to f in order to prove our result.

Lemma 4.5. Suppose {fn} ⊆ E , fn → f, ωn → ω and ωn ∈ Ω(fn) for every
n. If ω is infinite and C is the set of isolated points of ω, then

• ω \ C is a simple set with respect to f,

• ω \ C ⊆ Λ(f), and

• f(ω \ C) = ω \ C.

Proof. We prove our result in several steps.
1. We first show that ω is a simple set with respect to f . Suppose ωm is

a periodic orbit of fm of order 2m, or that ωm is uncountable. In either case,
if m > 2, there exist two disjoint compact portions Jm1 , J

m
2 of ωm that fm

interchanges. Since ωm → ω and fm → f, it follows that Jm1 → J1, J
m
2 → J2,

and J1 and J2 are interchanged by f . Moreover, since Jm1 ∪Jm2 ⊇ ωm, one sees
that J1 ∪ J2 ⊇ ω, and they are disjoint since no element of ω can be periodic.
In a similar fashion one can show that, since Jm1 and Jm2 both have a disjoint
decomposition into two compact subportions that f2

m interchanges, the same
is true of J1, J2 and f .

2. We now show that ω\C is contained in Λ(f). Let x ∈ ω\C. Since ω is a
simple set, there exists a nested sequence of compact periodic portions {Jk}∞k=1

such that the period of Jk is 2k for each k, and x is contained in each. Let
J = ∩∞k=1Jk. We begin by showing that x is not contained in int(conv(J)), the
interior of the convex closure of J . Suppose, to the contrary, that there exists
δ > 0 such that Bδ(x) ∩ int(conv(J)) = Bδ(x). Then for sufficiently large
k,Bδ(x) is contained in the interior of a component of the simple system for
ωk. From Proposition 3.1[5], it follows that Bδ(x)∩ωk = ∅, which contradicts
x being an element of ω = limk→∞ ωk. We continue our proof by considering
two cases.

First, suppose x = J . Since each Jk is periodic with period 2k, convJk
contains a point of period 2k. Since Jk → x, and Λ(f) is closed, our conclusion
follows.

Now, suppose x = minJ or x = max J . Let us assume that x = max J .
Then there exists {yn} ⊆ ω such that x < yn for all n, and yn → x. Since
there is a periodic point between any two of the compact periodic portions of
rank k for each k, our conclusion follows.
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3. We show that ω \ C is strongly invariant with respect to f . This, in
conjunction with our first step, also establishes that ω \ C is a simple set
with respect to f . Let x ∈ ω \ C with {yn} ⊆ ω \ C such that yn → x.
Since f is continuous and x is not an element of int(conv(J)), we have that
f(yn)→ f(x). Thus, f(x) is not an isolated point of ω, so that f(x) ∈ ω \ C,
and more generally, f(ω \ C) ⊆ ω \ C. Now, let y ∈ ω \ C, and suppose
{yn} is a subset of ω \ C such that yn → y. Take xn ∈ {f−1(yn)} ∩ ω, and
let {xnk

} be a convergent subsequence of {xn}; say xnk
→ x. Then x ∈ ω

since ω is closed, and as x is not isolated, x is not contained in C. Since f is
continuous, xnk

→ x and f(xnk
)→ y imply that f(x) = y, and it follows that

f(ω \ C) ⊇ ω \ C.

We would like to be able to extend the conclusion of Theorem 4.2 to the
entire set ω, thereby establishing the semicontinuity of the map Ω | E . Using
a construction found in [5], however, we are able to develop a sequence of
functions {fn} ⊆ C(I, I) so that h(fn) = 0 for each n, there is a set ω
contained in Ω(fn) for each n, and g = limn→∞ fn exists; nevertheless, ω is
not an element of Ω(g). We note that ω must necessarily be of the form Q∪C,
where Q is a Cantor set, and C is a countable set of points isolated in ω. This
construction of Bruckner and Ceder can be thought of as a reversal of Smital’s
Theorem in that their function f is developed for a particular sequence of
compact periodic intervals {Jk}.

Prior to developing Bruckner and Ceder’s example, we recall a device from
[8] that allows us to code the sets f i(Jk) found in Smital’s Theorem with finite
tuples of zeros and ones. Let N denote the natural numbers, and take N to be
the set of sequences composed of zeros and ones. If n ∈N and n = {ni}∞i=1,
we let n | k = (n1, n2, ..., nk). Set 0 = {0, 0, 0, ....} and 1 = {1, 1, 1, ....}.
Now, define a function A : N → N given by A(n) = n+10, where addition is
modulus two from left to right. For each k ∈ N and i ∈ N put F1|k = Jk and
FAi(1|k) = f i(Jk). Thus, for every m and n in N and k ∈ N there is a j ∈ N
such that Aj(m | k) = n |k; the above relations define Fn|k for all n ∈ N and
k ∈ N. In the construction that follows, we will take Fn|k,1 to lie to the left of
Fn|k,0 for all n ∈ N and k ∈ N.

Example 4. Let Q be any Cantor set in (0, 1), and let C be a set that
consists of exactly one point from each interval contiguous to Q together with
the point 1

2 inf Q. We let M consist of all n ∈ N that have a tail of ones. We
define by induction a system of closed intervals {Fn|k : n ∈ N , k ∈ N} so that
for each n and k, Fn|k,1 and Fn|k,0 are disjoint subintervals contained in the
interior of Fn|k for which the nondegenerate components of K = ∪n∈N ∩∞k=1

Fn|k coincide with all Fn = ∩∞k=1Fn|k with n ∈ M. These in turn coincide
with all [c, q] where c ∈ C and q is the nearest point to the right of c in Q. We



Iterative Stability in the Class of Continuous Functions 775

also choose F1 and F0 so that 0 = inf F1 and 1 = supF0.
For each n ∈N and k ∈ N let Fn|k = [an|k, bn|k]. If n ∈M, then

∩∞k=1[an|k, bn|k] = [an, bn] where an and bn are the endpoints of Fn; the set C
consists of all an for which n ∈M. Let S consist of all x such that {x} = Fn

for some n ∈N . Then the closure of S is Q, and if B consists of all bn for which
n ∈M, then Q = S ∪B. We also note that FA(n) is a singleton whenever Fn

is a singleton.
Let L = Q ∪ C ∪ {an|k : n ∈N , k ∈ N} ∪ {bn|k : n ∈N , k ∈ N}. We first

define our function f on L. If x ∈ S, define f(x) so that {f(x)} = FA(n) when
{x} = Fn, and on C ∪ B define f so that f(an) = aA(n) and f(bn) = bA(n).
On the remaining points of L we set f(an|k) = aA(n)|k and f(bn|k) = bA(n)|k
whenever n | k 6= 1 | k, and take f(a1|k) = a0|k+1 and f(b1|k) = b0|k+1.

Bruckner and Ceder show that the function f : L → L is continuous, and
then extend f linearly on the intervals contiguous to L obtaining a function
also denoted by f that is continuous on all of [0, 1]. They go on to show that
f has exactly one 2k cycle for each k ∈ N ∪ {0}, but no other periodic points,
so that h(f) = 0. Since the orbit of the point a0 is {an|k : n ∈N , k ∈ N}, it
follows that Q ∪ C = ω(a0, f) ∈ Ω(f).

Suppose c 6= a1 is an isolated point of Q ∪ C, and c is contained in (b, a)
an interval contiguous to Q. We call (x, c), for b < x < c, an exterior neigh-
borhood of c. If c = a1, we take (x, c) to be an exterior neighborhood of c
for any x ∈ [0, c). The idea behind the development of our functions fn is to
modify Bruckner and Ceder’s function f so that the trajectory of a0 intersects
the exterior neighborhoods of the set C less and less frequently. In the limit
g = limn→∞ fn, we will see that the trajectory of any point x in [0, 1] can visit
an exterior neighborhood of a1 at most one time.

We now define our sequence of functions {fn}. Let f1 be Bruckner and
Ceder’s function f , and define f2 so that

• f2(x) = f(x) for x ≥ a1,

• f2(a1|k) = a0|k+2 for all k in N,

and extend f2 linearly on [0, a1). This extension is possible since a0 =
limk→∞ a0|k+2 = limk→∞ f2(a1|k) = f2(a1). In general we take fl so that
fl(x) = f(x) for x ≥ a1 and fl(a1|k) = a0|k+l for all k ∈ N, and then extend
fl linearly on [0, a1).

It follows that each of our functions fn satisfies Bruckner and Ceder’s
Theorem 4.3 - in fact, their proof carries over except for the obvious changes
in notation - so that fn has zero topological entropy, and Q∪C = ω(a0, fn) ∈
Ω(fn), since {an|1+nk : n ∈N , k ∈ {0} ∪ N} is the orbit of the point a0.
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If we let g = limn→∞ fn, however, one sees that g(x) = a0 for all x
contained in [0, a1], so that the orbit of any point contained in the unit interval
visits an exterior neighborhood of a1 at most once. It follows that a1 cannot
be contained in any ω-limit set of g; in particular, Q∪C cannot be an ω-limit
set of g. As Theorem 4.2 indicates, however, Q - the maximal perfect subset
of ω - is an ω-limit set of g. In fact, Q = ω(a0, g).

5 Continuity of Ω when Ω(f) is finite

In this section we return to a study of the map Ω : {C(I, I), ‖.‖} → {K∗,H∗}.
Our main result shows that if f has only a finite number of stable ω-limit sets,
then f is a point of continuity of the map Ω. Again, we begin with a series of
lemmas.

Lemma 5.1. Suppose f in C(I, I) has only a finite number of ω-limit sets;
say that | Ω(f) |= m. Then Ω(f) is a finite number of periodic ω-limit sets,
each with cardinality a power of two, and h(f) = 0.

Proof. Since Ω(f) is finite, it follows from Sarkovskii’s Theorem that h(f) =
0. If f has an uncountable ω-limit set, then f has a 2n orbit for each n ∈ N,
which contradicts | Ω(f) |= m. Thus, if ω is an ω-limit set of f , then | ω |= 2n

for some n ≤ m− 1.

Lemma 5.2. Suppose f is in C(I, I), | Ω(f) |= n and each of the ω-limit sets
of f is stable. If for any ε > 0 there exists δ > 0 so that ‖f − g‖ < δ implies
Λ(g) ⊆ Bε(Λ(f)), then the map Ω : {C(I, I), ‖.‖} → {K∗,H∗} is continuous
at f .

Proof. We show that for each ε > 0 there is a δ > 0 so that H∗(Ω(g),Ω(f))
< ε whenever ‖f − g‖ < δ. Let ε > 0, take {x1, x2, ..., xk} = Λ(f) such that
i < j implies xi < xj , and set γ = min{x1, xi+1−xi, 1−xk : i = 1, 2, ..., k−1}.
We may assume ε < γ

3 . Since f is uniformly continuous, there exists δ1, 0 <
δ1 <

ε
3 , so that | x− y |< δ1 implies | f i(x)− f i(y) |< ε

3 for i = 1, 2, ..., 2n−1.
Let σ1 = min{| f2n−1

(x) − x |: x ∈ I \ Bδ1(Λ(f))}, and set σ = min{δ1, σ1
2 }.

Let δ2 > 0 so that ‖f − g‖ < δ2 implies ‖f i − gi‖ < σ for i = 1, 2, ..., 2n−1.
By hypothesis, there exists δ, 0 < δ < δ2 such that ‖f − g‖ < δ implies
Λ(g) ⊆ Bδ2(Λ(f)) ⊆ Bε(Λ(f)). Let ωi = ω(xi, f), and take x∗i in Bδ2(xi)
so that g2n−1

(x∗i ) = x∗i . Then | gm(x∗i ) − fm(xi) |≤| gm(x∗i ) − fm(x∗i ) | +
| fm(x∗i )−fm(xi) |< ε for m = 1, 2, ..., 2n−1, so H(ω(x∗i , g), ωi) < ε. Moreover,
since | g(x)−f(xi) |< γ

3 for all x in Bδ2(xi), and ωg ∈ Ω(g) implies g(ωg) = ωg,
it follows that H(ωg, ωi) < ε whenever ωg ∩Bδ2(xi) 6= ∅.
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Lemma 5.3. Suppose f is in C(I, I), | Ω(f) |= n and each of the ω-limit sets
of f is stable. Then for any ε > 0 there exists δ > 0 so that ‖f − g‖ < δ
implies P (g) ⊆ Bε(Λ(f)), where P (g) is the set of periodic points of g.

Proof. We begin with some notation that will be helpful in the course of
our proof. Suppose that ω is a periodic ω-limit set for g ∈ C(I, I), and set
xM = maxω, xm = minω, and take xM−i in ω so that gi(xM−i) = xM . We
define xm−i analogously. Let [a, b] → [c, d] indicate that g([a, b]) ⊇ [c, d]; we
write 〈c, d〉 to represent the closed interval with endpoints c and d, not caring
whether c ≥ d or c ≤ d. Finally, let Fix(g) = {x ∈ I : g(x) = x} be the set of
fixed points of g.

By considering f2n−1
rather than f if necessary, we may assume that

Ω(f) = {{x1}, {x2}, ..., {xm}}. Let σ1 = min{| f(x)−x |: x ∈ I \∪mi=1Bδ(xi)}
and σ2 = min{| f2(x)− x |: x ∈ I \ ∪mi=1Bδ(xi)}, and set σ = min{σ1, σ2}. If
‖f−g‖ < σ, then g has no fixed points or points of period two in I\∪mi=1Bδ(xi).
We proceed in several steps.

1. Suppose gn → f and ωn = ω(xn, gn) is periodic. Let us also suppose
that xi is a fixed point of f , and there exists an M in N so that for any ε > 0
there exists N ∈ N such that xnM−m ∈ (xi− ε, xi+ ε) for all ωn, where n > N .
Since gn → f and xnM−m → xi, it follows that gmn (xnM−m) = xnM converges to
fm(xi) = xi. It follows that ωn → xi.

2. Let xi be the fixed point of f contained in convω, and suppose y ∈
[xi + δ, xM ] such that g(y) ≥ x∗i ∈ Fix(g). From our first part we may
assume that xm−1 > xi + δ, and that xM−1 < xi + δ. Then 〈y, xm−1〉 →
[xm, x∗i ]→ 〈y, xm−1〉, which implies 〈y, xm−1〉 contains a point of period two.
But this contradicts ‖f − g‖ < σ. We conclude that if y ∈ [xi + δ, xM ], then
g(y) < min{Fix(g)}. Similarly, y in [xm, xi − δ] implies g(y) > max{Fix(g)}.

3. We show that xm 6= xM−1, and xM 6= xm−1. Suppose, to the contrary,
that xm = xM−1 for ω = ω(x, g) where ‖f − g‖ < σ. Let xi be the fixed point
of f contained in convω, and again we may assume that xm−1 > xi + δ. If
xi + δ ≤ y < xm−1, then [y, xm−1] → [xm, g(y)] → [g2(y), xM ], which implies
g2(y) > y since we have no point of period two in I \ ∪mi=1Bδ(xi). Since g is
continuous, it follows that g2(y) > y for all y in [xi+δ, xM ]. But g2(xM ) < xM ,
since | ω |> 2, which is a contradiction.

4. From our first part, we again assume that xM−1 < xi − δ and xm−1 >
xi + δ. Let y ∈ [xm, xi − δ]. Since g2 is continuous, and g2(xm) > xm, it
follows that g2(y) > y. Similarly, y ∈ [xi + δ, xM ] implies g2(y) < y. Now, set
x∗ = min{x ∈ ω : x ∈ [xi + δ, xM ]}. Then x∗ ≤ xm−1 < xM , and g2(x∗) < x∗.
Let I1 = [x∗, xM ], so that xm−1 ∈ I1, and I2 = g(I1) ⊇ [xm, g(x∗)]. We
consider two cases.

Case 1: Suppose xM−1 is in I2. Then I1 → I2 → I1, which implies there
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is y in I1 such that g2(y) = y, a contradiction.
Case 2: Suppose xM−1 is not an element of I2. Then g(x∗) < xM−1. Let

I∗1 = [g(x∗), xM−1]. Then I∗2 = [g2(x∗), xM ] ⊃ ω ∩ [xi + δ, xM ]. If xM−2 ∈ I∗2 ,
then there is a y in I∗1 such that g2(y) = y. Thus, xM−2 is contained in Bδ(xi),
which implies ω → xi as δ → 0, from part 1.

We are now in a position to prove the main result of this section. In the
course of the proof we will need the following result of Block and Coppel [1].

Lemma 5.4. Let G be an open subinterval which contains no periodic point
of f ∈ C(I, I). Then G contains at most one point of any ω-limit set of f .

Theorem 5.1. Suppose f ∈ C(I, I), | Ω(f) |= n and each of the ω-limit sets
of f is stable. Then the map Ω : {C(I, I), ‖.‖} → {K∗,H∗} is continuous at
f .

Proof. Since | Ω(f) |= n, we know from Lemma 5.1 that max{| ωi |: ωi ∈
Ω(f)} ≤ 2n−1, so that f2n−1

has
∑n−1
i=0 2o(i) fixed points in Ω(f2n−1

), where
2o(i) =| ωi |. If there exists a δ > 0 so that ‖f − g‖ < δ implies Λ(g2n−1

) ⊆
Bε(Λ(f2n−1

)), then Λ(g) ⊆ Bε(Λ(f)) since Λ(h) = Λ(hk) for any h ∈ C(I, I)
and k ∈ N. Moreover, this would allow us to assert our conclusion. We can
assume, then, that Ω(f) = {{x0}, {x1}, ..., {xn−1}}, where i < j implies xi <
xj , and xi is not a tangential ω-limit set for any i. It suffices to show that for
any ε > 0 there exists δ > 0 such that ‖f − g‖ < δ implies H(Λ(g),Λ(f)) < ε.
Let us suppose this is not the case. Say there exists {gn} ⊂ C(I, I) so that
gn → f, ωn ∈ Ω(gn) and ωn → ω which is not contained in Bε(Λ(f)). Then
f(ω) = ω, and ω must be infinite. Let x ∈ ω. Then {fn(x)}∞n=0 → xi ∈ Ω(f),
and xi cannot be isolated in ω, for then we would have a contradiction to
Lemma 4.2 in section 4; just let F = ω \ {xi}. Thus, there is an ε > 0 so that
either (xi−1 + ε, xi− ε) = A or (xi + ε, xi+1− ε) = B contains two points of ω.
This, in turn, implies that there is an N ∈ N such that A or B contains two
points of ωn whenever n > N . Thus, A or B contains a periodic point xn of
gn, and this contradicts Lemma 5.3.

Our final two results involve R(Ω), the range of our function Ω :
{C(I, I), ‖.‖} → {K∗,H∗}. While they in no way characterize the elements of
R(Ω), they do indicate that R(Ω) is a very special subset of {K∗,H∗}. In fact,
the structure of elements in R(Ω) can be wildly complicated, as {[0, 1]} is not
in the closure of R(Ω), but K is[3].

Theorem 5.2. R(Ω) is nowhere dense in {K∗,H∗}.

Proof. Let Ω(f) be an element of R(Ω). Since Ω(f) is compact, for any ε > 0
there exists an ε-net K1,K2, ...,Kn of Ω(f). Moreover, we may take this ε-net
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so that each Ki is finite yet not a singleton, and i 6= j implies Ki ∩Kj = ∅.
Suppose {x1, x2, ..., xm} = ∪ni=1Ki, and i < j implies xi < xj . Set δ =
min{xi+1 − xi : i = 1, 2, ...,m− 1}. If K ∈ K∗ such that H∗(K, {Ki}ni=1) < δ

2 ,
then K is not an element of R(Ω), since any element of R(Ω) must contain a
singleton, yet by our choice of δ, if F ∈ K, then F must contain at least two
points.

In fact, we can say a bit more about the structure of R(Ω) in {K∗,H∗}.

Theorem 5.3. R(Ω) is a porous subset of {K∗,H∗}.

Proof. Let E∗ ∈ K∗, and take E′ ∈ K∗ so that E′ is a 1
2n -net of E∗. Say E′ =

{E′1, E
′

2, ..., E
′

m}. Now, let E = {E1, E2, ..., Em} be a set of subsets of P =
{0, 1

3n ,
2
3n ,

1
n , ...,

3n−1
3n , 1}, where Ei = {x ∈ P :| x − y |< 1

2n , y ∈ E
′

i}. Thus,
H∗(E′, E) < 1

2n , and Ei ∈ E implies that Ei cannot be a singleton. Suppose
F ∈ K∗ and H∗(F,E) < 1

6n . Then Fi ∈ F implies Fi is not a singleton, so
that F /∈ R(Ω). It follows that B 1

6n
(E) = {F ∈ K∗ : H∗(F,E) < 1

6n} has a
null intersection with R(Ω). Since H∗(E∗, E) ≤ H∗(E∗, E′) +H∗(E′, E) < 1

n ,
we see that B 1

6n
(E) ⊂ B 7

6n
(E∗) and the porosity of R(Ω) at E∗ must be at

least 2
7 . Since this holds for any set E∗ in {K∗,H∗}, we conclude that R(Ω)

is porous.

6 Conclusion

While we have made some progress in understanding how perturbations in a
continuous function affect its iterative behavior, our study of this subject in
the context of the maps Λ : C(I, I) → K and Ω : C(I, I) → K∗ is far from
complete.

If we go back to considering the overall continuity structure of our maps
Λ and Ω, an entire series of problems comes to mind. For example, how
can one characterize the points of continuity of Ω and Λ? What are their
Baire classifications? Are they measurable? Problems that are perhaps more
tractable, yet still very interesting, can be posed by restricting our attention
to subsets S ⊆ C(I, I), such as one parameter families of continuous functions,
or those functions that are in some sense nonchaotic or smooth.

Our final result of section 5 - that R(Ω) is porous, hence nowhere dense,
in {K∗,H∗} - begs a series of follow-on queries related to characterizing R(Ω)
in K∗. Is R(Ω) a Borel set? How does Ω(f) reflect the chaotic properties of
f , if it does at all?
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